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Convergence

Stability and Convergence

@ Stability: noise (from initial conditions, round-off error) is not amplified.

e Convergence: numerical scheme approaches solution of the PDE as
t— o0
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Convergence

Convergence of the explicit 1D heat equation

The 1D heat equation, I; = I, has solution /(x,t) = ¢~ cos(x).
This corresponds to the problem with initial condition I(x,0) = cos(x).

Discretize only in time (forward)

Observe that I, (x, 1) = —e ' cos(x) = —I(x,1)

M — I
5
e =r—sr
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Convergence

Convergence criterion : ratio test

The sequence I is convergent if

i
A1) <!
The explicit equation we formed earlier
o=y _sr
has convergence criterion
it

This is satisfied for 0 < § < 2. (Only conditionally convergent.)
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Convergence

Convergence of the implicit 1D heat equation

Discretize only in time (backward)
It+6 _ It

_ _It+6
0

Il+5 _ II _ 51[-}—5

The implicit equation has convergence criterion

It—|—5
N

1
— <1
e
This is satisfied for & > 0.

Backward heat equation does not converge in either case.
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Convergence

Convergence

In general, it can be shown that

o Explicit methods are conditionally convergent.

o Implicit methods are unconditionally convergent.
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Diffusion BN

Flux definition

Flux : Rate of movement of something per unit area.

What is moving?
o Diffusion: molecules

@ Heat: energy

mol
m2s

For diffusion the units of flux are
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Diffusion Flux
Flux

Isotropic Diffusion: j = —dVu
Fick’s First Law : Molecules diffuse from high concentration to low
concentration.

@ d is a scalar diffusivity constant

o Flux is parallel to concentration gradient, but in opposite direction.

Heat: ¢’ = —kVT
Heat flows from high temperature to low temperature.

Anisotropic Diffusion: j = —DVu
Concentration gradient causes a flux which is transformed by the matrix D.
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Diffusion Conservation Laws

Discrete example

Let ¢ be the number of molecules.

c
C  —= —1—= Tout

Cin — Cowt = DCstored

Matter/energy is not created or destroyed.
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Diffusion Conservation Laws

Discrete example

Let j be molecular flux over time At

j(x) —— j(X+AX)

-

. ACstored

(ix) — o+ Ax))A = =Soed

Matter/energy is not created or destroyed.
Extend this example to 2D , and 3D...
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Diffusion Conservation Laws

Fick’s Second Law

Conservation of Mass

Ou
ot
with Fick’s First Law (j = —dVu) yields the diffusion equation

= —divj

Ou _
5 = div(dVu)

@ Perona-Malik idea : Make d inhomogeneous (d(X,y))
» Slow down / speed up diffusion as needed*

@ Weikert idea : Make d anisotropic (D(X,y))
» Direct flux as needed
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lik : Inhomogeneous

Scale-space

The need for multiscale image representations: Details in images should only
exist over certain ranges of scale.
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Perona-Malik : Inhomogeneous diffusion

Scale-space

Definition: a family of images, I(x,y, t), where
@ The scale-space parameter is ?.
@ I(x,y,0) is the original image.
@ Increasing ¢ corresponds to coarser resolutions.

I(x,y,t) can be generated by convolving with wider Gaussian kernels as ¢
increases, or equivalently, by solving the heat equation.
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Perona-Malik : Inhomogeneous diffusion

Earlier Scale-space properties

o Causality: coarse details are “caused” by fine details.
@ New details should not arise in coarse scale images.
@ Smoothing should be homogeneous and isotropic.
This paper will challenge the last property, and propose a more useful

scale-space definition.
The new scale-space will be shown to obey the causality property.
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O BB BTSSR BRSNS M Weaknesses of the standard scale-space paradigm

Lost Edge Information

o Edges may disappear.
e Edge location is not preserved across the scale space.

@ Region boundaries are blurred.

Gaussian blurring is a local averaging operation. It does not respect natural
boundaries.
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‘Weaknesses of the standard scale-space paradigm

Perona-Malik : Inhomogeneous diffusion

Linear Scale Space

Def: Scale spaces generated by a linear filtering operation.
@ Nonlinear filters, such as the median filter, can be used to generate

nonlinear scale-spaces.
@ Many nonlinear filters violate one of the scale-space conditions.
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O BB BTSSR BRSNS M Weaknesses of the standard scale-space paradigm

New Criteria

o Causality.
o Immediate localization : edge locations remain fixed.

@ Piecewise Smoothing : permit discontinuities at boundaries.

At all scales the image will consist of smooth regions separated by
boundaries (edges).
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O BB BTSSR BRSNS M Weaknesses of the standard scale-space paradigm

Diffusion equation

ar
5 div(c(x,y,1)VI)

The diffusion coefficient, c(x, y, t) controls the degree of smoothing at each
point in /.
The basic idea:

Setting c(x, y, t) = 0 at region boundaries, and ¢(x, y, ) = 1 at region interior
will encourage intraregion smoothing, and discourage interregion
smoothing.
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O BB BTSSR BRSNS M Weaknesses of the standard scale-space paradigm

Conduction coefficient

What properties would we like ¢(x, y, ) to have?
@ c =1 at interior of a region.
@ c =0 at boundary of a region.
@ c should be nonnegative everywhere.
Since ¢(x, y, t) depends on edge information, we need an edge descriptor,
E(x,y,t), to compute c.
Notation

When written as a function of the edge descriptor, the authors use the symbol
g() for conduction coefficient.
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Perona-Malik : Inhomogeneous diffusion

The function g(||V1]||)

Perona and Malik suggest two possible functions:

g(IVI|l) = R
_ 1 )
g([vI)) = pins 0
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Perona-Malik : Inhomogeneous diffusion

Effect of varying K on g(||V1]])

T 1D T 1D T 1D
1 1 1
0s 0s 0s
0.5 0.5 0.5
0.a 0.a 0.a
0.z 0.z 0.z
(Ll (Ll (Ll
1z 2 & = [ 1z 2 a s & 1 1z 2 & s & 1

Figure: K=2,4,6
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Perona-Malik : Inhomogeneous diffusion

Effect of varying a on g(||VI||)

1
g(|IV1]]) = W (a>0)

ESILRIIN ESILRIIN ESILRIIN ESILRIIN
1 1 1 1

0s 0s 0s 0s
0. 0. 0. 0.
0. 0. 0. 0.
0.z 0.z 0.z 0.z
e T T F LA et Ll I

s & 1 1Tz : & 5 &8 7

Figure: «=1,3,5,7,9
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Perona-Malik : Inhomogeneous diffusion Weaknesses of the standard scale-space paradigm

Effect of varying K and « on ¢(x, y)

100 120 140 160 180 200 220 100 120 140 160 180 200 220

Figure: I and ||VI]|.

CS 778 /578 (West Virginia University) Medical Image Analysis January 28, 2011 27158



O BB BTSSR BRSNS M Weaknesses of the standard scale-space paradigm

Effect of varying K on c(x,y)

=
B 0 120 D fe0 0 200 220

W™ 0 @ 8 0 12 W0 1B 1@ 0 20 ™ W0 ®@ e 0 2 W0 1w 1@ ) 20

Figure: K = 3,5, 10, 100.

As K increases, more edges will get smoothed out.
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O BB BTSSR BRSNS M Weaknesses of the standard scale-space paradigm

Effect of varying o on ¢()

4 S
T ® o s i m uo 6 i W

R A T ) e
T o 6w i m ot @ W I R R

Figure: « = 1,2,3,5.

As « increases, the cutoff gets sharper.
i ity) Medical Image Analysis January 28, 2011
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SOV ERVY B DOl Adaptive Parameter Setting

Set K every iteration

Compute a histogram, f;, of ||V

Find K such that 90% of the pixels have gradient magnitude < K.
s Zle fi > 0.9n? then bin b corresponds to gradient magnitude K).
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Perona-Malik : Inhomogeneous diffusion [ EGEERSENEE L0

Edge Enhancement

Inhomogeneous diffusion may actually enhance edges, for a certain choice of

c(x,y,1).
1D example:
Let s(x) = g—i, and ¢(s) = g(I) Iy = g(s)s.

The 1D inhomogeneous heat equation becomes

0 0
Iy = a(g(lx)lx) = 8—x¢(s(x))
by chainrule = % %

I = ¢ (s(x)lx

With a few clever substitutions you can identify the conditions for which

8% (Iy) > 0. (See appendix of these notes.)
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Perona-Malik : Inhomogeneous diffusion ESYUEVT R Zi 110

Maximum Principle

@ The maximum and minimum intensities in the scale-space image
I(x,y,t) occur at t = O (the finest scale image).

@ Since new maxima and minima correspond to new image features, the
causality requirement of scale-space can satisfied if the evolution
equation obeys the maximum principle.

@ We will make some less rigorous observations concerning causality...
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Perona-Malik : Inhomogeneous diffusion ESVENIHTIBZETH

Maximum Principle

For the 1D heat equation : I, = I,,.
1(x) 1(x) 1(x)

S

X X X

@ Solving the heat equation is equivalent to convolution.
@ Convolution is a local averaging operation.

@ Averaging is bounded by the values being averaged.
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Perona-Malik : Inhomogeneous diffusion ESVENIHTIBZETH

Maximum Principle

For the Perona-Malik equation

% = ¢(x,y,0) VI + Vc - VI

Note that at local minima VI = 0 and we are evolving by the original heat
equation.

It can be shown that this general class of PDEs obeys the maximum principle.
See the 2009 class notes for a discussion of the maximum principle for the
discretized equations.
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Perona-Malik : Inhomogeneous diffusion ESVINEHEHETTTE

Diffusion equation

By the chain rule:

or [ clxy,nG
o - d”<c<x,y,t>§—;
%g_f_ ( t)8_21+@g+c(x t)a_zl
T oxox YU Oy dy i 0y?

= c(x,y,0)V* +Vc- VI

Notation

The paper uses the symbol A to represent the Laplacian.
Al = VI = div(VI)
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Perona-Malik : Inhomogeneous diffusion ESVINEHEHETTTE

Explicit Formulation

% = ¢(x,y,0) VI + Vc - VI

Using centered differences for the Laplacian and gradients:

t+1 t
Ix,y — Ix,y

\ = eoy(lyy + Ly F Ly + Ly

(Cx—l—l,y ; Cx—l,y)(lx—l—l,y ;Ix—l,y)
(Cx,y—l-l ; Cx,y—1 )(Ix,y+1 ; Ix,y—l )
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Perona-Malik : Inhomogeneous diffusion ESVINEHEHETTTE

Explicit Formulation

t+1 gt
I Ix t t t
Y = Cx»y(lel,y + Ix+1,y + Ix,yfl +1 y+1 41 )
Cotly = Ca—tyy Dty — L1y
b (Gt 2Oty ety 2 el
+ (Cxay"’_l ; cx7y_1 )(Ix7y+1 ; Ix>y_1 )

@ Same diagonal structure as homogeneous heat equation?
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Perona-Malik : Inhomogeneous diffusion ESVINEHEHETTTE

Explicit Formulation

t+1 gt
I Ix t t t
Y = Cx»y(lel,y + Ix+1,y + Ix,yfl +1 y+1 41 )
Cotly = Ca—tyy Dty — L1y
b (Gt 2Oty ety 2 el
+ (Cxay"’_l ; cx7y_1 )(Ix7y+1 ; Ix>y_1 )

@ Same diagonal structure as homogeneous heat equation? Yes.

o Symmetric?
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Perona-Malik : Inhomogeneous diffusion ESVINEHEHETTTE

Explicit Formulation

+1 gt
I Ix 1 1 1
Y = Cx»y(lel,y + Ix+1,y + Ix,yfl +1 y+1 41 )
cx+17y — CX—I’)’ Ix+lay — Ix_l7y
b (Gt 2Oty ety 2 el
+ (Cxay—"_l ; Cxy—1 )(IX’)’-H ; Ix,y—l )

@ Same diagonal structure as homogeneous heat equation? Yes.

@ Symmetric? No.

@ Diagonal dominance?
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Perona-Malik : Inhomogeneous diffusion ESVINEHEHETTTE

Explicit Formulation

+1 gt
I Ix 1 1 1
Y = Cx»y(lel,y + Ix+1,y + Ix,yfl +1 y+1 41 )
cx+17y — CX—I’)’ Ix+lay — Ix_l7y
b (Gt 2Oty ety 2 el
+ (Cxay—"_l ; Cxy—1 )(IX’)’-H ; Ix,y—l )

@ Same diagonal structure as homogeneous heat equation? Yes.

@ Symmetric? No.

@ Diagonal dominance? Data dependent.
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Perona-Malik : Anisotropic diffusion
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Perona-Malik : Anisotropic diffusion

Explicit Formulation

How do we get from this:

% = c(x,y,0)VI + Vc - VI

to Equation 7?

By splitting the Laplacian and averaging the forward and backward differences in the
gradient:

+1
I)tﬁy _I;f,y _ t gt 1 ot
A o Cx’y[(lx—l,y Ix,y) + (1x+1,y Ix,y)

+ (I)tc,y—l - I)tc,y) + (I)tc,y+1 - I)tc,y)]
ac Ix+1>y — Ix7y Ix7y B IX—Ly

a2 + >
Oc Lyyyr — Ly Ly — Loy

+ 8y[ 2 + 2 )
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Perona-Malik : Anisotropic diffusion

Explicit Formulation

/
or _ c(x,y,0) VI + Ve - VI
ot
- 10c
i 3 i (Cxy Ea)(l)l;—l,y I,)
1 0c
+ ey + 55 )Ty — L)
1 dc
+ ( X,y Ea_y)( )tc,yfl - )tc,y)

CS 778 /578 (West Virginia University) Medical Image Analysis



Perona-M Anisotropic

Explicit Formulation

These are first order Taylor series approximations

1 dc

Cx,y‘i‘za ~ Cx+%’y

1 dc

C - X C
X,y 23)6 X—75,y
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Perona-Malik : Anisotropic diffusion

Explicit Formulation

I)tc—;l _I)tcy Sxy + Sx—1,y
== = () ILy)
>\ 2 5y Y

Sxy + Sxt1,
gty g )

S ), +s P —1
=+ g(%)(lfc,yfl _I)tc,y)

Sx,y T Sxy+1
+ 8(%)(@%1 —1,)
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Perona-Malik : Anisotropic diffusion

Anisotropic Implementation

Compute g() using the projection of the gradient along one direction.
For example, in g( Wr# ), let

ol
s = Il o)l

ol
Sx+1y = ||a(x+ Lyl

Computing s, , using forward differences, and s, 1, using backward
differences

Sxy = ||IX+l,y_Ix,y||

Sx+1y = ||Ix+1,y_1x7y||a

X, +X
s0 g(ZH) = g(|[I(x + 1,y) — I(x,y)]]).
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Perona-Malik : Anisotropic diffusion

Explicit Formulation

IH—I _r
T 8 Ix Ly — :y|

( ) (I,
g(|1x+1,y 7y|)(1x+1y I;,y
8(|Ley—1 — Ley[) (I

( )1

I
x—1ly — x,
1
8 |I Y+l ,y| 1

+ + +

V=
x,y+

Notation:

The authors use 1/ to denote finite differences. This is not the gradient
operator (V).

CS 778 /578 (West Virginia University) Medical Image Analysis January 28, 2011 44758



Perona-Malik : Anisotropic diffusion

®1N..; =fijn

M.,

Iw,, = iy f\l;_,« Igij=Iliy1;
/ CEij @

@
£
p

€Si;

@Isa,, =T
Image neighborhood
system
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Perona-Malik : Anisotropic diffusion

Explicit Formulation

The previous explicit formulation

IH—I _r

B gy LDy — £y
+ 8Lty — ,y|)(1 I)tc,y)
+gley—1 = Ly (L1 = Iiy)
+ gLy — ,y!)(xyﬂ L)

can be rewritten as

It-‘rl

I;,y + )‘(CNI'X,' VN ItJ + CS;j A\VAY IIJ
+ CE; VE Iixi + CW;; \VA'4 Iij)t
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Perona-Malik : Anisotropic diffusion

Perona-Malik Implementation

The implementation looks like a discretization of anisotropic diffusion with a
diagonal diffusion tensor.

Ou = div([ CElx ] N [ Cwity })

CNUy CsUly
= div([ c(;; C(I)V]Vu—i— [ c(‘);y COS]VM)
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Perona-Malik : Anisotropic diffusion

Discrete Maximum Principle

It can be shown that
@ The algorithm will not lead to the production of new local maxima.

@ Similarly, no new local minima will be created.

@ Therefore, the Perona-Malik algorithm can be used to create scale-space
image representations.
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Constant Boundary Value

1(x)

(x<0)or(x>n)—=Ix)=c
For ¢ = 0:

c I:(0) =~ =2I(0) + I(1)

x=0 X=n
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G Boundary Conditions

Constant Boundary Slope

1(x)

Fixing the slope at zero
(adiabatic) gives

(x <0) = I(x) =1(0)
(x>n) = I(x) =I(n)

L (0) =~ —1(0) + I(1)

x=0

CS 778 /578 (West vinia University)
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Periodic Boundary Conditions

(x<0) = I(x) =I(x+n)
(x>n) = I(x) =I(x—n)
L(0) =~ I(n—1) —2I(0) + I(1)
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Reflective Boundary Conditions

1(x)

x=0 X=n
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EcEhega
Edge Enhancement

Inhomogeneous diffusion may actually enhance edges, for a certain choice of
c(x,y,1).

1D example:
Let s(x) = g—i, and ¢(s) = g(I) Iy = g(s)s. J

The 1D inhomogeneous heat equation becomes

0 0

L= (6IIL) = 5-0(s()
by chainrule = %%

I = ¢ (s(x)x
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EcEhega
Edge Enhancement

We are interested in the rate of change of edge slope with respect to time.

0 0 .
&(Ix) = a—(lt) if I is smooth
0
= a_(d) (S)Ix.x)
Os
= Qb (S)_ o ¢ ( )
¢" ()5 + &' (5) L
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Edge Enhancement

8 // /
o) = (SOOI + ¢ (3(0)) Lo

For a step edge with I, > 0 look at the inflection
point, p, where the slope is maximum.

Observe that I,(p) = 0, and L. (p) < 0.

0 :
1) (P) = 6 (5D lp)

T

The sign of this quantity depends only on
Iyl)ulx)calxxx (bl(s(p))
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Edge Enhancement

At the inflection point:
9 /
;L) (P) = &) (p)

e If ¢/(s) > 0, then a%(lx)(p) < 0 (slope is decreasing).
e If ¢/(s) < 0, then C%(Ix)(p) > 0 (slope is increasing).

Since ¢(s) = g(s)s, selecting the function g(s) determines which edges are
smoothed and which are sharpened.
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The function ¢(s) = g(s)s

° $(0)=0

e ¢/(s) >0fors <K
e ¢(s) <Ofors>K
o limy_,o ¢(s) = 0
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