Medical Image Analysis

CS 778 / 578

Computer Science and Electrical Engineering Dept. West Virginia University

March 9, 2011

CS 778 / 578 (West Virginia University) [Medical Image Analysis](#page-19-0) March 9, 2011 1/20

 299

メロトメ 御 トメ 君 トメ 君 ト

1 [Coordinate Transformations](#page-2-0)

2 [Principal Axes Transformation](#page-15-0)

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Outline

1 [Coordinate Transformations](#page-2-0) • [Global Transformations](#page-4-0)

[Local Transformations](#page-11-0)

 \leftarrow \Box \rightarrow \leftarrow \Box

×. ヨト \mathcal{A} QQ

Problem Definition

Image registration is the process of determining a coordinate transformation between two images that are misaligned.

> $\min_{T} dist(I_1(\mathbf{x}), I_2(T(\mathbf{x})))$ *T*

- *T* is a coordinate transformation
- $I_1(\mathbf{x})$ and $I_2(\mathbf{x})$ are 2 images to be aligned
- \bullet *dist*(I_1 , I_2) is a metric which determines how well the images match.
- \bullet *dist*(I_1 , I_2) can be based on image intensities or extracted features.

 Ω

Linear transformations

- **•** Translation
- Rotation
- **•** Scaling
- **•** Shear

 \Rightarrow

 299

←ロト ← 何

 \triangleright 4 \equiv \triangleright 4

2D Linear transformations

Translation : 2 parameters

$$
T(\mathbf{x}) = \mathbf{x} + \mathbf{t}
$$

Rotation about the origin : 1 parameter

$$
T(\mathbf{x}) = R_z \mathbf{x} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \mathbf{x}
$$

Nonuniform scaling : 2 parameters

$$
T(\mathbf{x}) = S\mathbf{x} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \mathbf{x}
$$

Shear : 1 parameter

$$
T(\mathbf{x}) = C\mathbf{x} = \begin{bmatrix} 1 & \cot \theta \\ 0 & 1 \end{bmatrix} \mathbf{x}
$$

 2990

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

2D Linear transformations

A more general 2D transformation can be obtained by composing several transformations, such as:

$$
T(\mathbf{x}) = R_z S(\mathbf{x} - \mathbf{c}) + \mathbf{t}
$$

- Translate so that center of the rotation is [0,0].
- Scale the coordinate systems.
- Rotate about the origin.
- **o** Translate.
- Total of 7 parameters.

 209

- 4 重 8 4 重 8

(□) ()

3D Linear transformations

- Translation : 3 parameters
- Scale : 3 parameters
- Shear : 2 parameters
- Rotation : 3 Euler angles

Using Euler angles, the 3D rotation is represented as 3 consecutive rotations about the coordinate axes.

$$
T(\mathbf{x})=R_{x}R_{y}R_{z}\mathbf{x}
$$

where $R_xR_yR_z =$

 \lceil $\overline{}$ 1 0 0 0 $\cos \phi - \sin \phi$ 0 $\sin \phi$ cos ϕ 1 $\overline{1}$ $\sqrt{ }$ $\overline{}$ $\cos \psi = 0 \sin \psi$ 0 1 0 $-\sin \psi \quad 0 \quad \cos \psi$ 1 $\overline{1}$ $\sqrt{ }$ $\overline{}$ $\cos \theta$ – $\sin \theta$ 0 $\sin \theta$ cos θ 0 0 0 1 1 $\overline{1}$

 209

 $A \equiv \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 &$

Rotation matrices

Rotation by θ about the origin is represented by the matrix

$$
R_z(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}
$$

.

(□) ()

-> - < 三 -> - - + -

 R otation matrices are orthogonal : $R^{-1} = R^{T}$.

$$
R_z(\theta)^{-1} = R_z(-\theta) = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}
$$

Since cos is an even function $cos(-\theta) = cos(\theta)$ and sin is an odd function $sin(-\theta) = -sin(\theta)$,

$$
R_z(-\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = R_z(\theta)^T
$$

2D Rotation : Geometric derivation

Rewrite in polar coordinates:

 $x = \rho \cos \phi$ $y = \rho \sin \phi$ $x' = \rho \cos(\theta + \phi)$ $y' = \rho \sin(\theta + \phi)$

Using the trig identities

 $\cos(\theta + \phi) = \cos \phi \cos \theta - \sin \phi \sin \theta$ $\sin(\theta + \phi) = \cos \phi \sin \theta + \sin \phi \cos \theta$

Rewrite x' , y' in terms of x , y

$$
x' = \rho \cos \phi \cos \theta - \rho \sin \phi \sin \theta = x \cos \theta - y \sin \theta
$$

$$
y' = \rho \cos \phi \sin \theta + \rho \sin \phi \cos \theta = x \sin \theta + y \cos \theta
$$

2D Rotation : Geometric derivation

We can rewrite this system of equations

$$
x' = x \cos \theta - y \sin \theta
$$

$$
y' = x \sin \theta + y \cos \theta
$$

in matrix form as

$$
\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
$$

This is equivalent to 3D rotation about the z-axis

$$
\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}
$$

- 4 国 ト 4 -

 \leftarrow \Box \rightarrow \leftarrow \Box

 QQQ

Transformation by a displacement Field

Compute a displacement vector for each voxel.

$$
T(\mathbf{x}) = \mathbf{x} + \mathbf{t}(\mathbf{x})
$$

To constrain the displacement field to represent physically plausible deformations, we may impose smoothness constraints.

If
$$
\mathbf{t}(\mathbf{x}) = [u(x, y), v(x, y)],
$$

\n
$$
\min_{u, v} \int \int ((u_x^2 + u_y^2) + (v_x^2 + v_y^2)) dx dy
$$

will constrain the displacement field to be smooth

 209

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n$

Displacement Field

Viscoelastic regularization methods:

- Consider the deformation field to be the velocity field of some viscous fluid.
- More suitable for large deformations
- Constrain the field to obey the Navier-Stokes equation.
- Smoothness of the field is controlled by the viscosity of the simulated fluid.
- Computationally expensive

Spline based transformations

- Fewer control points than image pixels.
- The spline may interpolate or approximate the control points.
- Sum of shifted basis functions.
- Basis functions may have local or global support. \bullet
- Basis functions are generally low degree (3) polynomials.

Spline based transformations

 299

メロトメ 伊 トメ ミトメ ミト

Outline

 \leftarrow \Box \rightarrow \leftarrow \Box

ス ヨ ト \sim

Principal Axes Transformation

Characterize images by

- Centroid (a 2D or 3D point)
- Principal directions (2 or 3 perpendicular vectors)

Images I_1 and I_2 can be aligned by

- Translating centroid 2 to be coincident with centroid 1
- Rotate about centroid 1 so that the principal directions are aligned.

 Ω

Image centroid

The expected value of a function, f, with respect to another function $B(x)$ is defined as

$$
E_B[f] = \frac{\int_{\Omega} f(x)B(x)dx}{\int_{\Omega} B(x)dx}.
$$

The centroid, \mathbf{c}_I , of the image, $I(\mathbf{x})$ is $E_I[\mathbf{x}]$.

- c_I is the center of the distribution of image intensities.
- c_{I_1} and c_{I_2} should be corresponding points in the 2 images.

 209

イロト イ押 トイヨ トイヨト

Image principal axes

The covariance, cov_I of the image, $I(x)$ is $E_I[(x - c_I)(x - c_I)^T]$.

$$
cov_I = \Sigma \Lambda \Sigma^T
$$

where

- \bullet A is a diagonal matrix (scaling) describing the variation of I in the principal directions.
- \bullet Σ is an orthogonal matrix (rotation) which rotates the coordinate axes onto the principal directions.
- The columns of Σ are the principal directions.

So if

$$
\bullet \ cov_{I_1} = \Sigma_1 \Lambda_1 \Sigma_1^T
$$

$$
\bullet \ cov_{I_2} = \Sigma_2 \Lambda_2 \Sigma_2^T
$$

then the rotation which aligns the axes of I_2 with the axes of I_1 is $\Sigma_1 \Sigma_2^T$

 Ω

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \equiv \mathbf{A} + \mathbf{A} \equiv \mathbf{A}$

Principal axes image registration

- Compute c_{I_1} , and c_{I_2}
- Compute cov_{I_1} and cov_{I_2}
- Compute Σ_1 and Σ_2
- The coordinate transformation which aligns image 2 with image 1 is $x' = \sum_{1} \sum_{2}^{T} (x - c_{I_2}) + c_{I_1}$

4 D F

 Ω