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Discretization Numerical differentiation

Introduction
The names ’heat equation’ and ’diffusion equation’ are used interchangeably:
the same equation describes both phenomena.

In 1D
∂u
∂t

=
∂2u
∂x2

In 2D
∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2

In 3D
∂u
∂t

=
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

In general
∂u
∂t

= div(∇u)

Heat : u is temperature
Diffusion : u is concentration
Images : u is image intensity
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Discretization Numerical differentiation

Introduction

We know the heat equation can be solved analytically.

I I(x, t) = I0(x) ∗ e
− x2

2σ2
t

In the future we will consider nonlinear variants of the diffusion equation
for which no simple analytical solution exists.

In these cases we approximate a solution numerically.
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Discretization Numerical differentiation

Introduction

Problem
Estimate derivatives of some unknown smooth function, f (x), given only
samples {f (xi)}.

Motivation
Find approximate solutions to PDEs governing evolution of f (x).
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Discretization Numerical differentiation

Taylor Series

f (x) ≈ f (x0) + (x− x0)f ′(x0) +
1
2
(x− x0)

2f ′′(x0) + ...
1
n!
(x− x0)

nf (n)(x0)

Taylor series expansion is the basis for many numerical methods. For example
: numerical differentiation, Newton’s method...
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Discretization First derivative approximations

Forward Difference Equation

Expand f (x) in a Taylor series about x0.

f (x) ≈ f (x0) + (x− x0)f ′(x0)

Then evaluate at x = x0 + h.

f (x0 + h) ≈ f (x0) + hf ′(x0)

First order forward difference:

f ′(x0) ≈
f (x0 + h)− f (x0)

h
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Discretization First derivative approximations

Backward Difference Equations

Replace h with −h in the previous derivation

f (x0 − h) ≈ f (x0)− hf ′(x0)

First order backward difference:

f ′(x0) ≈
f (x0)− f (x0 − h)

h
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Discretization First derivative approximations

Centered Difference Equation

Subtract the first order expansions:

f (x0 + h) ≈ f (x0) + hf ′(x0)

−
f (x0 − h) ≈ f (x0)− hf ′(x0)

=
f (x0 + h)− f (x0 − h) ≈ 2hf ′(x0)

Divide by 2h to get the centered difference:

f ′(x0) ≈
f (x0 + h)− f (x0 − h)

2h
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Discretization First derivative approximations

Second Centered Difference Equation

Second order expansion evaluated at x = x0 + h

f (x0 + h) ≈ f (x0) + hf ′(x0) +
h2

2
f ′′(x0)

Second order expansion evaluated at x = x0 − h

f (x0 − h) ≈ f (x0)− hf ′(x0) +
h2

2
f ′′(x0)

CS 778 / 578 (West Virginia University) Medical Image Analysis January 24, 2011 11 / 44



Discretization Second derivative approximations

Second Centered Difference Equation

We can approximate the second derivative by adding two second order
expansions:

f (x0 + h) ≈ f (x0) + hf ′(x0) +
h2

2
f ′′(x0)

+

f (x0 − h) ≈ f (x0)− hf ′(x0) +
h2

2
f ′′(x0)

=
f (x0 + h) + f (x0 − h) ≈ 2f (x0) + h2f ′′(x0)
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Discretization Second derivative approximations

Second Centered Difference Equation

Rearrange
f (x0 + h) + f (x0 − h) ≈ 2f (x0) + h2f ′′(x0)

to get the (second order) second centered difference

f ′′(x0) ≈
f (x0 + h)− 2f (x0) + f (x0 − h)

h2

CS 778 / 578 (West Virginia University) Medical Image Analysis January 24, 2011 13 / 44



Discretization Second derivative approximations

Error analysis

The Taylor remainder : estimate of how well the Taylor series approximates a
function

f (x0 + h) = f (x0) + hf ′(x0) + O(h2)

First order forward difference:

f ′(x0) =
f (x0 + h)− f (x0)

h
+

O(h2)

h
So the error is O(h). Same analysis holds for the backward difference
approximation.
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Discretization Second derivative approximations

Error analysis : central difference

f (x0 + h) = f (x0) + hf ′(x0) +
h2

2
f ′′(x0) + O(h3)

−

f (x0 − h) = f (x0)− hf ′(x0) +
h2

2
f ′′(x0) + O(h3)

=
f (x0 + h)− f (x0 − h) = 2hf ′(x0) + O(h3)

Divide by 2h to get the centered difference:

f ′(x0) =
f (x0 + h)− f (x0 − h)

2h
+ O(h2)
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Discretization Second derivative approximations

Error analysis : second central difference

f (x0 + h) = f (x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0) + O(h4)

+

f (x0 − h) = f (x0)− hf ′(x0) +
h2

2
f ′′(x0)−

h3

6
f ′′′(x0) + O(h4)

=
f (x0 + h) + f (x0 − h) = 2f (x0) + h2f ′′(x0) + O(h4)

So the (second order) second centered difference is

f ′′(x0) =
f (x0 + h)− 2f (x0) + f (x0 − h)

h2 + O(h2)
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Matrix forms Forward difference method

Explicit Method

Recall the heat equation

∂I
∂t

=
∂2I
∂x2 +

∂2I
∂y2

Use forward difference in time and second central difference in space:

It+δ
x,y − It

x,y

δ
= (It

x+1,y − 2It
x,y + It

x−1,y) + (It
x,y+1 − 2It

x,y + It
x,y−1)

Superscripts : time

Subscripts : position
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Matrix forms Forward difference method

Forming the linear system of equations

It+δ
x,y = It

x,y + δ(It
x+1,y − 4It

x,y + It
x−1,y + It

x,y+1 + It
x,y−1)

We want to simultaneously solve for It+δ
x,y at all x, y.

The image can be stretched into a vector, w, by stacking the columns of
the image on top of each other.

I Matlab : reshape command

I =


1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

→ w =


1
2
3
...

16


The evolution equation will be wt+δ = Awt
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Matrix forms Forward difference method

Reshaping image I into array w

I =


1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

→ w =


1
2
3
...

16


allows us to rewrite the equations

It+δ
x,y = It

x,y + δ(It
x+1,y − 4It

x,y + It
x−1,y + It

x,y+1 + It
x,y−1)

in terms of w.
For example,

wt+δ
10 = wt

10 + δ(wt
14 − 4wt

10 + wt
6 + wt

11 + wt
9)

this can be rewritten as a row vector times a column vector

wt+δ
10 =

[
. . . δ . . . δ 1− 4δ δ . . . δ . . .

]
w
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Matrix forms Forward difference method

Forming the linear system of equations

In general we have

wt+δ
i = wt

i + δ(wt
i+1 − 4wt

i + wt
i−1 + wt

i+n + wt
i−n)

Collect the coefficients of w into a matrix, A.

If the image, I(x, y) is size n× n, the vector, w, is n2 × 1,

the matrix of coefficients, A is n2 × n2.

Most elements of A are 0 (i.e. A is sparse)
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Matrix forms Forward difference method

Linear system of equations

wt+δ
i = wt

i + δ(wt
i+1 − 4wt

i + wt
i−1 + wt

i+n + wt
i−n)

The matrix of coefficients

A =


(1− 4δ) δ 0 . . . δ . . . . . . 0 0

δ (1− 4δ) δ 0 . . . δ . . . . . . 0
0 δ (1− 4δ) δ 0 . . . δ . . . 0
...

. . . . . . . . . . . . . . . . . .


Properties of A:

Symmetric,
Sparse:

I 5 nonzero diagonals for a 2D image
I 7 nonzero diagonals for a 3D image
I Matlab : Use sparse, spdiags
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Matrix forms Forward difference method

Explicit or forward solution

Each iteration is a matrix multiplication.

wt+δ = Awt

Convergence Criterion

Steady-state is reached when wt+δ ≈ wt.
Check ||wt+δ − wt|| < ε

Problem
For large δ we may overshoot the solution.

The iteration will oscillate, and never converge.

Stability is only guaranteed for small δ, and then convergence is slow.
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Matrix forms Backward difference method

Implicit Method

Recall the heat equation
∂I
∂t

=
∂2I
∂x2 +

∂2I
∂y2

Use backward difference in time and second central difference in space:

It
x,y − It−δ

x,y

δ
= (It

x+1,y − 2It
x,y + It

x−1,y) + (It
x,y+1 − 2It

x,y + It
x,y−1)
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Matrix forms Backward difference method

Linear system for backward difference method

The generic difference equation

It−δ
x,y = It

x,y − δ(It
x+1,y − 4It

x,y + It
x−1,y + It

x,y+1 + It
x,y−1)

has the vector form

wt−δ
i = wt

i − δ(wt
i+1 − 4wt

i + wt
i−1 + wt

i+n + wt
i−n)
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Matrix forms Backward difference method

Linear system of equations

wt−δ = Bwt

The matrix of coefficients

B =


(1 + 4δ) −δ 0 . . . −δ . . . . . . 0 0
−δ (1 + 4δ) −δ 0 . . . −δ . . . . . . 0
0 −δ (1 + 4δ) −δ 0 . . . −δ . . . 0
...

. . . . . . . . . . . . . . . . . .


Properties of B:

Symmetric,
Sparse:

I 5 nonzero diagonals for a 2D image
I 7 nonzero diagonals for a 3D image
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Matrix forms Backward difference method

Implicit or backward solution

Each iteration requires solution of a linear system (inversion or factorization).

Bwt = wt−δ

This method is stable, however setting δ too large will result in slow
convergence.

Implementation

Don’t simply invert B and compute wt = B−1wt−δ

Factorize (Cholesky or LU) and solve

In Matlab : w = B \w
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Matrix forms Backward difference method

Matrix stability analysis

If we have some small error, e0 in the initial condition w0

w1 = A(w0 + e0) = Aw0 + Ae0

and at the next iteration we have

w2 = A(Aw0 + Ae0) = A2w0 + A2e0.

In general, at iteration n, we have

wn = Anw0 + Ane0.

Whether ||Ane0|| ≤ ||e0|| depends on the condition number of matrix A.

Condition number(A) ≈ 1 is well-conditioned.
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Matrix forms Backward difference method

Matrix stability analysis

Computing the condition number is difficult, but...

As a general rule:
Strictly diagonally dominant matrices are well-conditioned.

Definition : A matrix, A, is strictly diagonally dominant if

|aii| >
∑
j 6=i

|aij|

for all rows i.
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Matrix forms Backward difference method

Stability of the forward difference equation

A typical row of matrix A:

Ai =
(

0 . . . δ 0 . . . δ (1− 4δ) δ 0 . . . δ 0 . . .
)

For what values of δ is the matrix diagonally dominant? Values of δ which
satisfy the inequality

|1− 4δ| > 4|δ|
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Matrix forms Backward difference method

Recall : How to handle inequalities with absolute values

Consider the inequality
|x| > 5

There are two intervals which satisfy it : a positive interval

x > 5

and a negative interval
x < −5
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Matrix forms Backward difference method

Stability of the forward difference equation

What values of δ satisfy
|1− 4δ| > 4|δ|?

First, rearrange to get the absolute value on left-hand side

|1− 4δ|
4|δ|

> 1

then simplify the two intervals :

1− 4δ
4δ

> 1

and

1− 4δ
4δ

< −1
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Matrix forms Backward difference method

Stability of the forward difference equation

Simplifying the first interval:

1− 4δ
4δ

> 1

1− 4δ > 4δ

1 > 8δ

This is satisfied by δ < 1
8
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Matrix forms Backward difference method

Stability of the forward difference equation

Simplifying the second interval:

1− 4δ
4δ

< −1

1− 4δ < −4δ

1 < 0

This is impossible to satisfy, so the second interval is empty.
So the inequality

|1− 4δ| > 4|δ|

is satisfied (and the forward difference method is stable) only for δ < 1
8 .
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Matrix forms Backward difference method

Stability of the backward difference equation

A typical row of matrix B:

Bi =
(

0 . . . −δ 0 . . . −δ (1 + 4δ) −δ 0 . . . −δ 0 . . .
)

For what values of δ is the matrix diagonally dominant?

|1 + 4δ| > 4|δ|

1 + 4δ
4δ

> 1→ 1 + 4δ > 4δ → 1 > 0

or
1 + 4δ

4δ
< −1

The backward difference method is stable for all δ. (Unconditionally stable)

CS 778 / 578 (West Virginia University) Medical Image Analysis January 24, 2011 35 / 44



Matrix forms Backward difference method

Matrix stability analysis

For more details about matrix condition number and spectral radius, see
Golub and Van Loan, ”Matrix Computations” or another numerical linear
algebra text.

In Matlab use cond, condest
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Matrix forms Backward difference method

Implicit or backward solution

Each iteration requires solution of a linear system (inversion or factorization).

Bwt = wt−δ

This method is unconditionally stable, however setting δ too large will result
in slow convergence.

Problem
Error is of order O(δ).
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Matrix forms Backward difference method

Mixed Explicit/Implicit Method

We can get order O(δ2) error by averaging the two difference equations.
Note that the second order terms in the Taylor series cancel, just like they did
when we computed central differences.

1
2

wt+δ =
1
2

Awt

+
1
2

Bwt+δ =
1
2

wt

=
(B + I)wt+δ = (A + I)wt
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Matrix forms Backward difference method

Solutions to the linear system

(B + I)wt+δ = (A + I)wt

Don’t try to invert the matrix B + I.

Instead use Gaussian elimination, LU decomposition.
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Scale space image representation The concept

What is scale space?

We may be interested in image features which exist at different scales in the
image, so we want to represent an image over a continuum of scales (coarse to
fine).

CS 778 / 578 (West Virginia University) Medical Image Analysis January 24, 2011 41 / 44



Scale space image representation The concept

What is scale space?

We may be interested in image features which exist at different scales in the
image, so we want to represent an image over a continuum of scales (coarse to
fine).
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Scale space image representation A requirement

Scale-space requirement

As we progress from fine to coarse through scale space, we should not create
new details.

Images generated by isotropic diffusion satisfy this requirement.

Equivalent to convolution / low-pass filtering

However, edges at the coarse scales are blurred.

We must track features up to the finest scale to get their true locations.
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Scale space image representation A requirement

New scale space representation

Perona and Malik suggest a new technique for generating the scale space of
images which preserves edges in ”Scale-Space and Edge Detection Using
Anisotropic Diffusion”. They propose the use of

Inhomogeneous diffusion: rate of diffusion varies spatially.

Weickert, in ”A Review of Nonlinear Diffusion Filtering.”, proposes

Anisotropic diffusion: rate of diffusion at a point varies with direction.

to generate the scale space of images and perform denoising.
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Scale space image representation Next Class

Start reading the Perona/Malik paper

The physical process of diffusion.

Discuss the Perona/Malik paper.
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