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Introduction

Origins

Stanley Osher and James A. Sethian, ”Fronts propagating with
curvature-dependent speed: algorithms based on Hamilton-Jacobi
formulations”, J. Comput. Phys., 1988.

Tracking dynamic boundaries and interfaces in

Fluid Mechanics

Flame Propagation

Crystallography

Especially where surfaces may split, merge, form sharp corners.
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Introduction

Surface Representation

Surfaces are represented as the zero level set of an embedding function.

This function is evolved, implicitly evolving the embedded curve.

The previous (Lagrangian) approach was to track points on the interface.
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Introduction

Lagrangian Approach

This was the ”snake” approach to curve evolution.

Discretize the curve into individual particles.

Track these particles as they move through a field.
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Introduction

Eulerian Approach

Discretize the embedding function, ψ(x, y) to represent and evolve the
curve.
Evolve ψ(x, y) by updating at fixed grid locations.
For simplicity, the function ψ(x, y) can be discretized to have the same
resolution as the image we are segmenting.
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Introduction

Problems with ”snakes”

The Lagrangian approach does not handle

Splitting / merging boundaries (topological change)

Self-intersection

Sharp corners or other discontinuities
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Introduction

Level-set methods

The Eulerian approach can handle

Splitting / merging boundaries (topological change)

Self-intersection

Sharp corners of other discontinuities

”Hamilton-Jacobi” type equations

∂ψ

∂t
+ F||∇ψ|| = 0

have been extensively studied under this framework, especially interfaces
moving with curvature dependent speed (F(κ)).
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Introduction Geometry of Implicit Curves

Parametric vs. Implicit

Parametric Curve:

C(s) =

[
x(s)
y(s)

]
Evaluating the function gives coordinates of points on the curve.

Implicit Curve:
ψ(x, y) = c

The curve is the set of all points which satisfy the equality.
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Introduction Geometry of Implicit Curves

Normal and Curvature

The gradient of the embedding function is perpendicular to the level curve.

N(x, y) =
∇ψ(x, y)

||∇ψ(x, y)||

Recall : Directional Derivative

Duf (p) =
d
dh

f (p + hu) = ∇f · u
||u||

Duf (p) has the least magnitude (0) when u is parallel to the curve.

The directions of least magnitude and greatest magnitude are
perpendicular.

CS 778 / 578 (West Virginia University) Medical Image Analysis February 23, 2011 11 / 49



Introduction Geometry of Implicit Curves

Normal and Curvature

The curvature of the level curve is the rate of change of the normal vector

κ = − div(
∇ψ
||∇ψ||

)

This can be rewritten as

κ = −
ψxxψ

2
y − 2ψxψyψxy + ψyyψ

2
x

(ψ2
x + ψ2

y )
3
2
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Introduction Geometry of Implicit Curves

Example : a circle

Consider the implicit equation for a circle

(x− a)2 + (y− b)2 = r2

The gradient is

∇ψ =

[
2(x− a)
2(y− b)

]
||∇ψ|| =

√
4(x− a)2 + 4(y− b)2 = 2

√
(x− a)2 + (y− b)2

∇ψ
||∇ψ||

=
1√

(x− a)2 + (y− b)2

[
x− a
y− b

]
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Introduction Geometry of Implicit Curves

Example : a circle

Computing the curvature

κ = −
ψxxψ

2
y − 2ψxψyψxy + ψyyψ

2
x

(ψ2
x + ψ2

y )
3
2

ψxx = 2, ψyy = 2, ψxy = 0

κ = − 8(y− b)2 + 8(x− a)2

(4(x− a)2 + 4(y− b)2)
3
2

= −1
r
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Introduction Geometry of Implicit Curves

Signed Distance Function

One possible embedding function for implicit curves

|ψ(x, y)| = distance from (x, y) to the curve.

ψ(x, y) = 0 if (x, y) is on the curve.

ψ(x, y) < 0 if (x, y) is inside the curve.

ψ(x, y) > 0 if (x, y) is outside the curve.

||∇ψ|| = 1

Almost everywhere.
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Introduction Implicit Curve Evolution

Implicit Curve Evolution

Suppose we have an evolving curve, c(t) = [x(t), y(t)]. Let’s derive the
evolution equation for for ψ(x, y, t) which has c(t) as a level set.

Let c(t) be the zero level set of ψ so that ψ(x(t), y(t), t) = 0 for all t. This
implies that dψ

dt (x(t), y(t), t) = 0.
By the chain rule

dψ
dt

=
∂ψ

∂x
dx
dt

+
∂ψ

∂y
dy
dt

+
∂ψ

∂t

= (∇ψ · c′(t)) +
∂ψ

∂t
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Introduction Implicit Curve Evolution

Implicit Curve Evolution

Decompose c′(t) into components tangent and normal to c(t).

0 = (∇ψ · (vNN(t) + vTT(t))) +
∂ψ

∂t

= (∇ψ · vNN(t)) +
∂ψ

∂t

since∇ψ is perpendicular to the tangent to c(t).
Substituting the level set definition for the normal to the embedded curve

0 = (∇ψ · (vN
∇ψ
||∇ψ||

)) +
∂ψ

∂t
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Introduction Implicit Curve Evolution

Implicit Curve Evolution

We can rewrite this result

0 = (∇ψ · (vN
∇ψ
||∇ψ||

)) +
∂ψ

∂t

0 = vN(∇ψ · ∇ψ
||∇ψ||

) +
∂ψ

∂t

0 = vN
||∇ψ||2

||∇ψ||
+
∂ψ

∂t

0 = vN ||∇ψ||+
∂ψ

∂t
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Introduction Implicit Curve Evolution

Evolving the embedding function by

∂ψ

∂t
= 1
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Introduction Implicit Curve Evolution

Smoothing the curve
Evolving the embedding function by

∂ψ

∂t
= −κ(x, y)||∇ψ||

κ < 0 where contour is locally convex
κ > 0 where contour is locally concave
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Introduction Implicit Curve Evolution

Curvature-Based Evolution
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Introduction Implicit Curve Evolution

Curvature-Based Evolution

Letting vN be function of curvature, we have evolution equation

∂ψ

∂t
= −F(κ)||∇ψ||

The segmentation problem is now reduced to finding an appropriate function
F(κ). We can factor F(κ) = k(FA + FG) where

FA: the advection term is usually a constant

FG: depends on the geometry (curvature) of the level set

k: is a stopping term, to slow evolution near boundaries

We can use
k(x, y) =

1
1 + ||∇(Gsigma ∗ I(x, y))||
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Introduction Implicit Curve Evolution

Entropy-preserving solution

The upwind finite difference scheme we used for TV norm minimization
prevents singularities, like this ”swallowtail” from developing.
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Introduction Implicit Curve Evolution

Narrow-band update

For faster computation:
Since we are primarily interested in the zero level set of ψ, we may evolve
only in a small region surrounding the level set.
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Level Set Methods for Segmentation

Approach to segmentation

The curve will evolve with

an inflation force, to reach protrusions in shape

a curvature based speed, to keep the boundary smooth

an image based speed, to stop the curve at image boundaries
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Level Set Methods for Segmentation

Embed the curve, γ(t), into ψ

Initialize ψ to be the signed distance to γ(t = 0).

ψ(x, y, t = 0) = ±d

where d is the distance from (x, y) to γ(t = 0).

d < 0 inside γ

d > 0 outside γ

Various methods

Simple geometry, such as a circle : ψ =
√

x2 + y2 − r

Matlab bwdist.

ψt+1 = ψt + sgn(ψ0)(1− ||∇ψ||)
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Level Set Methods for Segmentation

Recall

For evolving curve, c(t), and embedding function ψ(x, y, t):

Level set equation
∂ψ

∂t
= −vN ||∇ψ||

where vN is the normal component of c′(t).
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Level Set Methods for Segmentation

How to use the level set framework to solve the segmentation problem?
Balloon Inflation

dc
dt

= αN → ∂ψ

∂t
= −α||∇ψ||

Curvature-based motion

dc
dt

= κN → ∂ψ

∂t
= −κ||∇ψ||

Combining both

dc
dt

= (α+ εκ)N → ∂ψ

∂t
= −(α+ εκ)||∇ψ||
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Level Set Methods for Segmentation

Speed Terms

Similar to the diffusivity functions used by Perona-Malik. Designed to stop
the curve at object boundaries.

k(x, y) =
1

1 + ||∇(Gσ ∗ I(x, y))||

or
k(x, y) = exp(−||∇(Gσ ∗ I(x, y))||)

Use k(x, y) to control the overall speed of evolution

dc
dt

= k(α+ εκ)N
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Level Set Methods for Segmentation

Level-set Evolution Overview

The curve embedded in ψ can be evolved by

∂ψ

∂t
= −F(κ)||∇ψ||

The segmentation problem is now reduced to finding an appropriate function
F(κ). We can factor F(κ) = k(Fa + Fg(κ)) where

Fa: the advection term (inflation force)

Fg: curvature based smoothing term

k: is a stopping term, to slow evolution near boundaries

The paper uses F(κ) = k(1 + εκ), but there are other possibilities.
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Level Set Methods for Segmentation Discretizing the evolution equation

Discretizing the evolution equation

The evolution equation

∂ψ

∂t
= −k(1 + εκ)||∇ψ||

has the explicit discretization

ψt+1
i,j − ψt

i,j

∆t
= −ki,j||∇ψt

i,j|| − ki,j(εκ
t
i,j||∇ψt

i,j||)

The advection term can lead to singularities, so discretize it using
upwind finite differences

The curvature term can be discretized using central differences.
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Level Set Methods for Segmentation Discretizing the evolution equation

The upwind scheme

To approximate ||∇ψ||

||∇ψ|| ≈
√

max(D−
x ψi,j, 0)2 + min(D+

x ψi,j, 0)2 + max(D−
y ψi,j, 0)2 + min(D+

y ψi,j, 0)2

where

D−x : first order backward difference in x-direction

D+
x : first order forward difference in x-direction

D−y : first order backward difference in x-direction

D+
y : first order forward difference in x-direction
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Level Set Methods for Segmentation Extending the Speed Function

Extending the Speed Function

dc
dt

= k(α+ εκ)N

We only want the values of k(x,y) on the zero level set (ψ = 0) to influence
the evolution of ψ.
Using the evolution equation

∂ψ

∂t
= −k(α+ εκ)||∇ψ||

allows k(x, y) values from all of (x, y) to influence ψ.
The resulting embedding function can become badly conditioned: Level
curves may collide, ψ may become very flat or very steep.
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Level Set Methods for Segmentation Extending the Speed Function

Suggested Schemes

The suggested schemes involve extension and reinitialization.

Extension of k:
Let k(x, y) = k(x′, y′) where (x′, y′) is the point on the curve nearest (x, y).

Reinitialization of ψ:
Periodically recalibrate the level set by making ψ a signed distance function
(SDF). The slope of the SDF is bounded almost everywhere.
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Level Set Methods for Segmentation Extending the Speed Function

Suggested Schemes

A: Global extension of k over the entire domain : slow, numerical errors.

B: Global extension of k with reinitialization of ψ : slow.

C: Narrow-Band extension with reinitialization of ψ.

Narrow-band scheme: If ψ is a SDF, we can easily identify points near the
level set. We can extend k only within this narrow band, and only evolve ψ
within the narrow band.
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Level Set Methods for Segmentation Extending the Speed Function

Suggested Schemes

Problem: If ψ is initially a SDF, it may not remain a SDF during evolution.
Solution: Reinitialize periodically (every 50 iterations).

Scheme D: No extension, use k(x, y) within the narrow band, and periodically
reinitialize.

In practice, scheme D performs well and is much faster than the other
schemes.
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Shape Recovery Results

Synthetic Data
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Shape Recovery Results

Angiogram
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Shape Recovery Results

Abdominal CT
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Shape Recovery Results

In three dimensions

Level set is the surface ψ(x, y, z) = 0.

Compute gradients in 3 dimensions.
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Conclusions
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Conclusions

Conclusions

Shape boundary is able to split and merge to reflect the underlying object
geometry.

When using the narrow band update : Complexity is comparable to
snakes.

Problems:

Speed function may never equal zero, so the front may never reach
equilibrium.

Sensitive to value of the inflation parameter.
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Conclusions

Geodesic Active Contours
Paper by Caselles, Kimmel, Sapiro is in supplementary reading.

Minimize the weighted length of c(s):∫
Ω

k(I(c(s)))||c′(s)||ds

The evolution equation is

∂c
∂t

= k(I)κN− (∇k · N)N
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Conclusions

Geodesic Active Contours

The curve evolution
∂c
∂t

= k(I)κN− (∇k · N)N

leads to the level set equation

∂ψ

∂t
= −k(I)κ||∇ψ||+∇k · ∇ψ

The first term is the same as the Malladi level set formulation.

The second term guarantees that the evolution will eventually stop.
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Conclusions

Other extensions

Particle level-sets : Eulerian + Lagrangian fluid dynamics.

Douglas Enright, Ronald Fedkiw, Joel Ferziger, Ian Mitchell, ”A Hybrid
Particle Level Set Method for Improved Interface Capturing”, Journal of
Computational Physics, 2002.
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Conclusions

Other extensions

Multi-phase levelsets : Segment more than 2 regions.

For 2 levelset functions ψ1 and ψ2 we have

Region 1 : ψ1 < 0 and ψ2 < 0

Region 2 : ψ1 > 0 and ψ2 < 0

Region 3 : ψ1 < 0 and ψ2 > 0

Region 4 : ψ1 > 0 and ψ2 > 0

In general, n levelset functions can represent 2n regions.
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Conclusions

Next Time

”Active Contours Without Edges.”
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