
  

Sparse block matrices in Matlab
 Constructing sparse block matrices

 Sparse matrices
 Block matrices

 Solving large sparse linear systems
 LU factorization
 Conjugate gradient



  

Sparse matrices
 sparse(m,n)

 All zero sparse mxn matrix
 sparse(A)

 Converts full matrix A to sparse
 speye(m,n)

 Sparse matrix with ones on the main diagonal
 spalloc(m,n,nz)

 Allocates storage for an mxn matrix with nz nonzero 
entries.

 Since reallocation is expensive it is a good idea to allocate 
storage for a matrix before building it.



  

Sparse matrices
 spdiags(B, d, m, n)

 Form a sparse mxn matrix whose diagonals, d, are the 
columns of B.

 In d 
 0 is the main diagonal
 Positive values are super diagonals
 Negative values are subdiagonals

 Example: second central difference matrix
 e = ones(4,1);
 A = spdiags([e, -2*e, e], [-1, 0, 1], 4, 4);

A=[−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2 ]



  

Sparse matrices
 spy(A)

 Visualize the sparsity structure of the matrix
 Example: 1D second central difference matrix

 n = 32;
 e = ones(n,1);
 A = spdiags([e, -2*e, e], [-1, 0, 1], n, n);
 spy(A);



  

Block Matrices
 Sometimes it is useful to specify a matrix block-by-block.
 M = blkdiag(a,b,...)

M=[
a11 ⋯ a1n 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
an1 ⋯ ann 0 ⋯ 0
0 ⋯ 0 b11 ⋯ b1n

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 bn1 ⋯ bnn

]



  

blkdiag example
 e = ones(3,3);
 A = blkdiag(e,e,e);
 spy(A);



  

Matrix concatenation
 horzcat(a1, a2, a3,...)

 Concatenate matrices horizontally
 vertcat(a1, a2, a3,...)

 Concatenate matrices vertically



  

Matrix concatenation
 e = ones(3,3);
 z = zeros(3,3);
 I = eye(3,3);
 A = horzcat(e, z, I);
 B = vertcat(e, z, I);

 spy(A);

 spy(B);



  

Kronecker tensor product
 K = kron(X,Y);

 if X is mxn and Y is pxq then K is mp x nq

K=[X 11Y ⋯ X 1nY
⋮ ⋱ ⋮

X n1Y ⋯ X nnY ]



  

Kronecker tensor product example

 X = ones(3,3);
 Y = eye(3,3);

 spy(kron(X,Y));

 spy(kron(Y, X));



  

Using kron to create a 2D Laplacian matrix
 Boundary conditions:zeros outside image domain
 First create 1D second central difference matrix for x-

direction
 n1 = size(I,1);
 e1 = ones(n1,1);
 I1 = speye(n1, n1);
 D1xx = spdiags([e1 -2*e1 e1], [-1 0 1], n1, n1);
 spy(D1xx);

    



  

 Then create the 2D second central difference matrix
 I2 = speye(n2, n2);
 D2xx = kron(I2, D1xx);
 spy(D2xx);



  

Using kron to create a 2D Laplacian matrix
 Create 1D second central difference matrix for y-direction

 n2 = size(I,1);
 e2 = ones(n2,1);
 I2 = speye(n2, n2);
 D1yy = spdiags([e2, -2*e2 e2], [-1 0 1], n2, n2);

 Then create the 2D second central difference matrix
 D2yy = kron(D1yy, I1);

    



  

 spy(D2yy);



  

2D Laplacian Matrix
 Compute 2D Laplacian matrix

 L = D2xx+D2yy;

= +



  

In 3D...
 D3xx = kron(I3, kron(I2, D1xx));
 D3yy = kron(I3, kron(D1yy, I1));
 D3zz = kron(kron(D1zz, I2), I1);
 L = D3xx+D3yy+D3zz

= + +



  

Imposing other boundary conditions
 Periodic boundary conditions

 D1xx = D1xx + spdiags([e1 e1], [-n1+1 n1-1], n1, n1);
 D2xx = kron(I2, D1xx);
 D1yy = D1yy + spdiags([e2 e2], [-n2+1 n2-1], n2, n2);
 D2yy = kron(D1yy, I1);

D2xx D2yy



  

Solving linear systems
 Solve for x in

 Inversion

 Not practical for large or ill-conditioned matrices

 Other direct methods
 LU factorization

 Iterative methods
 Conjugate gradient (CG) methods 

A x=b

x=A−1b



  

LU factorization
 This may be what happens when you type 'x = A\b' in 

Matlab
 Check mldivide help for details

 LU decomposition is a form of Gaussian elimination
 Permits the linear system to be solved by back substitution
 If the matrix A does not change in every iteration you can 

factorize the matrix once, then only perform the back 
substitution each iteration



  

LU factorization
 A = LU

 L is lower triangular (all superdiagonals are 0)
 U is upper triangular (all subdiagonals are 0)

 For symmetric A you can find the Cholesky decomposition
 A = LLT

L=[
l11 0 0 ⋯ 0
l 21 l 22 0 ⋯ 0
l31 l 32 l33 ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋮
l n1 l n2 l n3 ⋯ lnn

] U=[
u11 u12 u13 ⋯ u1n

0 u22 u23 ⋯ u2n

0 0 u33 ⋱ u3n

⋮ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋯ unn

]



  

Solving by LU factorization
 Replace A with L times U

 Solve in 2 steps
 Let

 Solve

 Then solve

A x=b
LU x=b

y=U x

Ly=b

Ux= y



  

Solving triangular linear systems
 Easy, just back substitution

 Proceed row-by-row
 Solve for one unknown per row

L=[
l11 0 0 ⋯ 0
l 21 l 22 0 ⋯ 0
l31 l 32 l33 ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋮
l n1 l n2 l n3 ⋯ lnn

] [
y1

y2

y3

⋮
yn

]=[
b1

b2

b3

⋮
bn

]
y1=

b1

l11

y2=
b2−l 21 y1

l 22

...



  

Solving by LU decomposition in Matlab
 To solve Ax = b
 Decompose

 [L,U] = lu(A);
 Backsubstitute

 x = U\L\b;



  

Sparse LU
 If A is sparse then L and U are usually sparse also

 For the 2D Laplacian matrix:

L = U =



  

Conjugate gradient
 Iterative method
 Only requires matrix-vector multiplications, vector-

vector operations
 Can be very efficient when matrix is sparse.

 Can solve symmetric positive-definite systems
 See JR Shewchuk, “An introduction to the conjugate 

gradient method without the agonizing pain” for more 
details



  

Conjugate gradient
 Green lines: iterations of 

gradient descent.
 Subsequent search 

directions , v, are 
perpendicular

 vi
T vi+1 = 0

 Red lines: iterations of 
conjugate gradient 
method.

 In CG methods the search 
directions are conjugate    
     

 vi
T A vi+1 = 0



  

Conjugate gradient variants in Matlab
 Preconditioned CG (symmetric A)

 x = pcg(A,b,tol,maxit,M)
 Biconjugate gradients (square A – not req'd to be symmetric)

 x = bicg(A,b,tol,maxit,M)
 CG squared (a variant of bicg)

 x = cgs(A,b,tol,maxit,M)
 Biconjugate gradients stabilized method (another variant of bicg)

 x = bicgstab(A,b,tol,maxit,M)

 See Matlab help for details on differences in computational 
cost and convergence speed



  

Preconditioning
 The matrix M specified in the Matlab functions is a 

preconditioner

 If A is ill-conditioned, choose M such that M-1A is well 
conditioned

 M must be symmetric and positive definite for PCG
 Ideally, M-1 = A-1

M−1 A x=M−1b


