
Investigation of the paper: A Method for Design and
Performance Modeling of Client/Server Systems

Ekrem Kocaguneli, Katerina Goseva
CS & EE, WVU, Morgantown, USA

ekocagun@mix.wvu.edu,
katerina.goseva@mail.wvu.edu

ABSTRACT
Problem: It is hard for performance engineers to design complex
and distributed client/server (C/S) applications that can meet the
performance goals.
Aim: When design and performance modeling activities are com-
bined, they will help one another and lead to better desing of C/S
systems.
Method: A performance engineering language developed by the
authors map the use cases to performance specifications and gen-
erates an analytical performance model for the system. Service de-
mands at servers, storage boxes and the network are also generated
from the system specifications.
Results: As an example the query optimizer of a DBMS was mod-
eled to be able to generate more accurate estimates on the I/Os.
They have observed a clear effect of improvement when the database
configuration was changed in accordance with the suggestions of
the proposed method.
Conclusion: A method that integrated design and performance
modeling activities was proposed and was applied on a practical
system. The model enabled early predictive performance models
and the parameters.

Categories and Subject Descriptors
Software Engineering [Software Performance Engineering]: Client
Server Systems

General Terms
Software Performance Engineering

Keywords
Performance Models, Client Server Systems

1. INTRODUCTION
The paper will be organized in the following manner: I will fol-

low the original paper [4] and their experiments while discussing
the topic and from time to time I will branch out to other papers in
the literature that have a common topic with this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CS736 2010 Lecture Project
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

When designing a distributed C/S system, there happens to be
quite a lot of design decisions that are made at very early stages of
development, such as:

• Work distribution between client and server
• Type of servers and clients
• Distribution of functions among servers

Usually the impact of early design decisions on the performance
is not very clear. Furthermore, the wrong decisions may result in
expensive re-design, re-write of the code or may even waste an
entire project.

The idea advocated in [4] is that the design and software perfor-
mance engineering (SPE) activities can be integrated in an iterative
manner. The aim of that approach is to analyze the desing for the
purposes of performance and consider alternative design configura-
tions. However, to be able to consider the performance engineering
activities at the desing level (i.e. to be able to application and access
logic), we need to have the message communication and function-
ality at the client and server sides.

As an example application a relational databse intensive C/S sys-
tem is chosen and is observed from the beginning till the end by us-
ing the described strategy. As for the design of the project an object
oriented approach was chosen, where use cases, structural view (us-
ing the object models) and dynamic view (using the collaboration
diagrams) of the program was used. The performance modeling
of the project was carried out through a language called CLISSPE
(Client/Server Software Performance Evaluation). This language
was also developed by the authors of the paper and details of the
language are given in [3]. As explained in [3], the language was
originally developed for the remodelling of a very arge mission-
critical system. The use of CLISSPE on this work however, aims
at bringing together the design and performance activities by en-
abling software developers and the performance analysts to work
on the use cases collaboratively on the same platform. In more
detail, by using CLISSPE designers of the C/S platform specify
objects (server, client, database, tables, transactions and networks),
the relations between these objects and the transactions executed in
the system. Then the compiler of CLISSPE compiles all the design
specifications into a queuing network and also the parameters of
the system are specified by the compiler so that the performance
analyst can work on that network.

I will structure the rest of the paper as follows: In §2 some back-
ground information regarding the SPE and the CLISSPE language.
In §3 some details of the application that motivated this study will
be provided. Then the steps of the proposed model will be given
in §4. The analytic models that were utilized by the compiler of
the proposed model are provided in §5 and the parameter gathering
activities of the reported project are summarized in §6. Finally the
reported results will be summarized in §7 and a brief discussion of

my own ideas regarding the approach as well as the paper will be
presented in §8.

2. BACKGROUND OF CLISSPE
So as to be able to predict the performance of a new systemt that

is under development, we need performance models. The model
chosen in this paper was queuing networks, which require two pa-
rameters:

• workload intensity (e.g. arrival rates)
• demand at each resource

The former of those requirements (workload intensity) can be
attained through performance requirements. However, the latter
(demand at each resource) is trickier, in the sense that it requires a
deep understanding of the domain and the software that is under de-
velopment. Performance analysts use the knowledge of developers
to have an idea of the demands, however, if the software develop-
ers are too busy to provide that information at initial stages or if
they are unwilling to cooperate with the analysts, then having the
demand information proves to be extremely difficult. In the case
of this paper, CLISSPE is capable of estimating those demands
given that it is provided with objects, mappings and the transac-
tions. CLISSPE is reported to be composed of 3 parts:

1. Declaration Part: The following objects are declared in this
part: Client, client type, server, server type, disk(s), disk
type(s), database management system, database tables, net-
work, network types, transactions, remote procedure calls
and constants.

2. Mapping part: The objects defined in the previous step are
mapped to one another (e.g. clients and servers to networks
or DB tables to servers).

3. Transaction Specification Part: This section explains the
logic of each transaction. For example if it is a loop then the
estimate of how many times it is supposed to be executed is
given or if it is a branching operation, then the probability of
every branch is given.

The details of the language and the specifications of the afore
mentioned steps are given in [5]. I have also downloaded and went
through the specification document for the language and I have cho-
sen some examples for each step so that we can get a feel of the
language as well as its syntax. Below are 3 example statements for
each one of the explained steps:

1. Declaration Example:

below is the syntax
network_type NetworkType bandwidth= number

type= { ATM | Ethernet
| Fast_Ethernet | TokenRing
| FDDI | WAN

below is an example
network_type Ring16 bandwidth= 16.0

type= TokenRing

2. Mapping Example:

below is the syntax
network NetworkName type= NetworkType ;
below is an example
network StationLAN type= Ring16 ;

3. Transaction Specification Example:

below is the syntax
transaction TransactionName rate= number ;
below is an example
transaction assign rate= 0.02

3. APPLICATION TO BE MODELED
Since the paper that I am presenting is built upon an application,

it is helpful to have a small section that explains this application.
The application is reported to be a recruitment and training system
(RTS) that is used by a government agency. The application before
the renewal was a more than 20 year old mainframe application
with a legacy code written in multiple languages. Furthermore, due
to its mainframe nature, it has limited capability of scaling.

The renewal process aims at transferring the RTS to a C/S archi-
tecture. The new system will consist of several recruitment centers
that will be connected with a 10-Mbps ethernet LAN. While the
recruitment centers may or may not have a local server for appli-
cation and database, the headquarters will be aided with multiple
application and database servers. Furthermore, the current system
uses an old virtual storage access method (VSAM), whereas the
new system will be using an ORACLE database.

4. STEPS OF THE MODEL
The proposed model is composed of 8 steps. However, before

discussing the steps of the model, some fundamental information
regarding the notation and employed modeling language should be
provided.

The unified modeling language (UML) used in this paper is used
in conjunction with an object oriented analysis and modeling method.
This method uses a combination of use cases, object modeling, stat-
echarts and sequence diagrams. The UML notation that was used
in the paper is based on UML specified by [1, 2]. The functional
requirements of the system are defined by use cases and the actors.
The structural (static view of the system) modeling of the system
is accomplished via classes as well as class relations, whereas be-
havioral (dynamic view of the system) modeling is achieved via in-
teraction between use cases. The colaboration of the objects when
executing a use case is shown via collaboration diagrams and se-
quence diagrams. Finally the particular aspects of the system that
depend on particular states of the system are shown via statecharts.

Now that I have summarized the used methodology, I will con-
tinue with the steps of the proposed iterative, integrated, object ori-
ented method for the desing and analysis of the client and server
systems. A sample figure, describing architecture of the steps that
are going to be explained in the following subsections is given in
Figure 1.

4.1 Step 1: Use Case Definition
In this stage the functional requirements of the system are mod-

eled via use cases. Use case is basically an interaction scenario that
defines the interaction between the user/actor and the system[1].
Prior to use cases, the requirements are elicited and when eliciting
the requirements, the use case is somewhat considered as a black
box. Then the requirements are map to actions and user types.
When we analyze separate use cases, then we can see a lot of com-
mon actions. Abstract use cases help us reflect the common func-
tionality to different use cases.

A nice example given in the paper for the training system is also
included here as Figure 2. Figure 2 shows the main user of the sys-
tem (personel specialist) and different actions that are available to

Figure 1: The architecture of the integrated software design
and analysis method for C/S systems.

him for 2 different tasks (checking the skills of a new or an existing
employee). In fact there are two concrete use cases here and they
use common abstract use cases, which allows us to integrate the
two use cases into one as given in Figure 2.

Figure 2: The use case example of check the skills of an existing
employee or a new employee.

4.2 Step 2: Structural Model Definition
The structural model of the system describes the static structure

of the system through modeling the real world objects into classes.
The structural model defines the classes as well as the attributes of
those classes as well as their functions and the interaction between
those classes.

The initial consideration of the structural model is the entity
classes, which are mapped to database. Entity classes bear particu-
lar importance in the sense that they will persist for a very long time
in the system and will serve to a number use cases. Another exam-
ple is the association class, which is used to define the associations
between other classes. For example each skill may have sub-skills
and each sub-skill may have one or more “course” classes that are
required for that sub-skill. The structural model of the training sys-

tem is provided in Figure 3. Note that the static structure of the
collaboration diagram will be fundamental when we are designing
the relations of the relational database in §4.4.

Figure 3: The structural model of the training system.

4.3 Step 3: Behavioral Model Definition
Behavioral model definition tries to model the dynamic behav-

ior of the system. After defining the use cases, the objects from
every use case is identified and the message interactions between
those objects are defined. The identified sequence of interactions
between the objects are defined on an object collaboration diagram.

An example object collaboration diagram (OCD) for the “check
skills” use case is provided in Figure 4. See in Figure 4 that there is
a user interface to the user, which in reality may consist of several
different GUI componenets. However, in object collaboration dia-
gram the objects are modeled as application-level objects, hence it
will be shown as a single object. Also see from Figure 4 that each
OCD has an associated message sequence. This sequence is noth-
ing more than a structured and ordered refinement of the activities
that were listed in the use-cases.

Figure 4: The object collaboration diagram for the “check
skills” use case.

4.4 Step 4: Mapping Structural Model to Re-
lational Database

This stage of the method entails the mapping of the objects to
particular relations in a relational database. The relations between
objects have to do with the static structure of the system, which
was identified by the structural model identification. The relations
between the classes identified during structural modeling can be
summarized as follows:

• Applicant(SSN, name, ...)
• Skill(SkillCode, SkillName,...)
• SkillPrerequisite(SkillCode, PreRegSkillCode)
• Course(CourseNum, CourseName,...)
• Section(CourseNum, SectionNum,...)
• ApplicantHasSkill(SSN, SkillCode, SkillValue,...)
• Enrollment(CourseNum, SectionNum, SSN)

Note that in the above listing, the udnerlined field names are sup-
posed to be the primary keys.

4.5 Step 5: Client Server Software Architec-
ture Development

In this step we will assign the objects that were identified earlier
to different C/S architectures. Our aim in this step is going to be
able to identify a C/S structure that would provide us different con-
figuration alternatives. Later on these alternatives will be used for
different performance evaluations. For example for our problem at
hand we can come up with 2 types of C/S configurations:

• 2 Tier Architecture: User interface as well as application
layer is provided in the client side, whereas the database is
kept in the server node.
• 3 Tier Architecture: User interface is kept in the client node,

application functionality is stored in an application server
and the third tier becomes the database server, which may
be kept in a single node or may be distributed to several dif-
ferent servers.

However, the actual mapping from architecture to system configu-
ration will be done in software and hardware mapping step.

4.6 Step 6: Transaction Specification
The specified transactions in the method defines the business

logic of the C/S system. The sequence of transactions that will
be written in CLISSPE will be derived from the object collabora-
tion diagram that was given in Figure 4. The specifications of the
transactions are coded up using the language of CLISSPE.

Another point that deserves to be mentioned is the fact that there
are two parts of a transaction: The client side and the server side.
If we are to reference the collaboration diagram of Figure 4, the
client part of the transaction corresponds to the user interface ob-
ject, whereas the server side corresponds to control and entity ob-
jects.

A very simple example of a transaction is provided below. This
transaction basically shows the skills that a particular applicant is
qualified to train for. Note that since we need information from the
server side, there is also a remote procedure call (RPC) to the server
in that transaction.

transaction CheckSkills running_on client
! Actor enters applicant SSN
! check applicant skills
rpc check_skills to_server ApplicServer;
! Display skills applicant is qualified to
train for

end_transaction;

4.7 Step 7: Hardware/Software Mappings Def-
inition

Once we have defined the system architecture and the transac-
tions, now is the time to map the C/S system architecture compo-
nents to physical components (such as CPU, network etc.). The ar-
chitecture components are also given particular characteristics such
as latencies and or bandwidth requirements. However, these map-
pings happen at the language level rather than actually building up
the physical system. The CLISSPE language allows the its users
to define physical components in the laguage and specify partic-
ular characteristics of those physical components. After defining
the physical components in the language, they are mapped to one
another. For example, server and client machines are tied to a net-
work (note that servers, clients and networks are object defined to
represent the physical items). Furthermore, DB tables are assigned
to DBMS objects. Below is a simple example for a DBMS system,
where server type is set to IBM and the DBMS running on the ma-
chine is set to ORACLE with 8,192 KBytes of buffer size and with
a dual core.

! this goes in the declaration section
server DBServer type= IBM-RS-6000-M43P133
dbms= Oracle DB_BuffSize= 8192 num_CPUs= 2
disk dsk01 type= ServerDisk
disk dsk02 type= ServerDisk;
network_type HQType bandwidth= 100
type= Fast_Ethernet;
network HQLan type= HQType;

4.8 Step 8: Performance Modeling and As-
sessment

In this part of the system all the previously specified system con-
figurations, mappings and transactions are used by the CLISSPE
system. The system is composed of the following parts: Specifi-
cations, compiler, model parameters, model solver and the model
results (throughputs, response times, utilizations). For the ease of
understanding Figure 5 is presented. The order of specifications,
compiler, model parameters and model solver are presented in that
figure.

Figure 5: The clisspe system where the components are shown
in the order of execution.

Now that we are aware of the organization of the CLISSPE sys-
tem, I will introduce the notation that we are going to use through-
out the rest of the paper to calculate the performance of the system.

After specifying the classes of the system as well as their interac-
tions with one another, the CLISSPE compiler will come up with a
multiclass open queuing network (QN). To QN will be represented
with Q = (R,W, λ,D), where R corresponds to resources, W
corresponds to workload, λ corresponds to a vector of arrival rates
for transactions for every class and finally D corresponds to a ma-
trix of service demands. The matrix D = [Di,r] corresponds to a
|R| × |W | service demands, where Di,r is the service demand for
workload class r at resource i.

4.8.1 Computing Service Demands
Since we are given the required notation, in this section we will

continue with the calcualtion of service demands in D. Before
starting the computation we will define s, which is a statement of a
transaction associated with class r. Keep in mind that s may be as-
sociated with various CPU and DB demands. The general demand
formula is given in Formula 1

Di,r =
X

s∈Si,r

ns × ps ×Ds
i,r (1)

In Formula 1 Si,r is all the statements that contribute to the ser-
vice demand of of class r at resource i, ns is the number of times
the statement s is executed and ps is the possibility of that state-
ment being executed. Finally Ds

i,r becomes the average service
demand at resource i due to single execution of s. The finalization
of the values ns and ps are influenced by the loops and conditional
statements (if, else-if, switch) respectively.

4.8.2 Modeling the database statements
When s is a statement database access such as select, then the

calcualtion of Ds
i,r becomes somewhat complicated. In this sub-

section for each database access statament s the associated number
of I/Os, the disk time and CPU times will be calculated. Note that
there is a lot of dependency in those calculations depending on how
DBMS handles the select statements. For example, the existence
of indexes in the DMBS or the size of the buffer as well as the ac-
cess method to the database (hashing, B-trees) all have an influence
on the calculation. For general concepts on the DBMS systems and
indexing, access strategies some of the references given in the pa-
per are: [6, 7, 8].

The complication is doubled when we consider the possible ac-
cess plans that are built on top of these different access methods.
Some of the possible access plans are:

• Table space scan, which scans all the rows of a table
• Indexed scan, where one or more indices are present to ease

the select statement

– Single table single index
– Single table multiple index
– Two table joins
– More than two table joins

The assumption made in CLISSPE language while calculating
the cost of an access plan is that CPU cost is linearly related to
the number of I/O’s generated by the access plan. Therefore, the
general formula might be summarized as follows:

CCPU (AccessP lan) = axNI/O(AccessP lan) + b (2)

In Equation 2, the number of I/O accesses depends on the access
plan and the linear relationship of I/O operations to the CPU cost
is defined by the constants a and b. The constant b is used for the

start-up CPU cost and the constant a stands for the CPU cost per
each I/O.

The selection of the optimum access plan for calculating the I/O
and CPU costs of a select statement is done by the CLISSPE com-
piler. By trying out all the possible access plans, the compiler
chooses the one with the lowest cost. Note that depending on how
the DBMS system was specified in CLISSPE language, the avail-
able access plans may change or be restricted.

4.8.3 Performance Parameter Gathering
A considerable number of parameters regarding the performance

calculations have to be known, before starting the assessment of the
new C/S system. The reason for the estimation is that at the desing
level, since the system is not operational, those numbers cannot be
known. While estimating these numbers the frequency of execution
of each use case is estimated. In other words, for our case it is
the number of times an existing or a new employee is processed
through the system over a certain amount of time.

If the system is a renewal of a legacy system, then the logs of
the old system can be adapted to the new system and the frequency
of the use cases can be taken as the baseline for the transaction
frequencies. So as to test the system for higher workloads, a mul-
tiplier greater than 1 can be applied to the frequency elicited from
the legacy system.

Not only the frequency of use cases, but also some other param-
eters such as the execution of loops or the probability of branch
statements are needed to be estimated. For those parameters, again
the legacy system can be used (if there was retrospective data col-
lection) or some of the domain experts (in the case of no retrospec-
tive data) may be utilized. It is reported in the paper that for the
particular application on which this particular research was based,
all of those methods were employed at different levels. In a simi-
lar manner for the size of the dataset, both the investigation of the
legacy system as well as interviews were used. CLISPE system
allows its users to code up those parameters as constants and prob-
abilities. In the reported system, the authors have come up with 65
constants and 35 probabilities.

4.8.4 Assessment of the Performance
As we have noted earlier, the system whose performance anal-

ysis was performed in this paper is a recruitment system of a US
government agency. Unfortunately, rather than providing all the
details of the calculation for the new system, the authors have pre-
ferred to include a summary table for the new applicant transaction.
This table is comprehensive to some extent, in the sense that it sum-
marizes the response times of the whole system under 8 different
configurations. The summary table is given in Figure 6.

So as to be able to understand Figure 6, we first need to explain
the notation used. In Figure 6 there are 8 scenarios. Each scenarios
is represented one of the two forms: mD(p)nA(q) or Comb(p).
In mD(p)nA(q), m is the number of database servers in the sce-
nario and p is the number of processors in every database server,
whereas n is the application server number and q is the number of
pre-processors in the application servers. In Comb(p) the appli-
cation and the database servers are on the same machine that has
p number of processors. Lastly, notice that some of the scenarios
have a suffix of SC, which stands for selective caching, i.e. some
of the database tables are stored entirely in the main memory.

5. ANALYTIC MODELS FOR COMPILER

6. PARAMETER GATHERING

Figure 6: The response times for the transaction: Check new
applicant.

7. RESULTS

8. DISCUSSION

9. REFERENCES
[1] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling

Language User Guide, The (2nd Edition) (Addison-Wesley
Object Technology Series). Addison-Wesley Professional,
2005.

[2] H. Gomaa. Designing concurrent, distributed, and real-time
applications with uml. In Proceedings of the 28th
international conference on Software engineering, ICSE ’06,
pages 1059–1060, New York, NY, USA, 2006. ACM.

[3] D. A. Menascé. A framework for software performance
engineering of client/server systems. In Proc. 1997 Computer
Measurement Group Conf., 1997.

[4] D. A. Menascé and H. Gomaa. A method for design and
performance modeling of client/server systems. IEEE Trans.
Softw. Eng., 26:1066–1085, November 2000.

[5] D. MenascÃl’. Clisspe: A language for client/server software
performance engineering. Technical report, Dept. of
Computer Science, George Mason University, 1997.

[6] A. Swami and K. B. Schiefer. Estimating page fetches for
index scans with finite lru buffers. SIGMOD Rec.,
23:173–184, May 1994.

[7] C. M. Woodside, J. E. Neilson, D. C. Petriu, , and
S. Majumdar. The stochastic rendezvous network model for
performance of synchronous client-server-like distributed
software. IEEE Transactions on Computers, 44:20–34, 1995.

[8] S. B. Yao. Optimization of query evaluation algorithms. ACM
Trans. Database Syst., 4:133–155, June 1979.

