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Anisotropic diffusion

Anisotropic diffusion

The Weickert paper uses the notation

∂tu ≡
∂u
∂t

In this notation the anisotropic diffusion equation is written

∂tu = div(D∇u)

where the diffusion coefficient, D, is a tensor (matrix).

CS 778 / 578 (West Virginia University) Medical Image Analysis February 2, 2011 4 / 28



Anisotropic diffusion Perona-Malik

Perona-Malik Implementation

∂tu = div(

[
cEux

cNuy

]
+

[
cWux

cSuy

]
)

= div(

[
cE 0
0 cN

]
∇u +

[
cW 0
0 cS

]
∇u)

The implementation is anisotropic diffusion with a diagonal diffusion tensor.
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Anisotropic diffusion Edge enhancing

The diffusion tensor D

From the statistical mechanics of diffusion, it is known that D is the
covariance matrix of the molecular displacement probability density function:
The probability that a molecule at position x0 at time t will diffuse to x0 + r at
time t + τ

pτ (r) = N(0, 2τD)

So D must be

Symmetric : D = DT

Non-negative-definite : xTDx ≥ 0 for all x6= 0
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Anisotropic diffusion Edge enhancing

The diffusion tensor D

Physically, these constraints mean

Symmetric : conservation of mass

Non-negative-definite : no backward diffusion

∇uTD∇u > 0

We can understand the geometry of anisotropic diffusion by looking at the
eigenvalue decomposition of D.

D = XΛX−1
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Anisotropic diffusion Edge enhancing

The diffusion tensor D

D = XΛX−1

X = [v1|v2], e are the eigenvectors of D

Λ =

[
λ1 0
0 λ2

]

λ1, λ2 are the eigenvalues of D

Since D is real and symmetric, the eigenvalues are real

Since D is symmetric, the eigenvectors are mutually orthogonal

Since D is non-negative-definite, the eigenvalues ≥ 0
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Anisotropic diffusion Edge enhancing

Eigenvalue Decomposition of D
Since X is orthogonal X−1 = XT

X is a rotation matrix

Λ is a nonuniform scaling matrix

D = XΛXT
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Anisotropic diffusion Edge enhancing

Eigenvalue Decomposition of D

Since X is orthogonal X−1 = XT

X is a rotation matrix

Λ is a nonuniform scaling matrix

D = XΛXT

j = −D∇u

Rotate flux by multiplying with rotation matrix.

Perform nonuniform scaling.

Apply inverse rotation
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Anisotropic diffusion Edge enhancing

Construct D

Construct X using regularized (smoothed) edge information.
Let uσ = Kσ ∗ u.

v1 ‖ ∇uσ
v2 ⊥ v1

||v1|| = ||v2|| = 1

X = [v1|v2]

Λ =

[
λ1 0
0 λ2

]

λ1 = g(||∇uσ||) the diffusivity from Perona-Malik

λ2 = 1
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Anisotropic diffusion Edge enhancing

Construct D

When g ≈ 1 (away from an edge), then D ≈ I, and j ≈ −∇u, (isotropic
diffusion)

Near an edge g→ 0

D =
[

v1 v2
] [ 0 0

0 1

] [
v1

v2

]

D∇u =
[

v1 v2
] [ 0 0

0 1

]
(

[
v1

v2

]
∇u)
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Anisotropic diffusion Edge enhancing

Construct D

D∇u =
[

v1 v2
]

(

[
0 0
0 1

] [
v1 · ∇u
v2 · ∇u

]
)

D∇u =
[

v1 v2
] [ 0

v2 · ∇u

]
D∇u = v2(v2 · ∇u)

D∇u is parallel to v2, so it is parallel to the edge.
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Anisotropic diffusion Edge enhancing

Tensor field for input image

Note that tensors are isotropic within homogeneous regions. Tensors are
anisotropic and direct the flux along edges. The resulting diffusion process is
edge enhancing.
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Anisotropic diffusion Coherence enhancing

Coherence enhancing diffusion : Structure matrix

Idea : Construct diffusion tensor, D, from image structure matrix, J.

Jρ(∇uσ) = Kρ ∗ (∇uσ∇uT
σ)

Jρ(∇uσ) =

[
u2

x uxuy

uxuy u2
y

]
Let v1 and v2 be the eigenvectors of J, and µ1 and µ2 be the corresponding
eigenvalues.
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Anisotropic diffusion Coherence enhancing

Structure matrix

Image structure can be deduced from the eigenvalue decomposition of J.

Direction v1 has the greatest intensity variation

Direction v2 has the least intensity variation

µ1, µ2 give the degree of intensity variation (contrast) in the
eigendirection.

Constant-valued image→ µ1 = µ2 = 0

Step edge→ µ1 > 0, µ2 ≈ 0

Corner→ µ1 > 0, µ2 > 0
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Anisotropic diffusion Coherence enhancing

In computer vision
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Anisotropic diffusion Coherence enhancing

D has the same eigenvectors as the structure matrix, but different eigenvalues
(λ1, λ2)

λ1 = α

λ2 = {
α if µ1 = µ2

α+ (1− α) exp( −C
(µ1−µ2)2m ) otherwise

When µ1, µ2 are very different, smooth more in the coherence direction.
(see paper for details on choosing alpha, C, m)
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Energy Minimization Variational calculus

Variational Calculus

There is another way to arrive at the diffusion equation.

We wish to find u such that E(u) is minimized, where E(u) is a functional of
the form

E(u) =

∫
Ω

f (x, y, u, ux, uy) dx

A functional depends not just on variables (x,y), but also on functions and
their derivatives u, ux, uy.

We will work with functionals by treating u, ux, uy as independent variables.
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Energy Minimization Variational calculus

Variational Calculus

We will work with functionals by treating u, ux, uy as independent variables.
What this means:
When you see fu : differentiate f with respect to u.
When you see fux : differentiate f with respect to ux.
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Energy Minimization Variational calculus

Variational Calculus
When E(u) is a functional of the form

E(u) =

∫
Ω

f (x, y, u, ux, uy) dx

then, when E(u) is minimized the following condition holds

∇E = fu −
∂

∂x
fux −

∂

∂y
fuy = 0

= fu − div(
fux

fuy

)

The minimum can be found using the descent method

∂tu = −fu + div(
fux

fuy

)
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Energy Minimization Variational calculus

Variational Calculus

Membrane spline energy represents the stretching (arc-length) of a thin sheet.
Minimizing this energy results in smooth surfaces.

The membrane spline energy has the form

Emem(u) =

∫
Ω
||∇u||2 dx =

∫
Ω

u2
x + u2

y dx
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Energy Minimization Variational calculus

Variational Calculus

Minimizing the membrane spline energy

E(u) =

∫
Ω
||∇u||2 dx =

∫
Ω

u2
x + u2

y dx

has Euler-Lagrange condition for minimization:

∇E = fu −
∂

∂x
fux −

∂

∂y
fuy = 0

= 0− ∂

∂x
(2ux)−

∂

∂y
(2uy) = 0

Leading to the evolution equation

∂tu = div(∇u)

CS 778 / 578 (West Virginia University) Medical Image Analysis February 2, 2011 24 / 28



Energy Minimization Variational calculus

Gradient Descent
The evolution equation is a gradient descent equation.
The gradient is useful in this simple numerical optimization technique

dx
dt

= ∓∇I (1)

Will converge to a local minimum/maximum of I.
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Energy Minimization Imposing data constraints

Data Constraints

Let u0 be the original input image. We wish to penalize solutions which are
far from the initial condition.
Find minu E(u),

E(u) =

∫
Ω

(u2
x + u2

y +
β

2
(u− uo)2) dx

results in the descent equation (a reaction-diffusion equation)

∂tu = div(∇u) + β(u0 − u)

The evolution reaches a nontrivial steady-state. (This is the reaction term
proposed by Weickert in section 6.1)
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Energy Minimization Imposing data constraints

With the data constraint we can directly solve for the steady-state solution.
The steady-state equation

∂tu = div(∇u) + β(u0 − u)

leads to a discretization of the form

0 = Au + β(u0 − u)

which can be rearranged as

(A− βI)u = −βu0

Note that when A is a function of time this method will still require iteration,
but if A is constant we can get a solution in a single iteration.
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Energy Minimization Imposing data constraints

Variational Calculus

Later we will look at a more general form of the variational calculus which
will allow us to minimize other functionals, such as the thin-plate spline
energy. This functional minimizes bending energy (curvature).

ETPS(u) =

∫
Ω

u2
xx + 2u2

xy + u2
yy dx
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