Medical Image Analysis

CS 778 / 578

Computer Science and Electrical Engineering Dept. West Virginia University

January 10, 2011

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Outline

Topic Overview

- Image Enhancement and Denoising
- Segmentation
- Registration
- Visualization

Recover an unknown, ideal image given an observed image.

Motivation

The observed image may be degraded during acquisition or transmission. (Thermal noise, quantization)

Challenges

Preserve features which would be destroyed by low-pass filtering.

Recover an unknown, ideal image given an observed image.

Motivation

The observed image may be degraded during acquisition or transmission. (Thermal noise, quantization)

Challenges

Preserve features which would be destroyed by low-pass filtering.

Recover an unknown, ideal image given an observed image.

Motivation

The observed image may be degraded during acquisition or transmission. (Thermal noise, quantization)

Challenges

Preserve features which would be destroyed by low-pass filtering.

- Classify (cluster) voxels according to tissue type. hard/soft classification
- Partition image and find boundaries separating tissue classes.

Motivation

Find anatomical structures within images.

- Partial volume effect.
- Prior knowledge (smoothness, shape representation)

- Classify (cluster) voxels according to tissue type. hard/soft classification
- Partition image and find boundaries separating tissue classes.

Motivation

Find anatomical structures within images.

- Partial volume effect.
- Prior knowledge (smoothness, shape representation)

- Classify (cluster) voxels according to tissue type. hard/soft classification
- Partition image and find boundaries separating tissue classes.

Motivation

Find anatomical structures within images.

- Partial volume effect.
- Prior knowledge (smoothness, shape representation)

Determine a coordinate transformation which will align two images.

Motivation

- Compare corresponding voxels from 2 or more images.
- Atlas construction

- Different patients.
- Different image modalities.
- Non rigid deformation (pre- and post-surgery).
- Finding an appropriate metric.

Determine a coordinate transformation which will align two images.

Motivation

- Compare corresponding voxels from 2 or more images.
- Atlas construction

- Different patients.
- Different image modalities.
- Non rigid deformation (pre- and post-surgery).
- Finding an appropriate metric.

Determine a coordinate transformation which will align two images.

Motivation

- Compare corresponding voxels from 2 or more images.
- Atlas construction

- Different patients.
- Different image modalities.
- Non rigid deformation (pre- and post-surgery).
- Finding an appropriate metric.

Produce a rendering which portrays meaningful data features.

Motivation

Clinicians, such as radiologists, may visually interpret images to diagnose injury and disease.

- High dimensional data is difficult to inspect visually.
- Extracting (quantifying) the relevant features.
- May require enhancement, segmentation or registration.

Produce a rendering which portrays meaningful data features.

Motivation

Clinicians, such as radiologists, may visually interpret images to diagnose injury and disease.

- High dimensional data is difficult to inspect visually.
- Extracting (quantifying) the relevant features.
- May require enhancement, segmentation or registration.

Produce a rendering which portrays meaningful data features.

Motivation

Clinicians, such as radiologists, may visually interpret images to diagnose injury and disease.

- High dimensional data is difficult to inspect visually.
- Extracting (quantifying) the relevant features.
- May require enhancement, segmentation or registration.

Overview

Visualization

Visualization of high dimensional data

Methods

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

2 Computational Overview

- Ill-Posed Problems
- Energy Minimization Methods
- Numerical Solutions

(日) (日) (日) (日) (日) (日) (日)

Energy functionals

Image model

We will consider images, I(x), as surfaces or functions which evolve according to some partial differential equation.

We will apply partial differential equations from other engineering fields.

Example from mechanics

Membrane spline and Thin-plate spline energies model the smooth deformations of materials.

Energy functionals

Image model

We will consider images, I(x), as surfaces or functions which evolve according to some partial differential equation.

We will apply partial differential equations from other engineering fields.

Example from mechanics

Membrane spline and Thin-plate spline energies model the smooth deformations of materials.

III-Posed Problems

A problem is ill-posed if the solution:

- does not exist,
- is not unique, or
- does not depend continuously on the data.

Many inverse problems, such as many of the problems of computer vision, are ill-posed problems.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

III-Posed Problems

A problem is ill-posed if the solution:

- does not exist,
- is not unique, or
- does not depend continuously on the data.

Many inverse problems, such as many of the problems of computer vision, are ill-posed problems.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Solution of PDEs with noisy initial conditions is generally an ill-posed problem.

III-posed problems can be made well-posed by the process of regularization.

This is accomplished by imposing a penalty term which penalizes lack of smoothness of the solution.

Methods

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Methods

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Energy minimization methods

Solution of PDEs with noisy initial conditions is generally an ill-posed problem.

Ill-posed problems can be made well-posed by the process of regularization.

This is accomplished by imposing a penalty term which penalizes lack of smoothness of the solution.

Methods ○●○○○○

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Energy Minimization Methods

Solution of PDEs with noisy initial conditions is generally an ill-posed problem.

Ill-posed problems can be made well-posed by the process of regularization.

This is accomplished by imposing a penalty term which penalizes lack of smoothness of the solution.

Methods ○○●○○○

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Variational methods

Next, we find the *Euler-Lagrange* conditions which characterize the minimization of E(I).

Variational Calculus is a general technique for minimizing functionals with respect to functions.

This is analogous finding the minimum of f(x) using the conditions f'(x) = 0, f''(x) > 0.

Methods

Variational methods

Next, we find the *Euler-Lagrange* conditions which characterize the minimization of E(I).

Variational Calculus is a general technique for minimizing functionals with respect to functions.

This is analogous finding the minimum of f(x) using the conditions f'(x) = 0, f''(x) > 0.

◆□→ ◆□→ ◆三→ ◆三→ 三三 → ○○◇

Methods

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Variational methods

Next, we find the *Euler-Lagrange* conditions which characterize the minimization of E(I).

Variational Calculus is a general technique for minimizing functionals with respect to functions.

This is analogous finding the minimum of f(x) using the conditions f'(x) = 0, f''(x) > 0.

Methods

Curve / Surface Evolution

Evolve the image in such a way that the steady-state behavior obeys the Euler-Lagrange conditions.

For EL equations of the form E'(I) = 0 we may introduce an artificial time-marching parameter $\frac{\partial I}{\partial t} = E'(I)$

(日) (日) (日) (日) (日) (日) (日)

Curve / Surface Evolution

Evolve the image in such a way that the steady-state behavior obeys the Euler-Lagrange conditions.

For EL equations of the form E'(I) = 0 we may introduce an artificial time-marching parameter $\frac{\partial I}{\partial t} = E'(I)$

Methods ○○○○●○

Numerical Methods

- Linearize: it may be necessary to find a linear approximation to nonlinear PDEs.
- Discretization: we may replace differential operators with finite-difference approximations.
- Choice of numerical method will depend on the problem.

Methods ○○○○●○

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Numerical Methods

- Linearize: it may be necessary to find a linear approximation to nonlinear PDEs.
- Discretization: we may replace differential operators with finite-difference approximations.
- Choice of numerical method will depend on the problem.

Methods ○○○○●○

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Numerical Methods

- Linearize: it may be necessary to find a linear approximation to nonlinear PDEs.
- Discretization: we may replace differential operators with finite-difference approximations.
- Choice of numerical method will depend on the problem.

Overview 00000

Numerical Solutions

Methods ○○○○○●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

We will apply this framework to the problem of image smoothing.