Threats to Validity

Types of threats to validity

Construct Validity

Are we testing what we intended to test?

Internal Validity

Are the results solely due to exp manipulations?

• Conclusion Validity (statistical validity)

Are the conclusions that we make justified?

External Validity (generalization)

How and in what context are the results applicable?

Construct validity

- Are testing what we want or intend to test?
- Similarly to requirements: "Are we building the right system?"
 - If this is wrong, nothing else matters

Construct Validity: Design threats

Inadequate preoperational explication of constructs

- Constructs are not sufficiently defined before they are translated into measurements and treatments
- Example: Compare two inspection methods. What is the meaning of better? Find most faults or most faults per hour or most faults per LOC

Mono-operation bias

- Is cause-construct under-represented? Single independent variable, case, subject or treatment
- Does not give a full picture of the theory

Mono-method bias

 is single type of measure or observation enough? Or are more needed to cross-check against each other?

Construct Validity: Design threats

Confounding constructs and levels of constructs

- Sometimes is not the presence or the absence of the construct, but the level of the construct which is important for the outcome
- Presence of the construct is confounded with the level of the construct
- Example: Not the presence or the absence of the knowledge of programming language, but the level of experience: 1, 3, or 5 years

Interaction of different treatments

 For example a subject involved in more that one study. Is the effect due to either treatment or to a combination of treatments

Interaction of testing and treatment

- Testing (i.e., application of treatments) may make subjects more sensitive or receptive to the treatment (e.g. subject awareness)
- Example: measure number of bugs. Subjects are more careful and make less bugs. Testing becomes treatment

Construct Validity: Design threats

- Restricted generalizability across constructs
 - The treatment affects some constructs positively, but unintentionally has negative effect (i.e., side effect) on other constructs
 - Example: A new method increases productivity, but reduces maintainability. If maintainability is not measures, there is a risk of drawing partial or incorrect conclusions

Construct Validity: Social threats

 Related to behavior of subjects who may act differently than otherwise, which leads to false results

Hypothesis guessing

 Guess what is the purpose and intended result and then act either positively or negatively, depending on their attitude

Evaluation apprehension

- Afraid of being evaluated. Look better when being evaluated.
- Becomes a confounding factor.

Experimenter expectancies

The experimenter can bias the results both consciously or unconsciously.
Solution: involve independent people.

Internal Validity

 Influences that can affect the independent variable/measurements without researcher's knowledge

Single group threats

 No control group / sister project. Hard to determine if the treatment or another factor caused the observed effect

Multiple group threats

 Control group and selected group may be affected differently by single group factors

-Social threats

Applicable to single group and multiple group experiments

Internal Validity: Single group

History

 If different treatments applied to same object at different times, history may affect the experimental results

Maturation

- Subjects can react differently as time passes
 - Negatively: tiered or bored
 - Positively: learn

Testing

if repeated, subjects may respond differently; i.e. from 'learning'

Instrumentation

- effect of artifacts used for experiment execution
- Example: Instrumentation for profiling adds overhead

Internal Validity: Single group

Statistical Regression

- Subjects are classified based on previous experiment or case study
- May observe improvement, even if no treatment is applied
- Objects are already 'similar' e.g. hwk1 "winner's curse"

Selection

- Due to variation in human performance. Who and how selected?
- Example: Volunteers are usually more enthusiastic, and thus may not always be representative of the population

Mortality

- Effect of dropping out of case study / experiment
- Example: All senior reviewers drop out of a case study on effectivness of software inspections

Ambiguity about direction of causal influence

— Did A cause B? Did B cause A? Did X cause A and B?

Internal Validity: Multiple groups

Interactions with selection

- Two groups may mature differently
- Example: two group use two different methods, one groups learns faster

Internal Validity: Social threats

- Diffusion or imitation of treatments
 - control group starts imitating the treatment
- Compensatory equalization of treatments
 - When control group gets compensated
- Compensatory rivalry
 - Underdog effect: "Our old method is great!"
- Resentful demoralization
 - Opposite of the previous. Control group is not motivated: "Old method can't cut-it anyways."

Conclusion Validity

- Affects the ability to draw correct conclusions
- Violated assumptions
 - Typical assumption: normality
 - Some test are more sensitive to violating the assumptions
- Low Statistical Power
 - Power: ability of the test to reveal a true pattern in the data (i.e., unable to reject an erroneous hypothesis)
- Fishing & Error rate
 - Searching (i.e., fishing for specific result)
 - Error rate: significance level
- Reliability of measures
 - When the phenomenon is measured twice the outcome should be the same

Conclusion Validity

- Reliability of treatment implementation
 - Standard implementation of treatments over different subjects and occasions
- Random irrelevancies in experimental setting
 - Elements outside of the experimental setting may disturb the results
- Random heterogeneity of subjects
 - Variances due to individual differences may be larger than variances due to the treatment

External Validity

- Limit the ability to generalize the results
- Interaction of selection and treatment
 - non-representative of population. E.g., wrong people participate in the experiment
- Interaction of setting and treatment
 - non-representative tools, methods for setting. E.g., case studies/experiments with toy problems
- Interaction of history and treatment
 - non-representative of regular/normal time