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Convergence

Stability and Convergence

Stability: noise (from initial conditions, round-off error) is not amplified.

Convergence: numerical scheme approaches solution of the PDE as
t→∞
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Convergence

Convergence of the explicit 1D heat equation

The 1D heat equation, It = Ixx, has solution I(x, t) = e−t cos(x).
This corresponds to the problem with initial condition I(x, 0) = cos(x).

Discretize only in time (forward)
Observe that Ixx(x, t) = −e−t cos(x) = −I(x, t)

It+δ − It

δ
= −It

It+δ = It − δIt
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Convergence

Convergence criterion : ratio test

The sequence It is convergent if

lim
t→∞

∣∣∣∣ It+δ

It

∣∣∣∣ < 1

The explicit equation we formed earlier

It+δ = It − δIt

has convergence criterion ∣∣∣∣ It+δ

It

∣∣∣∣ = |1− δ| < 1

This is satisfied for 0 < δ < 2. (Only conditionally convergent.)
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Convergence

Convergence of the implicit 1D heat equation

Discretize only in time (backward)

It+δ − It

δ
= −It+δ

It+δ = It − δIt+δ

The implicit equation has convergence criterion∣∣∣∣ It+δ

It

∣∣∣∣ =

∣∣∣∣ 1
1 + δ

∣∣∣∣ < 1

This is satisfied for δ > 0.
Backward heat equation does not converge in either case.
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Convergence

Convergence

In general, it can be shown that

Explicit methods are conditionally convergent.

Implicit methods are unconditionally convergent.
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Diffusion Flux

Flux definition

Flux : Rate of movement of something per unit area.

What is moving?

Diffusion: molecules

Heat: energy

For diffusion the units of flux are mol
m2s
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Diffusion Flux

Flux

Isotropic Diffusion: j = −d∇u
Fick’s First Law : Molecules diffuse from high concentration to low
concentration.

d is a scalar diffusivity constant

Flux is parallel to concentration gradient, but in opposite direction.

Heat: q′′ = −k∇T
Heat flows from high temperature to low temperature.

Anisotropic Diffusion: j = −D∇u
Concentration gradient causes a flux which is transformed by the matrix D.
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Diffusion Conservation Laws

Discrete example

Let c be the number of molecules.

cin − cout = ∆cstored

Matter/energy is not created or destroyed.
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Diffusion Conservation Laws

Discrete example

Let j be molecular flux over time ∆t

(j(x)− j(x + ∆x))A =
∆cstored

∆t

Matter/energy is not created or destroyed.
Extend this example to 2D , and 3D...
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Diffusion Conservation Laws

Fick’s Second Law

Conservation of Mass

∂u
∂t

= − div j

with Fick’s First Law (j = −d∇u) yields the diffusion equation

∂u
∂t

= div(d∇u)

Perona-Malik idea : Make d inhomogeneous (d(x,y))
I Slow down / speed up diffusion as needed∗

Weikert idea : Make d anisotropic (D(x,y))
I Direct flux as needed
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Perona-Malik : Inhomogeneous diffusion

Scale-space

The need for multiscale image representations: Details in images should only
exist over certain ranges of scale.
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Perona-Malik : Inhomogeneous diffusion

Scale-space

Definition: a family of images, I(x, y, t), where

The scale-space parameter is t.

I(x, y, 0) is the original image.

Increasing t corresponds to coarser resolutions.

I(x, y, t) can be generated by convolving with wider Gaussian kernels as t
increases, or equivalently, by solving the heat equation.
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Perona-Malik : Inhomogeneous diffusion

Earlier Scale-space properties

Causality: coarse details are ”caused” by fine details.

New details should not arise in coarse scale images.

Smoothing should be homogeneous and isotropic.

This paper will challenge the last property, and propose a more useful
scale-space definition.
The new scale-space will be shown to obey the causality property.
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

Lost Edge Information

Edges may disappear.

Edge location is not preserved across the scale space.

Region boundaries are blurred.

Gaussian blurring is a local averaging operation. It does not respect natural
boundaries.
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

Linear Scale Space

Def: Scale spaces generated by a linear filtering operation.

Nonlinear filters, such as the median filter, can be used to generate
nonlinear scale-spaces.

Many nonlinear filters violate one of the scale-space conditions.
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

New Criteria

Causality.

Immediate localization : edge locations remain fixed.

Piecewise Smoothing : permit discontinuities at boundaries.

At all scales the image will consist of smooth regions separated by
boundaries (edges).
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

Diffusion equation

∂I
∂t

= div(c(x, y, t)∇I)

The diffusion coefficient, c(x, y, t) controls the degree of smoothing at each
point in I.

The basic idea:
Setting c(x, y, t) = 0 at region boundaries, and c(x, y, t) = 1 at region interior
will encourage intraregion smoothing, and discourage interregion
smoothing.
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

Conduction coefficient

What properties would we like c(x, y, t) to have?

c = 1 at interior of a region.

c = 0 at boundary of a region.

c should be nonnegative everywhere.

Since c(x, y, t) depends on edge information, we need an edge descriptor,
E(x, y, t), to compute c.

Notation
When written as a function of the edge descriptor, the authors use the symbol
g() for conduction coefficient.
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

The function g(||∇I||)

Perona and Malik suggest two possible functions:

g(||∇I||) = e−(
||∇I||

K )2

g(||∇I||) =
1

1 + ( ||∇I||
K )1+α

(α > 0)
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

Effect of varying K on g(||∇I||)

g(||∇I||) =
1

1 + ( ||∇I||
K )1+α

(α > 0)

Figure: K = 2, 4, 6
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

Effect of varying α on g(||∇I||)

g(||∇I||) =
1

1 + ( ||∇I||
K )1+α

(α > 0)

Figure: α = 1, 3, 5, 7, 9
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

Effect of varying K and α on c(x, y)

Figure: I and ||∇I||.
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

Effect of varying K on c(x, y)

Figure: K = 3, 5, 10, 100.

As K increases, more edges will get smoothed out.
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

Effect of varying α on c()

Figure: α = 1, 2, 3, 5.

As α increases, the cutoff gets sharper.
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Perona-Malik : Inhomogeneous diffusion Adaptive Parameter Setting

Set K every iteration

Compute a histogram, fi, of ||∇I||

Find K such that 90% of the pixels have gradient magnitude < K.
(If
∑b

i=1 fi ≥ 0.9n2 then bin b corresponds to gradient magnitude K).
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Perona-Malik : Inhomogeneous diffusion Edge Enhancement

Edge Enhancement

Inhomogeneous diffusion may actually enhance edges, for a certain choice of
c(x, y, t).

1D example:

Let s(x) = ∂I
∂x , and φ(s) = g(Ix)Ix = g(s)s.

The 1D inhomogeneous heat equation becomes

It =
∂

∂x
(g(Ix)Ix) =

∂

∂x
φ(s(x))

by chain rule =
∂φ

∂s
∂s
∂x

It = φ′(s(x))Ixx

With a few clever substitutions you can identify the conditions for which
∂
∂t (Ix) > 0. (See appendix of these notes.)
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Perona-Malik : Inhomogeneous diffusion Maximum Principle

Maximum Principle

The maximum and minimum intensities in the scale-space image
I(x, y, t) occur at t = 0 (the finest scale image).

Since new maxima and minima correspond to new image features, the
causality requirement of scale-space can satisfied if the evolution
equation obeys the maximum principle.

We will make some less rigorous observations concerning causality...
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Perona-Malik : Inhomogeneous diffusion Maximum Principle

Maximum Principle

For the 1D heat equation : It = Ixx.

Solving the heat equation is equivalent to convolution.

Convolution is a local averaging operation.

Averaging is bounded by the values being averaged.
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Perona-Malik : Inhomogeneous diffusion Maximum Principle

Maximum Principle

For the Perona-Malik equation
∂I
∂t

= c(x, y, t)∇2I +∇c · ∇I

Note that at local minima∇I = 0 and we are evolving by the original heat
equation.
It can be shown that this general class of PDEs obeys the maximum principle.
See the 2009 class notes for a discussion of the maximum principle for the
discretized equations.
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Perona-Malik : Inhomogeneous diffusion Implementation

Diffusion equation

By the chain rule:

∂I
∂t

= div

(
c(x, y, t) ∂I

∂x
c(x, y, t) ∂I

∂y

)

=
∂c
∂x
∂I
∂x

+ c(x, y, t)
∂2I
∂x2 +

∂c
∂y
∂I
∂y

+ c(x, y, t)
∂2I
∂y2

= c(x, y, t)∇2I +∇c · ∇I

Notation
The paper uses the symbol ∆ to represent the Laplacian.
∆I = ∇2I = div(∇I)
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Perona-Malik : Inhomogeneous diffusion Implementation

Explicit Formulation

∂I
∂t

= c(x, y, t)∇2I +∇c · ∇I

Using centered differences for the Laplacian and gradients:

It+1
x,y − It

x,y

λ
= cx,y(It

x−1,y + It
x+1,y + It

x,y−1 + It
x,y+1 − 4It

x,y)

+ (
cx+1,y − cx−1,y

2
)(

Ix+1,y − Ix−1,y

2
)

+ (
cx,y+1 − cx,y−1

2
)(

Ix,y+1 − Ix,y−1

2
)
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Perona-Malik : Inhomogeneous diffusion Implementation

Explicit Formulation

It+1
x,y − It

x,y

λ
= cx,y(It

x−1,y + It
x+1,y + It

x,y−1 + It
x,y+1 − 4It

x,y)

+ (
cx+1,y − cx−1,y

2
)(

Ix+1,y − Ix−1,y

2
)

+ (
cx,y+1 − cx,y−1

2
)(

Ix,y+1 − Ix,y−1

2
)

Same diagonal structure as homogeneous heat equation?

Yes.

Symmetric? No.

Diagonal dominance? Data dependent.
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Perona-Malik : Inhomogeneous diffusion Implementation

Explicit Formulation

It+1
x,y − It

x,y

λ
= cx,y(It

x−1,y + It
x+1,y + It

x,y−1 + It
x,y+1 − 4It

x,y)

+ (
cx+1,y − cx−1,y

2
)(

Ix+1,y − Ix−1,y

2
)

+ (
cx,y+1 − cx,y−1

2
)(

Ix,y+1 − Ix,y−1

2
)

Same diagonal structure as homogeneous heat equation? Yes.

Symmetric?

No.

Diagonal dominance? Data dependent.

CS 778 / 578 (West Virginia University) Medical Image Analysis January 28, 2011 37 / 58
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Perona-Malik : Inhomogeneous diffusion Implementation
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Perona-Malik : Anisotropic diffusion

Explicit Formulation
How do we get from this:

∂I
∂t

= c(x, y, t)∇2I +∇c · ∇I

to Equation 7?
By splitting the Laplacian and averaging the forward and backward differences in the
gradient:

It+1
x,y − It

x,y

λ
= cx,y[(It

x−1,y − It
x,y) + (It

x+1,y − It
x,y)

+ (It
x,y−1 − It

x,y) + (It
x,y+1 − It

x,y)]

+
∂c
∂x

[
Ix+1,y − Ix,y

2
+

Ix,y − Ix−1,y

2
]

+
∂c
∂y

[
Ix,y+1 − Ix,y

2
+

Ix,y − Ix,y−1

2
]
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Perona-Malik : Anisotropic diffusion

Explicit Formulation

∂I
∂t

= c(x, y, t)∇2I +∇c · ∇I

It+1
x,y − It

x,y

λ
= (cx,y −

1
2
∂c
∂x

)(It
x−1,y − It

x,y)

+ (cx,y +
1
2
∂c
∂x

)(It
x+1,y − It

x,y)

+ (cx,y −
1
2
∂c
∂y

)(It
x,y−1 − It

x,y)

+ (cx,y +
1
2
∂c
∂y

)(It
x,y+1 − It

x,y)
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Perona-Malik : Anisotropic diffusion

Explicit Formulation

These are first order Taylor series approximations

cx,y +
1
2
∂c
∂x

≈ cx+ 1
2 ,y

cx,y −
1
2
∂c
∂x

≈ cx− 1
2 ,y

cx+ 1
2 ,y
≈ g(

sx,y + sx+1,y

2
)

cx− 1
2 ,y
≈ g(

sx,y + sx−1,y

2
)

Where sx,y = ||∇I(x, y)||.
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Perona-Malik : Anisotropic diffusion

Explicit Formulation

It+1
x,y − It

x,y

λ
= g(

sx,y + sx−1,y

2
)(It

x−1,y − It
x,y)

+ g(
sx,y + sx+1,y

2
)(It

x+1,y − It
x,y)

+ g(
sx,y + sx,y−1

2
)(It

x,y−1 − It
x,y)

+ g(
sx,y + sx,y+1

2
)(It

x,y+1 − It
x,y)
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Perona-Malik : Anisotropic diffusion

Anisotropic Implementation

Compute g() using the projection of the gradient along one direction.
For example, in g(

sx,y+sx+1,y
2 ), let

sx,y = ||∂I
∂x

(x, y)||

sx+1,y = ||∂I
∂x

(x + 1, y)||

Computing sx,y using forward differences, and sx+1,y using backward
differences

sx,y = ||Ix+1,y − Ix,y||
sx+1,y = ||Ix+1,y − Ix,y||,

so g(
sx,y+sx+1,y

2 ) = g(||I(x + 1, y)− I(x, y)||).

CS 778 / 578 (West Virginia University) Medical Image Analysis January 28, 2011 43 / 58



Perona-Malik : Anisotropic diffusion

Explicit Formulation

It+1
x,y − It

x,y

λ
= g(|Ix−1,y − Ix,y|)(It

x−1,y − It
x,y)

+ g(|Ix+1,y − Ix,y|)(It
x+1,y − It

x,y)

+ g(|Ix,y−1 − Ix,y|)(It
x,y−1 − It

x,y)

+ g(|Ix,y+1 − Ix,y|)(It
x,y+1 − It

x,y)

Notation:
The authors use5 to denote finite differences. This is not the gradient
operator (∇).
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Perona-Malik : Anisotropic diffusion

Image neighborhood
system

5NIi,j ≡ Ii−1,j − Ii,j

5SIi,j ≡ Ii+1,j − Ii,j

5EIi,j ≡ Ii,j+1 − Ii,j

5WIi,j ≡ Ii,j−1 − Ii,j

cNi,j = g(| 5N Ii,j|)
cSi,j = g(| 5S Ii,j|)
cEi,j = g(| 5E Ii,j|)
cWi,j = g(| 5W Ii,j|)
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Perona-Malik : Anisotropic diffusion

Explicit Formulation

The previous explicit formulation

It+1
x,y − It

x,y

λ
= g(|Ix−1,y − Ix,y|)(It

x−1,y − It
x,y)

+ g(|Ix+1,y − Ix,y|)(It
x+1,y − It

x,y)

+ g(|Ix,y−1 − Ix,y|)(It
x,y−1 − It

x,y)

+ g(|Ix,y+1 − Ix,y|)(It
x,y+1 − It

x,y)

can be rewritten as

It+1
x,y = It

x,y + λ(cNi,j 5N Ii,j + cSi,j 5S Ii,j

+ cEi,j 5E Ii,j + cWi,j 5W Ii,j)
t
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Perona-Malik : Anisotropic diffusion

Perona-Malik Implementation

The implementation looks like a discretization of anisotropic diffusion with a
diagonal diffusion tensor.

∂tu = div(

[
cEux

cNuy

]
+

[
cWux

cSuy

]
)

= div(

[
cE 0
0 cN

]
∇u +

[
cW 0
0 cS

]
∇u)
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Perona-Malik : Anisotropic diffusion

Discrete Maximum Principle

It can be shown that

The algorithm will not lead to the production of new local maxima.

Similarly, no new local minima will be created.

Therefore, the Perona-Malik algorithm can be used to create scale-space
image representations.
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Appendix Boundary Conditions

Constant Boundary Value

(x < 0) or (x > n)→ I(x) = c
For c = 0:

Ixx(0) ≈ −2I(0) + I(1)
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Appendix Boundary Conditions

Constant Boundary Slope

Fixing the slope at zero
(adiabatic) gives
(x < 0)→ I(x) = I(0)
(x > n)→ I(x) = I(n)

Ixx(0) ≈ −I(0) + I(1)

CS 778 / 578 (West Virginia University) Medical Image Analysis January 28, 2011 51 / 58



Appendix Boundary Conditions

Periodic Boundary Conditions

(x < 0)→ I(x) = I(x + n)
(x > n)→ I(x) = I(x− n)

Ixx(0) ≈ I(n− 1)− 2I(0) + I(1)
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Appendix Boundary Conditions

Reflective Boundary Conditions

(x < 0)→ I(x) = I(−x)
(x > n)→ I(x) = I(2n− x)

Ixx(0) ≈ −2I(0) + 2I(1)
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Appendix Edge Enhancement

Edge Enhancement

Inhomogeneous diffusion may actually enhance edges, for a certain choice of
c(x, y, t).

1D example:

Let s(x) = ∂I
∂x , and φ(s) = g(Ix)Ix = g(s)s.

The 1D inhomogeneous heat equation becomes

It =
∂

∂x
(g(Ix)Ix) =

∂

∂x
φ(s(x))

by chain rule =
∂φ

∂s
∂s
∂x

It = φ′(s(x))Ixx
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Appendix Edge Enhancement

Edge Enhancement

We are interested in the rate of change of edge slope with respect to time.

∂

∂t
(Ix) =

∂

∂x
(It) if I is smooth

=
∂

∂x
(φ′(s)Ixx)

= φ′′(s)
∂s
∂x

Ixx + φ′(s)Ixxx

= φ′′(s)I2
xx + φ′(s)Ixxx
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Appendix Edge Enhancement

Edge Enhancement

I, Ix, Ixx, Ixxx

∂

∂t
(Ix) = φ′′(s(x))I2

xx + φ′(s(x))Ixxx

For a step edge with Ix > 0 look at the inflection
point, p, where the slope is maximum.

Observe that Ixx(p) = 0, and Ixxx(p) < 0.

∂

∂t
(Ix)(p) = φ′(s(p))Ixxx(p)

The sign of this quantity depends only on
φ′(s(p)).
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Edge Enhancement

At the inflection point:

∂

∂t
(Ix)(p) = φ′(s)Ixxx(p)

If φ′(s) > 0, then ∂
∂t (Ix)(p) < 0 (slope is decreasing).

If φ′(s) < 0, then ∂
∂t (Ix)(p) > 0 (slope is increasing).

Since φ(s) = g(s)s, selecting the function g(s) determines which edges are
smoothed and which are sharpened.
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The function φ(s) = g(s)s

φ(0) = 0

φ′(s) > 0 for s < K

φ′(s) < 0 for s > K

lims→∞ φ(s)→ 0
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