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Basic active contour behavior

Basic active contour behavior

An active contour (or snake) is an energy minimizing parametric curve
which evolves according to external constraints and is influenced by image
forces which pull it toward features of interest.

The exact energy functionals involved will depend on which features are
of interest.

We will impose membrane and thin-plate spline smoothness constraints
on the snakes, and also allow for user intervention.
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Basic active contour behavior

Energy Functional

Behavior is governed by the energy functional

E∗snake =

∫ 1

0
Eint(v(s)) + Eimage(v(s)) + Econ(v(s)) ds

v(s) is the parametric curve

Eint represents the smoothness constraints

Eimage represents image data constraints

Econ represents user input
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Basic active contour behavior

Internal Energy

A combination of membrane and thin-plate spline smoothness

Eint =
1
2
(α(s)||vs(s)||2 + β(s)||vss(s)||2)

This model allows the weights α, β to vary along the length of the curve.

Setting β(s) = 0 allows a discontinuity to develop at s.
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Basic active contour behavior Geometry of curves

Definition
Parametric Curve : A vector valued function from some interval of the real
line to Euclidean space.

c(p) =
[

x(p)
y(p)

]
where p ∈ [a, b].

If c(a) = c(b) the curve is closed.
If ||c′(p)|| = 1 the curve is parameterized by arclength.
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Basic active contour behavior Geometry of curves

Tangent and Normal vector

Unit Tangent Vector

T(p) =
c′(p)
||c′(p)||

Unit Normal Vector

N(p) =
T ′(p)
||T ′(p)||

T(p) ⊥ N(p)→ T(p) · N(p) = 0.

N(p) =
[
−ty
tx

]
or
[

ty
−tx

]
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Internal forces

In general, we may want to minimize a combination of the two energies:

αEMEM(c) + βETPS(c) =
∫ l

0
α||c′(s)||2 + β||c′′(s)||2 ds

We will show that the minimization conditions are

− d
ds
αc′(s) +

d2

ds2βc′′(s) = 0

−αc′′(s) + βc′′′′(s) = 0
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Internal forces

Variational Calculus

The conditions for minimizing

min
c

∫
Ω

F(s, c(s), c′(s), c′′(s)) ds

are

Fc −
d
ds

Fc′(s) +
d2

ds2 Fc′′(s) = 0

The evolution equation that will satisfy this condition when steady-state has
been reached

∂c
∂t

= −Fc +
d
ds

Fc′(s) −
d2

ds2 Fc′′(s)
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Internal forces Membrane spline energy

Membrane spline energy of c(s)

EMEM(c) =
∫ L

0
||c′(s)||2 ds =

∫ L

0
x′(s)2 + y′(s)2 ds

For an arclength parameterization, minimizing EMEM(c) is equivalent to
minimizing the length of c.

Applying variational calculus to

min
x(s),y(s)

∫ L

0
x′(s)2 + y′(s)2 ds

gives two Euler-Lagrange conditions

d
ds
(2x′(s)) = 0

d
ds
(2y′(s)) = 0
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Internal forces Membrane spline energy

Membrane spline energy of c(s)

The Euler-Lagrange conditions can be rewritten as

c′′(s) = 0

The evolution equation

dc
dt

=
d2c
ds2

= κN

is also known as the geometric heat equation.
κ is the curvature of the curve, ||c′′(s)||.
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Internal forces Thin-plate spline energy

Thin-plate spline energy of c(s)

ETPS(c) =
∫ L

0
||c′′(s)||2 ds =

∫ L

0
x′′(s)2 + y′′(s)2 ds

For an arclength parameterization, minimizing ETPS(c) is equivalent to
minimizing the square curvature of c.

The conditions for minimizing

min
c

∫
Ω

F(s, c(s), c′(s), c′′(s)) ds

are

Fc −
d
ds

Fc′(s) +
d2

ds2 Fc′′(s) = 0

The conditions for minimizing ETPS(c) are

c′′′′(s) = 0
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Internal forces Thin-plate spline energy

Constant Coefficients α, β
Minimizing snake energy

min
x(s),y(s)

∫ 1

0

1
2
α(x′(s)2 + y′(s)2)

+
1
2
β(x′′(s)2 + y′′(s)2)

+ Eext(x(s), y(s)) ds

The conditions for minimization are

−αxss + βxssss +
∂Eext

∂x
= 0

−αyss + βyssss +
∂Eext

∂y
= 0

The evolution equation is

∂v
∂t

= αvss − βvssss −∇Eext
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Internal forces Thin-plate spline energy

Non-Constant Coefficients α(s), β(s)

Minimize Eint + Eext with respect to x(s) and y(s):

min
x(s),y(s)

∫ 1

0

1
2
α(s)(x′(s)2 + y′(s)2)

+
1
2
β(s)(x′′(s)2 + y′′(s)2)

+ Eext(x(s), y(s)) ds

The conditions are

− ∂

∂s
(α(s)x′(s)) +

∂2

∂s2 (β(s)x
′′(s)) +

∂Eext

∂x
= 0

− ∂

∂s
(α(s)y′(s)) +

∂2

∂s2 (β(s)y
′′(s)) +

∂Eext

∂y
= 0
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Image-based forces

The image is a mapping I : R2 → R.

The curve is a mapping v : R→ R2.

We may form composite functions from these two mappings

For example:
I(v(p)) is the intensity of the image at the point v(p) on the curve.

∇I(v(p)) is the image gradient at the point v(p) on the curve.

Consider the weighted sum of two energy terms:

Eimage = wlineEline + wedgeEedge

We will ignore the termination functional from the paper.
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Image-based forces

Line Functional

wlineEline = wlineI(v(s))

if wline > 0 the snake will be attracted to dark contours

if wline < 0 the snake will be attracted to light contours
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Image-based forces

Edge Functional

Eedge(1) = −||∇I(v(s))||2

The snake will be attracted to large image gradients.
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Image-based forces

Scale Space

We can use scale space to enlarge the convergence region of the snake.

Recall that linear scale spaces result in blurred edges at coarse scales.

This will propagate edge information far from the edge.

Eedge(2) = −||∇(Gσ ∗ I(v(s)))||2
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Image-based forces

Marr-Hildreth

Edges : zero crossings of the Laplacian (∇2 = Ixx + Iyy)

Eedge(3) = (Gσ ∗ ∇2I(v(s)))2

The snake will be attracted to zero crossings of the smoothed Laplacian.
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Constraints

User Applied Constraints
Spring Energy
The user may connect virtual springs between fixed point p , and contour
position v:

Espring = k||p− v||2

= k((px − x)2 + (py − y)2)

where k is a constant (spring stiffness)

∇Espring =

[
−2k(px − x)
−2k(py − y)

]
= −2k(p− v)

In the evolution equation

∂v
∂t

= αvss − βvssss −∇Eext

this term pulls v toward p.CS 778 / 578 (West Virginia University) Medical Image Analysis February 14, 2011 24 / 44



Constraints

User Applied Constraints

Repulsive Energy
Forces v away from fixed position p:

Erepulsion =
1

||p− v||

=
1√

(px − x)2 + (py − y)2

∂Erepulsion

∂x
= (px − x)((px − x)2 + (py − y)2)−

3
2

∂Erepulsion

∂y
= (py − y)((px − x)2 + (py − y)2)−

3
2
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Constraints

User Applied Constraints

∂Erepulsion

∂x
= (px − x)((px − x)2 + (py − y)2)−

3
2

∂Erepulsion

∂y
= (py − y)((px − x)2 + (py − y)2)−

3
2

∇Erepulsion =
1
r2

p− v
r

where r = ||p− v||.
In the evolution equation, this term pushes v in the direction v− p with
magnitude 1

r2 .

CS 778 / 578 (West Virginia University) Medical Image Analysis February 14, 2011 26 / 44



Numerical implementation
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Numerical implementation

Discretized Curve

Store the curve as a vector of samples of v(s) at evenly spaced intervals in s.
For v(s) = (x(s), y(s)),

xi = x(ih)

yi = y(ih)

where h is the parameter step size.

Compute derivatives of v(s) using finite difference formulas.
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Numerical implementation

For non-constant α(s), β(s)

− ∂

∂s
(α(s)x′(s)) +

∂2

∂s2 (β(s)x
′′(s)) +

∂Eext

∂x
= 0

− ∂

∂s
(α(s)y′(s)) +

∂2

∂s2 (β(s)y
′′(s)) +

∂Eext

∂y
= 0

Witkin, Kass, Terzopoulos discretize the Euler-Lagrange equations at this
point.
First, they discretize (x′, x′′, y′, y′′) using backward and central differences:

− ∂

∂s
(α(s)(xi − xi−1)) +

∂2

∂s2 (β(s)(xi−1 − 2xi + xi+1)) + fx(i) = 0

− ∂

∂s
(α(s)(yi − yi−1)) +

∂2

∂s2 (β(s)(yi−1 − 2yi + yi+1)) + fy(i) = 0
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Numerical implementation

Then, they discretize ( ∂∂s ,
∂2

∂s2 ) using forward and central differences:

− (αi+1(xi+1 − xi)− αi(xi − xi−1))

+ βi−1(xi−2 − 2xi−1 + xi)

− 2βi(xi−1 − 2xi + xi+1)

+ βi+1(xi − 2xi+1 + xi+2)

+ fx(i) = 0

By doing the same for y, we can write two linear systems for the snake
model...
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Numerical implementation

The two Euler-Lagrange equations can be written in matrix form

Ax + fx(x, y) = 0

Ay + fy(x, y) = 0

where A is (n× n) sparse matrix with 5 nonzero diagonals.

A represents the smoothness of the curve

fx, fy represent the external forces

The system of evolution equations is

∂x
∂t

= −Ax− fx(x, y)

∂y
∂t

= −Ay− fy(x, y)
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Numerical implementation

The linearized evolution equation

The authors present a mixed explicit/implicit method:
implicit with respect to internal forces, and
explicit with respect to external forces.
Writing the finite difference in time as γ(vt − vt−1)

Axt + fx(xt−1, yt−1) = −γ(xt − xt−1)

Ayt + fy(xt−1, yt−1) = −γ(yt − yt−1)

These equations can be rewritten as

(A + γI)xt = γxt−1 + fx(xt−1, yt−1)

(A + γI)yt = γyt−1 + fy(xt−1, yt−1)

(A + γI) is constant over time, so this matrix may be factorized/inverted once.
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Weaknesses

Weaknesses

Snakes are prone to getting stuck in local minima (they only see local
image data)

Topologically limited

Only a 2D model

Parameterization dependent

Snakes may self-intersect, or become degenerate.
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Extensions to the original paper
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Extensions to the original paper

Inflation Force

Also called the ”Balloon model”

L. D. Cohen, ”On active contour models and balloons”, CVGIP: Image
Understanding, 1991.

∇E = f (v(s))N(v(s))

The snake expands in the normal direction.

f may be intensity-based, edge-based, or constant

This force can push the snake past local minima of the energy functional
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Extensions to the original paper

Adding mass to the snake

µ
∂2v
∂t2 + γ

∂v
∂t

= αvss − βvssss −∇Eext

Introducing mass gives the model inertia.

This model can overshoot local minima.

Equilibrium when ∂2v
∂t2 = ∂v

∂t = 0
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Extensions to the original paper

Reparameterization

Eparam =

∫
Ω
(||v′(s)||2 − c)2 ds

v′(s) · v′(s) = 1 for an arclength parameterization.

This energy can maintain an arclength parameterization

Some degeneracies can be avoided

Avoided in the level-set formulation by representing the curve/surface
implicitly.
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Extensions to the original paper

Subdivision

Ivins, J., Porrill, J., ”Statistical snakes: Active region models.”, Proc. 5th
British Machine Vision Conf., 1994.
also proposed by others.

Add more sample points as v(s) grows longer.

Reparameterize so that high curvature regions are samples more densely.
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Extensions to the original paper

T-snakes

McInerney, T. and Terzopoulos, D., ”T-snakes: Topology adaptive snakes”,
Medical Image Analysis, 2000.

The level-set formulation is also topologically adaptive.
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Extensions to the original paper

Gradient Vector Field

The gradient of I does not provide useful information when the image is
smooth.

We would like to know the direction to the nearest edge.
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Extensions to the original paper

Gradient Vector Field

Xu, C. and Prince, J.L., ”Gradient Vector Flow: A New External Force for
Snakes”, CVPR, 1997.

The gradient vector field, g(x, y) = [u(x, y), v(x, y)] minimizes the energy

Egvf =

∫
Ω
µ(u2

x + u2
y + v2

x + v2
y) + ||∇I||2||g−∇I||2 ds

First term: membrane spline smoothness on u, v.

Second term: g is near∇I when ||∇I|| is large

When ||∇I|| is small, the smoothness term dominates

CS 778 / 578 (West Virginia University) Medical Image Analysis February 14, 2011 42 / 44



Extensions to the original paper

Gradient Vector Field

Determine the evolution equation for minimizing Egvf .

Given I(x, y) compute the gvf, g(x, y).
Use g(x, y) in the evolution equation for v(s).

∂v
∂t

= αvss − βvssss + g(v(s))
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Extensions to the original paper

Next Class

Level Set Methods : implicit active contours.

Read
Malladi, R., Sethian, J., Vemuri, B., ”Shape Modeling with Front Propagation
: A Level Set Approach.”, IEEE PAMI, 1995.
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