Sparse block matrices in Matlab

= Constructing sparse block matrices
= Sparse matrices
= Block matrices

= Solving large sparse linear systems

= LU factorization
= Conjugate gradient

Sparse matrices

sparse(m,n)
= All zero sparse mxn matrix
sparse(A)

= Converts full matrix A to sparse

speye(m,n)
= Sparse matrix with ones on the main diagonal
= spalloc(m,n,nz)

= Allocates storage for an mxn matrix with nz nonzero
entries.

= Since reallocation is expensive it is a good idea to allocate
storage for a matrix before building it.

Sparse matrices

= spdiags(B, d, m, n)

= Form a sparse mxn matrix whose diagonals, d, are the

columns of B.
= Ind

= 0 is the main diagonal
= Positive values are super diagonals
= Negative values are subdiagonals

= Example: second central difference matrix
= e =ones(4,1);
= A=spdiags([e, -2%¢e, €], [-1, 0, 1], 4, 4);

Sparse matrices

" Spy(A)
= Visualize the sparsity structure of the matrix

= Example: 1D second central difference matrix
= Nn=32;
= e =ones(n,1);
= A=spdiags([e, -2%¢, €], [-1, 0, 1], n, n);
" Spy(A);

Block Matrices

= Sometimes it is useful to specify a matrix block-by-block.
= M = blkdiag(a,b,...)

a, a, 0 0
Af=|Dni a, 0 0
0 0 by b,

blkdiag example

» A= blkdiag(e,e,e);
= Spy(A);

i) o -1 g} i = o r - =
. ' . . T T T T T

—
o
o

Matrix concatenation

= horzcat(al, a2, ag3,...)
= Concatenate matrices horizontally
= vertcat(a1l, a2, a3,...)

= Concatenate matrices vertically

Matrix concatenation

e = ones(3,3); = spy(A);

z = zeros(3,3);
| = eye(3,3);
A = horzcat(e, z, |);

..........
DDDDDDDDDDDD

B = vertcat(e, z, |);

¢¢¢¢¢¢

Kronecker tensor product

= K=kron(X,Y);

= if Xis mxn and Y is pxq then K is mp x nq

Kronecker tensor product example

= spy(kron(X,Y));

= X =o0nes(3,3);
= Y =eye(3,3);

= spy(kron(Y, X));

Using kron to create a 2D Laplacian matrix

= Boundary conditions:zeros outside image domain

» First create 1D second central difference matrix for x-
direction

= n1=size(l,1);

e1 = ones(n1,1);

11 = speye(n1, n1);
D1xx = spdiags([e1 -2*e1 e1], [-1 0 1], n1, n1);
spy(D1xx);

Then create the 2D second central difference matrix
12 = speye(n2, n2);

D2xx = kron(12, D1xx);

spy(D2xx);

1]

10}

151

A0t

2t

20

Using kron to create a 2D Laplacian matrix

= Create 1D second central difference matrix for y-direction
= n2 =size(l,1);
= e2 =ones(n2,1);
= |2 = speye(n2, n2);
= D1yy = spdiags([e2, -2*e2 e2], [-1 0 1], n2, n2);
= Then create the 2D second central difference matrix
= D2yy = kron(D1yy, 11);

= spy(D2yy);

10}

151

A0t

2t

*»
»
*
» » -
*
*
»
- - * .
*
- -
» »
- » » -
*
*
» » -
10 14 20 25

2D Laplacian Matrix

= Compute 2D Laplacian matrix

20

2

= L= D2xx+D2yy;

20

2

20

2

In 3D...

= D3xx = kron(l3, kron(l2, D1xx));
= D3yy = kron(l3, kron(D1yy, 11))
1

= D3zz = kron(kron(D1zz, 12), I11);
= L =D3xx+D3yy+D3zz

Imposing other boundary conditions

= Periodic boundary conditions

D1xx = D1xx + spdiags([e1 e1], [-n1+1 n1-1], n1, n1);
D2xx = kron(12, D1xx);
D1yy = D1yy + spdiags([e2 €2], [-n2+1 n2-1], n2, n2);
D2yy = kron(D1yy, 11);

24

Solving linear systems

Solve forxin Ax=»b

Inversion

x=A'b

= Not practical for large or ill-conditioned matrices

Other direct methods

» | U factorization

Iterative methods
= Conjugate gradient (CG) methods

LU factorization

This may be what happens when you type 'x = A\b' in
Matlab

= Check mldivide help for details
= LU decomposition is a form of Gaussian elimination

= Permits the linear system to be solved by back substitution

= |f the matrix A does not change in every iteration you can
factorize the matrix once, then only perform the back
substitution each iteration

LU factorization

= A=LU
= L is lower triangular (all superdiagonals are 0)
= U is upper triangular (all subdiagonals are 0)

[, 0 0 - 0 Upp Uy Uz o Uy
lyy 1, 0 - 0 0wy Uy 0 Uy,
L= 1y s 0 U= 0 0w, Us,
Zn] ln2 lnj’ lnn 0 O O unn

= For symmetric A you can find the Cholesky decomposition
= A=LLT

Solving by LU factorization

= Replace A with L times U

Ax=b

LUx=b
= Solve in 2 steps
= |Let y:Ux
= Solve Ly:b

= Then solve Ux =y

Solving triangular linear systems

= Easy, just back substitution

= Proceed row-by-row
= Solve for one unknown per row

Ly 00 - 0 fy| b
[yy 1y, 0 - 01|y, |b,
L= Ly, 1y Ly o 0| y;7|bs

ln] ZnZ ln3 l yn b

Solving by LU decomposition in Matlab

= Josolve Ax=Db
= Decompose
= [LU] = u(A);
= Backsubstitute
= x = U\L\b;

Sparse LU

= If Ais sparse then L and U are usually sparse also

= For the 2D Laplacian matrix:

20t

2t

. e
e sns
XYY
T E R
st IR RN
srane.
sanans
YR
ran e
10F [ERE RN
TR YR
YT
TR
rane
151 (X E)
» e
E 3

20t

2t

*
* »
LE N 2
LI N R
LI R
LR X N N
LR X N N
LE R N N
LR X N N
LI R
LR X N N
LE R N N
- LE R N N
=8 EREES
LR B R R
LR B K X N N
LR B R N
LR B K X N N
LR R R R RN
LI R B
LR X N N
LR R
LE R
* "
.._
1

0 a 10 15
nz =207

20 25

Conjugate gradient

= |terative method

= Only requires matrix-vector multiplications, vector-
vector operations

= Can be very efficient when matrix is sparse.
= Can solve symmetric positive-definite systems

= See JR Shewchuk, “An introduction to the conjugate
gradient method without the agonizing pain” for more
details

Conjugate gradient

= Green lines: iterations of
gradient descent.

= Subsequent search
directions , v, are
perpendicular

. ViTVi+1 =0
» Red lines: iterations of

conjugate gradient
method.

= |n CG methods the search
directions are conjugate

« V'Av,_ =0

Conjugate gradient variants in Matlab

Preconditioned CG (symmetric A)
= X = pcg(A,b,tol,maxit,M)

Biconjugate gradients (square A — not req'd to be symmetric)
= X = bicg(A,b,tol,maxit,M)
CG Squared (a variant of bicg)

= X = cgs(A,b,tol,maxit,M)

Biconjugate gradients stabilized method (another variant of bicg)
= X = bicgstab(A,b,tol,maxit,M)

= See Matlab help for details on differences in computational
cost and convergence speed

Preconditioning

The matrix M specified in the Matlab functions is a
preconditioner

M ' '"Ax=M""b

If A'is ill-conditioned, choose M such that M-'A is well
conditioned

M must be symmetric and positive definite for PCG
Ideally, M-" = A"

