

Sparse block matrices in Matlab
 Constructing sparse block matrices

 Sparse matrices
 Block matrices

 Solving large sparse linear systems
 LU factorization
 Conjugate gradient

Sparse matrices
 sparse(m,n)

 All zero sparse mxn matrix
 sparse(A)

 Converts full matrix A to sparse
 speye(m,n)

 Sparse matrix with ones on the main diagonal
 spalloc(m,n,nz)

 Allocates storage for an mxn matrix with nz nonzero
entries.

 Since reallocation is expensive it is a good idea to allocate
storage for a matrix before building it.

Sparse matrices
 spdiags(B, d, m, n)

 Form a sparse mxn matrix whose diagonals, d, are the
columns of B.

 In d
 0 is the main diagonal
 Positive values are super diagonals
 Negative values are subdiagonals

 Example: second central difference matrix
 e = ones(4,1);
 A = spdiags([e, -2*e, e], [-1, 0, 1], 4, 4);

A=[−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −2]

Sparse matrices
 spy(A)

 Visualize the sparsity structure of the matrix
 Example: 1D second central difference matrix

 n = 32;
 e = ones(n,1);
 A = spdiags([e, -2*e, e], [-1, 0, 1], n, n);
 spy(A);

Block Matrices
 Sometimes it is useful to specify a matrix block-by-block.
 M = blkdiag(a,b,...)

M=[
a11 ⋯ a1n 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
an1 ⋯ ann 0 ⋯ 0
0 ⋯ 0 b11 ⋯ b1n

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 bn1 ⋯ bnn

]

blkdiag example
 e = ones(3,3);
 A = blkdiag(e,e,e);
 spy(A);

Matrix concatenation
 horzcat(a1, a2, a3,...)

 Concatenate matrices horizontally
 vertcat(a1, a2, a3,...)

 Concatenate matrices vertically

Matrix concatenation
 e = ones(3,3);
 z = zeros(3,3);
 I = eye(3,3);
 A = horzcat(e, z, I);
 B = vertcat(e, z, I);

 spy(A);

 spy(B);

Kronecker tensor product
 K = kron(X,Y);

 if X is mxn and Y is pxq then K is mp x nq

K=[X 11Y ⋯ X 1nY
⋮ ⋱ ⋮

X n1Y ⋯ X nnY]

Kronecker tensor product example

 X = ones(3,3);
 Y = eye(3,3);

 spy(kron(X,Y));

 spy(kron(Y, X));

Using kron to create a 2D Laplacian matrix
 Boundary conditions:zeros outside image domain
 First create 1D second central difference matrix for x-

direction
 n1 = size(I,1);
 e1 = ones(n1,1);
 I1 = speye(n1, n1);
 D1xx = spdiags([e1 -2*e1 e1], [-1 0 1], n1, n1);
 spy(D1xx);

 Then create the 2D second central difference matrix
 I2 = speye(n2, n2);
 D2xx = kron(I2, D1xx);
 spy(D2xx);

Using kron to create a 2D Laplacian matrix
 Create 1D second central difference matrix for y-direction

 n2 = size(I,1);
 e2 = ones(n2,1);
 I2 = speye(n2, n2);
 D1yy = spdiags([e2, -2*e2 e2], [-1 0 1], n2, n2);

 Then create the 2D second central difference matrix
 D2yy = kron(D1yy, I1);

 spy(D2yy);

2D Laplacian Matrix
 Compute 2D Laplacian matrix

 L = D2xx+D2yy;

= +

In 3D...
 D3xx = kron(I3, kron(I2, D1xx));
 D3yy = kron(I3, kron(D1yy, I1));
 D3zz = kron(kron(D1zz, I2), I1);
 L = D3xx+D3yy+D3zz

= + +

Imposing other boundary conditions
 Periodic boundary conditions

 D1xx = D1xx + spdiags([e1 e1], [-n1+1 n1-1], n1, n1);
 D2xx = kron(I2, D1xx);
 D1yy = D1yy + spdiags([e2 e2], [-n2+1 n2-1], n2, n2);
 D2yy = kron(D1yy, I1);

D2xx D2yy

Solving linear systems
 Solve for x in

 Inversion

 Not practical for large or ill-conditioned matrices

 Other direct methods
 LU factorization

 Iterative methods
 Conjugate gradient (CG) methods

A x=b

x=A−1b

LU factorization
 This may be what happens when you type 'x = A\b' in

Matlab
 Check mldivide help for details

 LU decomposition is a form of Gaussian elimination
 Permits the linear system to be solved by back substitution
 If the matrix A does not change in every iteration you can

factorize the matrix once, then only perform the back
substitution each iteration

LU factorization
 A = LU

 L is lower triangular (all superdiagonals are 0)
 U is upper triangular (all subdiagonals are 0)

 For symmetric A you can find the Cholesky decomposition
 A = LLT

L=[
l11 0 0 ⋯ 0
l 21 l 22 0 ⋯ 0
l31 l 32 l33 ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋮
l n1 l n2 l n3 ⋯ lnn

] U=[
u11 u12 u13 ⋯ u1n

0 u22 u23 ⋯ u2n

0 0 u33 ⋱ u3n

⋮ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋯ unn

]

Solving by LU factorization
 Replace A with L times U

 Solve in 2 steps
 Let

 Solve

 Then solve

A x=b
LU x=b

y=U x

Ly=b

Ux= y

Solving triangular linear systems
 Easy, just back substitution

 Proceed row-by-row
 Solve for one unknown per row

L=[
l11 0 0 ⋯ 0
l 21 l 22 0 ⋯ 0
l31 l 32 l33 ⋱ 0
⋮ ⋱ ⋱ ⋱ ⋮
l n1 l n2 l n3 ⋯ lnn

] [
y1

y2

y3

⋮
yn

]=[
b1

b2

b3

⋮
bn

]
y1=

b1

l11

y2=
b2−l 21 y1

l 22

...

Solving by LU decomposition in Matlab
 To solve Ax = b
 Decompose

 [L,U] = lu(A);
 Backsubstitute

 x = U\L\b;

Sparse LU
 If A is sparse then L and U are usually sparse also

 For the 2D Laplacian matrix:

L = U =

Conjugate gradient
 Iterative method
 Only requires matrix-vector multiplications, vector-

vector operations
 Can be very efficient when matrix is sparse.

 Can solve symmetric positive-definite systems
 See JR Shewchuk, “An introduction to the conjugate

gradient method without the agonizing pain” for more
details

Conjugate gradient
 Green lines: iterations of

gradient descent.
 Subsequent search

directions , v, are
perpendicular

 vi
T vi+1 = 0

 Red lines: iterations of
conjugate gradient
method.

 In CG methods the search
directions are conjugate

 vi
T A vi+1 = 0

Conjugate gradient variants in Matlab
 Preconditioned CG (symmetric A)

 x = pcg(A,b,tol,maxit,M)
 Biconjugate gradients (square A – not req'd to be symmetric)

 x = bicg(A,b,tol,maxit,M)
 CG squared (a variant of bicg)

 x = cgs(A,b,tol,maxit,M)
 Biconjugate gradients stabilized method (another variant of bicg)

 x = bicgstab(A,b,tol,maxit,M)

 See Matlab help for details on differences in computational
cost and convergence speed

Preconditioning
 The matrix M specified in the Matlab functions is a

preconditioner

 If A is ill-conditioned, choose M such that M-1A is well
conditioned

 M must be symmetric and positive definite for PCG
 Ideally, M-1 = A-1

M−1 A x=M−1b

