
Feature Analysis on Software Effort Datasets

Ekrem Kocaguneli
Lane Department of Computer Science and

Electrical Engineering
West Virginia University

Morgantown, WV 26505, USA
ekocagun@mix.wvu.edu

Katerina D. Goseva
Lane Department of Computer Science and

Electrical Engineering
West Virginia University

Morgantown, WV 26505, USA
katerina.goseva@mail.wvu.edu

ABSTRACT
Software related metrics can be grouped into three cate-
gories: Product, process and resource (PPR) metrics. For a
successful productivity model the datasets are supposed to
cover all these 3 categories [6]. However, publicly available
software effort datasets were collected according to the needs
of specific organizations, where data specification is highly
dependent on the expert opinions. Furthermore, with fea-
ture selection methods it has been observed that not all the
attributes are necessary for high accuracy values in software
effort estimation. This may be due to noise in certain fea-
tures, their information content or the fact that some are
more correlated with the effort than the others.

In this study, we are analyzing how effort datasets are dis-
tributed into PPR metrics. We are also investigating the
linear correlation between features to the effort through R-
square analysis and finally we are conducting feature selec-
tion on each dataset to see whether R-square analysis is
in agreement with feature selection. We believe that it is
worth the effort to investigate the dataset features in terms
of PPR metrics, linear correlation and feature selection due
to at least 2 reasons: 1) Such an analysis will give us better
understanding in terms of feature characteristics of datasets
and 2) the relation between different analysis may provide
insight into how and why different characteristics relate to
each other.

1. INTRODUCTION
Although there are many publicly available datasets for soft-
ware effort estimation, the problem of large variances in
terms of estimation performance exists for these datasets [15].
We can talk about variance not only in terms of estimation
performance, but also in terms of model variables. For ex-
ample it was shown that even calibrated COCOMO model
paremeters may vary drastically when they are re-learned
from random sub-sampling of the same datasets that gener-
ated the actual model parameters [17]. Of course the vari-
ances in models and estimation results may be due to noise

that is in the data. However, another explanation of this
phenomenon may be hidden behind how we define our fea-
tures inside datasets or behind our assumptions of these fea-
tures.

Fenton proposes that for a successful productivity model
the datasets are supposed to cover product, process and re-
source metrics [6]. In this research, we will use 3 well known
software effort datasets to question this argument and will
observe how features are distributed into PPR-metrics. Fur-
thermore, we will obsreve the similarities and differences be-
tween datasets and present our opinions regarding our ob-
servations.

One assumption regarding the datasets used in this study is
that the features defining these datasets are linearly corre-
lated with the effort. In particular the attributes that define
a project in terms of size (lines of code or function points)
are supposed to have a strong linear relationship with the ef-
fort. To understand to what extent this proposition is true,
we will use statistical R-Square method.

Another well known fact with the datasets used in this re-
search is that feature subset selection has the high possi-
bility of increasing the estimation accuracy. We will use
wrapper subset selection algorithm to select the subset of
features that yields the lowest error rate. Furthermore, we
will observe if there is an obvious relationship between the
features selected by wrapper and the features that gain high
R-Square values.

In summary we can group our objectives in this research
into two main groups:

1. To observe the distribution of features into PPR met-
rics

2. Investigate the existence and reasons of similarities or
differences between high R-Square valued features and
wrapper selected features

2. BACKGROUND
We can group software effort estimation studies basically
into two categories [18]: Expert judgment and model-based
techniques.

Expert judgment methods have a wide range of application
and are one of the most preferred effort estimation tech-

niques [8]. The application of an expert judgment method
may follow either explicit guidelines (following a method like
Delphi [2]) or may be conducted through implicit techniques
(informal discussions among such experts). One of the fore-
seeable problems with expert-based estimates is that they
may be affected negatively due to competing interests among
the staff. For example, a faulty estimation of a senior ex-
pert may be taken over the more rational estimation made
by a junior expert working for the same company. Another
problem, which was indicated by Jorgensen et. al., is the
poor capability of humans in terms of improving their own
expert judgment [9].

Model-based techniques are the methods generated by us-
ing algorithmic and parametric approaches or by induced
prediction systems. The former approach (algorithmic and
parametric) fundamentally relies on the adaptation of an
expert-proposed model to local data. A very well known ex-
ample to such an approach is Boehm’s COCOMO method
[3]. The latter approach (induced prediction systems) is use-
ful in the case where local data do not conform to the speci-
fications of the expert’s method. A few examples of induced
prediction systems are linear regression, neural nets, model
trees and analogies [13,16,19].

On the other hand, all of these systems are built on inherent
assumptions. In the case where data violates such assump-
tions, patches are applied. A simple example of a patch
is taking the logarithm of exponential distributions before
linear regression [3, 11]. However, choosing the appropriate
patch is also problematic to some extent and requires qual-
ified experts.

Depending on the particular needs of an organization, dif-
ferent organizations are free to follow an expert judgment,
a model-based approach, or some combination of the two
in different settings. However, the goal of any estimation
model is common: To attain high estimation accuracy. On
the other hand, estimation accuracy does not depend only
on the choice of estimation model. Another critical factor is
the well defined and collected historical data that is kept up
to date. In this research, we will take a look at particular
characteristics of common software effort datasets and will
explain the similarities as well as differences between these
datasets.

3. DATASETS
In this study, we used three of the most commonly used
datasets in software effort estimation domain: Cocomo81
and Nasa93 [3] as well as Desharnais [4]. Cocomo81 and
Nasa93 datasets are made up of projects developed in NASA
by both NASA itself or by subcontractors, whereas Deshar-
nais dataset contains projects developed by a Canadian soft-
ware house. Therefore, there is a huge amount of variety in
the datasets used in this research in terms of their content,
their size and their development locations.

Another criteria that we have considered while selecting
these datasets was the size of the datasets. Since we ques-
tion the linearity relationship of project features with effort
in this research, the size of the datasets is an important fac-
tor. In order to evaluate the goodness of datasets in terms of
size, Kitchenham and Mendes propose a quality scoring that

consists of four values: poor (less than ten projects), fair (be-
tween ten to twenty projects), good (between twenty to forty
projects) and excellent (more than forty projects) [12]. If we
base our quality criteria for size by following the quality cri-
teria proposed by Kitchenham and Mendes all the datasets
we selected to investigate linearity assumptions rank as ex-
cellent quality. We provide the details such as instance and
feature size regarding these datasets in Figure 1.

Dataset Features T = |Projects| Units
Cocomo81 17 63 months
Nasa93 17 93 months
Desharnais 11 81 hours

Total: 237

Figure 1: 3 datasets used in this research contain a total
of 237 projects. Datasets have different characteristics in
terms of the number of attributes as well as the measures of
these attributes.

4. ANALYSIS OF DATASETS
In this research we will analyze 3 very commonly used datasets
according to different perspectives. The first perspective we
will adopt while analyzing these datasets will be the dis-
tribution of features in each dataset into PPR-metrics [6].
After PPR-metrics, we will try to discover how much linear
correlation exists between each individual feature and the
independent variable by means of R-square analysis [1]. Fi-
nally we will take a look at feature selection on the datasets
used in this research on the basis of linear regression and
comment on the similarities and differences between individ-
ual linear analysis of features and their collective predictive
power through linear regression (results of feature selection).

4.1 PPR-Metrics Analysis
In this section we will provide brief descriptions of process,
product and resource metrics as they are provided by Fenton
et. al. [6]. Furthermore, we will divide features of datasets
used in this research (Cocomo81, Nasa93 and Desharnais)
into these categories and comment on the percentage distri-
bution of each dataset into these features.

The brief descriptions of PPR-metrics are as follows:

• Process Metrics: Intention of process metrics is to cap-
ture the software-related activities. For example num-
ber of requirement changes, effort and number of spec-
ification or coding faults are among process metrics.

• Product Metrics: The artifacts that are produced by
process activities are regarded as product metrics. As
examples for product metrics we can name modularity,
reuse and algorithmic complexity.

• Resource Metrics: Entities that process activities re-
quire are basically resource metrics. Some of the re-
source metrics are size and communication level of
teams as well as age of personnel.

Both Cocomo81 and Nasa93 contain datasets collected in
accordance with the COCOMO method proposed by Barry
Boehm [3]. According to COCOMO, each of of Cocomo81

and Nasa93 contains 17 attributes among which 16 are inde-
pendent features and one is the dependent feature. 16 of the
attributes that are independent variables define particular
characteristics of software projects and 1 attribute that is a
dependent variable indicates how long it took to complete a
particular project in terms of man-months. The distribution
of these attributes into PPR-metrics is provided in Figure
2. As we can see from Figure 2, 3 out of 17 attributes define
product metrics, 7 attributes explain for process metrics and
another 7 are used as resource metrics.

Product Metrics Abbreviation

Lines of Code LOC

Database size DATA

Product complexity CPLX

Process Metrics Abbreviation

Modern programming practices MODP

Use of software tools TOOL

Required development schedule SCED

Software Effort EFF

Execution time constraint TIME

Main storage constraint STOR

Required software reliability RELY

Resource Metrics Abbreviation

Analyst capabilities ACAP

Applications experience AEXP

Programmer capabilities PCAP

Virtual machine experience VEXP

Programming language experience LEXP

Virtual machine volatility VIRT

Computer turnaround time TURN

Figure 2: The PPR-metrics for Cocomo81 and Nasa93
datasets.

Unlike Cocomo81 and Nasa93, Desharnais dataset was col-
lected in accordance with function points (FP) [10]. There-

fore, Desharnais dataset contains completely different at-
tributes. There are 11 attributes that make up the project
description in Desharnais dataset. Among 11 attributes 10
can be defined as independent variables whereas 1 attribute
(effort) is the dependent variable that is explained by the in-
dependent variables. Another difference between Desharnais
dataset and the Cocomo81 as well as Nasa93 dataset is that
the effort value in Desharnais dataset is man-hours, instead
of man-months, which can yield better precision. The vari-
able names, their abbreviations as well as their distributions
into PPR-metrics are provided in Figure 3. From Figure 3
we see that 5 of 11 attributes make up the process metrics,
3 of the rest constitute the product metrics and another 3
explain for the resource metrics.

Product Metrics Abbreviation

Scheduled time in months Length

Count of logic transactions Transactions

Number of entities in systems data model Entities

Function Points Points non adjust

Adjusted Function Points Points Adjust

Process Metrics Abbreviation

The year project ended YearEnd

Transforms points function points AdjustmentFactor

Effort spent in hours Effort

Resource Metrics Abbreviation

Team Experience TeamExp

Manager Experience ManagerExp

Language Type Language

Figure 3: The PPR-metrics for Desharnais dataset.

After briefly commenting on individual datasets, we wanted
to provide an overall view of the distribution of features into
PPR-metrics. Figure 4 summarizes the percentage distribu-
tion of all attributes in each one of the 3 datasets used in this
research. Since the attributes for Cocomo81 and Nasa93 are
same to each other, their percentage values are exactly the
same. As we can see from Figure 4, Cocomo81 and Nasa93
dataset separate more than 40% of their attributes in pro-
cess metrics and resource metrics. The product attributes
on the other hand get a share of only 17.65%, which is less
than half of process or resource metrics. The distribution of
features in Desharnais dataset on the other hand are much

different than Cocomo81 and Nasa93. 45.45% of all the fea-
tures in Desharnais dataset is separated for product metrics,
whereas process and resource metrics get a share of 27.27%.

When we compare the percentage distribution of features in
Cocomo81 and Nasa93 datasets to that of Desharnais, we
see that the two methods (COCOMO and FP) focus on dif-
ferent parts of software production. When we consider the
percentage values of PPR-metrics given in Figure 4 we can
say that the focus of features in Cocomo81 and Nasa93 are
on process and resource metrics whereas the product metrics
have a relatively less importance. On the other hand, unlike
COCOMO method Desharnais dataset places more impor-
tance on the product metrics (45.45%) and less importance
on process and resource metrics (27.27% for each).

Cocomo81 Nasa93 Desharnais

Product Metrics 17.65% 17.65% 45.45%

Process Metrics 41.18% 41.18% 27.27%

Resource Metrics 41.18% 41.18% 27.27%

Figure 4: The percentage distribution of all features to PPR-
metrics for Cocomo81, Nasa93 and Desharnais dataset.

4.2 R-Square Analysis
R-Square analysis is used for statistical models whose pur-
pose is to predict an outcome depending on the basis of other
related information. It is fundamentally the proportion of
variability in the data that is accounted by the statistical
model [5]. In this research we are using R-square analysis
in the context of linear regression, in which case R-square
is the square of sample correlation coefficient between the
outcome and the values that are used for prediction. In our
case, outcome is the recorded effort value of a project and
the values used for prediction are each single attribute that
are recorded in the dataset.

To briefly summarize how R-square analysis works assume
that the dependent variables in a dataset are called yi, which
represent the actual or observed values. Each actual or ob-
served variable is associated with a modeled value, which
we will represent with ŷi. We will measure the variability
of dataset by sums of squares. In R-square analysis we will
use 3 different sums of squares:

1. Total Variation: Total Sum of Squares (SST)

2. Explained Sum of Squares: Regression Sum of Squares
(SSR)

3. Explained Variation: Residual Sum of Squares (SSE)

The formulas of SST, SSR and SSE are given in Equation 1,
2 and 3 respectively. In Equations 1, 2 and 3 n represents
the size of the dataset, whereas bar over a variable (e.g. ȳ)
represents the mean of all variable values 1.
1ȳ =

Pn
i=1 yi

SST =

nX
i=1

(yi − ȳ)2 (1)

SSR =

nX
i=1

(ŷi − ȳ)2 (2)

SSE =

nX
i=1

(yi − ŷ)2 (3)

The formulation defining the realationship between the afore-
mentioned sum of squares is given in Equation 4.

nX
i=1

(yi − ȳ)2 =

nX
i=1

(ŷi − ȳ)2 +

nX
i=1

(yi − ŷ)2 (4)

Given the sum of square formualtions and their relation-
ships, now we can define R-Square. R-square is the ratio of
explained sum of squares (SSR) to total variation (SST) as
in Equation 5.

R2 =
SSR

SST
(5)

In this research, we have used the R-square analysis whose
explanation was given above and we used it in the context
of linear regression. In that respect, the R-square values
can range from 0 to 1 and its value gives us information
regarding how well the model fits to data. The values closer
to 1 means that the model fits the data points well and an
R-square value of 1 means a perfect fit of regression line
to the data. As the R-square value gets closer to 0, then
this means that there is not a good fit of model to dataset
instances.

We have computed the R-square values for each attribute
in every dataset. The R-square values for Cocomo81 and
Nasa93 are given in Figure 5 in a descending order. Al-
though these features are supposed to be linearly correlated
with effort, the highest R-Square value for Cocomo81 is 0.43
and 0.35 for Nasa93, which are both very low to be consid-
ered important. For some other attributes, the R-Square
value goes down to 0. Therefore, we cannot say that either
one of 16 independent features have a high correlation and
is responsible for explaining the variation in the recorded
effort values. However, the R-Square values can still give us
some idea regarding which attributes have more explanatory
power in terms of variation in the effort values. As we can
see from Figure 5, the highest R-Square value belongs to
LOC attribute in both of the datasets, meaning that LOC
is better than any other attribute in terms of explaining the
variation in effort value. Furthermore, TIME and RELY
attributes have R-Square values that are relatively higher
than the rest of the attributes. We will compare the results
of R-Square analysis with the feature subset selection results
in Section 5.

Attributes Cocomo81 Nasa93

LOC 0.43 0.35

TIME 0.02 0.29

RELY 0.04 0.23

STOR 0.01 0.14

CPLX 0 0.1

DATA 0.2 0.04

PCAP 0.02 0.03

TOOL 0 0.02

VEXP 0 0.02

VIRT 0 0.01

ACAP 0.02 0.01

AEXP 0 0.01

LEXP 0.01 0

MODP 0.07 0

SCED 0 0

TURN 0.04 0

Figure 5: The R-square values for Cocomo81 and Nasa93
datasets. R-square values are sorted in a descending or-
der. All the R-Square values are low to suggest a significant
meaning. However, the highest R-Square value belongs to
LOC, which means that LOC can better explain the vari-
ations in the dependent variable when compared to other
attributes.

In Figure 6 we see the R-Square values for the attributes of
Desharnais dataset. The results of Figure 6 are somewhat
similar to the results of Cocomo81 and Nasa93 datasets, in
the sense that all the R-Square values are quite low. The
rule of tumb is that we expect to observe an R-Square value
of higher than 75% or even 80% to claim that the attribute
is really successful in terms of explaining the independent
variable. However, as we see in Figure 6, none of the features
can attain such high R-Square values. The highest R-Square
value belongs to PointsAdjust feature with a value of 0.55
and it is followed by PointsNonAdjust and Length with R-
Square values of 0.5 and 0.48 respectively. Therefore, we
cannot say that any of the features can substantially account
for the variation of dependent variable effort. On the other

hand, we can still use these R-Square values to give us a
hint regarding which features are more important than the
others in terms of explaining the effort value variation.

Attributes Desharnais

PointsAdjust 0.55

PointsNonAdjust 0.5

Length 0.48

Transactions 0.34

Entities 0.26

Adjustment 0.22

Language 0.07

TeamExp 0.06

ManagerExp 0.03

YearEnd 0

Figure 6: The R-square values for Desharnais dataset. R-
square values are sorted in a descending order.

4.3 Feature Selection Analysis
This subsection will summarize our results of feature subset
selection. Although feature subset selection has been used
in literature to improve the accuracy values in software ef-
fort estimation systems [14–16], our reason for using feature
subset selection will be different from those studies.

In our research, we intend to use feature subset selection on
top of linear regression to observe whether the highest accu-
racies are attained with the features that have also attained
highest R-Square values. In other words, we want to observe
whether features that can individually explain the variations
in the dependent variable better than other attributes come
together for higher accuracy values or whether the individual
performance has no relation when attributes are combined
for achieving the highest estimation accuracies.

There are a number of feature subset selection algorithms in
the literature such as principal component analysis (PCA),
linear discriminant analysis (LDA) and wrapper [1]. Actu-
ally PCA combines the features to make better estimations
rather than selecting out some features. However, since it is
an unsupervised method, it had found its area of implemen-
tation in the literature. LDA and wrapper are supervised
methods and they select out individual features out of a set
of all features. Among these feature subset selection algo-
rithms we will use wrapper due to 2 reasons: 1) Wrapper
requires a predictive algorithm to run, which in our case will

Cocomo81 Nasa93 Desharnais

Wrapper R-Square Wrapper R-Square Wrapper R-Square

RELY RELY RELY RELY Length Length

MODP TIME TIME TIME PointsNonAdjust PointsNonAdjust

LOC LOC VEXP STOR PointsAdjust PointsAdjust

LEXP CPLX Language Transactions

MODP DATA

LOC LOC

Figure 7: Wrapper results compared with R-Square analysis for all datasets. Starting from the highest R-Square-scored
features, we selected out as many features as those that were selected by wrapper. The dark-highlighted cells are the ones
that are common in R-square analysis and wrapper.

be the linear regression and 2) wrapper has been reported
to yield better results in comparison to other methods [15].

The fact that wrapper needs a predictive algorithm actually
fits perfectly to our case, because we are willing to see the
performance of features when linear regression was applied.
Wrapper basically works by trying out every possible com-
binations of all features subject to the predictive algorithm
and it selects out the subset of features that has yielded
the highest accuracy [1]. Therefore, for a dataset of size
n, wrapper searches a set of “2n − 1” combinations2. We
have used the WEKA toolkit for our experimentation that
included linear regression as well as wrapper feature subset
selection [7].

Figure 7 summarizes the results of feature subset selection
via wrapper as well as the the comparison of wrapper to
R-square results for all datasets. As we can see the number
of features selected from Cocomo81, Nasa93 and Desharnais
datasets are 3, 6 and 4 respectively. What we can call inter-
esting in Figure 7 is that although Cocomo81 and Nasa93
are both NASA projects and share the same features, wrap-
per selects twice as more features for Nasa93 in comparison
to Cocomo81.

Figure 7 also gives us information regarding the common
features that have the highest R-Square values and that are
also selected by wrapper. When reporting the features in
Figure 7, we restricted the number of features to be shown
to that of features selected by the wrapper, i.e. if wrapper
has selected n features out of dataset x, then we select out
n −many features that received the highest R-Square val-
ues. The dark-shaded cells in Figure 7 are the features that
are the common to top n R-Square features and to wrap-
per selected features. In Section 5, we provide the detailed
comments for each dataset.

5. RESULTS
This section presents the results we have elicited after our
experimentation. We will address each dataset separately in

2All subsets of a set of size n minus the empty set.

related subsections and provide details regarding the feature
selection of wrapper as well as R-Square. Probably one fact
we need to clear out before continuing with the results is
that R-Square analysis in fact does not select any features.
When we refer to R-Square selected features, we use it to
refer to the features that had the highest n R-Square values,
where n is the number of features selected by wrapper for
the same dataset.

5.1 Cocomo81
As we can see from Figure 7, 2 out of 3 features in Cocomo81
dataset are common between R-Square and wrapper. The
common features in Cocomo81 dataset are RELY (required
software reliability) and LOC (lines of code). LOC had re-
ceived the highest R-Square values in both Cocomo81 and
Nasa93, meaning that its ability to explain for the varia-
tion in effort is higher than anyone of the other features in
the same datasets. Furthermore, it is common sense that
more LOC will result in bigger projects in terms of project
size and will ultimately result in longer time spent in final-
izing this project. Therefore, selection of LOC is no sur-
prise. RELY also has a high R-Square value and has been
selected by wrapper. Although the impact of RELY is not
as obvious as LOC, we can still say that the more reliable
the software is required to be, the more effort has to be
put into each phase of software development, particularly
in the testing phase. Therefore, common selection of RELY
also makes sense. The uncommon features for Cocomo81
are TIME (Execution time constraint) selected by R-Square
and MODP (Modern programming practices) selected by
wrapper. Selection of MODP by wrapper although it does
not have a high R-Square value is a nice example of the fact
that some features make sense when they are used together
with other features.

5.2 Nasa93
There is a substantial difference between the results of Nasa93
and the results of Cocomo81. The two datasets have ex-
actly the same features that define the individual projects
and they both contain software projects that were developed
for NASA. Therefore, the intuition is to expect similar re-

sults, at least to some extent. However, as we can see from
Figure 7 wrapper has selected out 6 features from Nasa93
dataset, whereas it was 3 datasets for Cocomo81 datasets.
Although 3 of the 6 features that were selected from Nasa93
dataset are the same to those of Cocomo81, it is interesting
to see additional 3 features. Furthermore, similar to Co-
como81 results, in Nasa93 RELY and LOC are common to
wrapper and R-Square selection. The third feature that is
common to wrapper and R-Square in Nasa93 is TIME (Ex-
ecution time constraint). TIME was not a common feature
for Cocomom81 dataset.

The remaining 3 features for Nasa93 dataset are not com-
mon between wrapper and Cocomo81. Since we know that
wrapper has searched through all the combinations of fea-
tures and has selected the combination that yielded highest
accuracy value for linear regression, we again observe the
effect of low R-Square valued features coming together to
generate higher estimation performance.

5.3 Desharnais
Desharnais dataset has the highest similarity between R-
Square and wrapper selected features. Out of 4 features
that were selected by wrapper, 3 of them are common to R-
Square as well. In other words, 75% of the features are com-
mon between R-Square and wrapper. Furthermore, com-
mon features are in fact all define the software in terms
of its size (PointsAdjust, PointsNonAdjust) and schedule
(Length). Therefore, we can say that size and schedule re-
lated features really are important to define the projects
in Desharnais dataset. On the other hand, the fourth fea-
ture selected by wrapper and R-Square are Language and
Transactions respectively. The different features have big
differences in terms of their R-Square values: Language has
an R-Square value of 0.07 and Transactions has an R-Square
value of 0.34, which suggests that its not the combination of
features with highest R-Square values that make up the best
estimation, but the features that explain more together.

6. THREATS TO VALIDITY
Although we tried to use widely used datasets, these datasets
are not the only ones that are used in software effort esti-
mation domain. Therefore, some other datasets may yield
different results in comparison to our results and this is one
threat to the validity of our results.

Another possible threat to the validity of our results is the
choice of linear regression. Since we are using R-Square anal-
ysis, we selected out linear regression for combining with
wrapper. However, depending on the choice of the algo-
rithm, the wrapper selected features may change.

Finally, we based our assumption on the premise that wrap-
per selects the best combination of features that yield the
lowest error rate. The fact that wrapper selects the low-
est error rate yielding features is true, however we have not
calculated the actual magnitudes of error in this research.
Therefore, we only know that wrapper generates better re-
sults than R-Square selected features, yet we do not know
exactly how much better results it generates.

7. CONCLUSION

In this research we have tried to understand two facts con-
cerning software effort datasets:

1. Distribution of features into PPR metrics

2. Existence and reasons of similarities or differences be-
tween high R-Square valued features and wrapper se-
lected features

While trying to understand these facts, we made use of 3
common effort estimation datasets. We went through the
definitions of each feature and distributed them into 3 cate-
gories of PPR-metrics. We also calculated R-Square values
for each feature in these datasets and applied wrapper fea-
ture subset selection algorithm combined with linear regres-
sion to select out features.

We observed that -at least for the datasets we used in this
research- the distribution of features into PPR-metrics do
not follow a balanced distribution, i.e. the distribution of
features into 3 different segments that define a software
product appear to be random. More importantly, the per-
centage of PPR-metrics in different datasets show big vari-
ations. This fact may hint to two conclusions: 1) Different
needs of different environments affect how the features are
selected and unique development environments choose dif-
ferent features or 2) The selection of features merely depend
on the judgment of the experts in a particular development
environment and the experts do not put a strong empha-
sis in giving equal weight to PPR-metrics. Since we do not
have much knowledge regarding the development environ-
ments for any of the 3 datasets, we cannot decide which one
of the 2 conclusions should be suggested as the reason of
uneven distribution of features into PPR-metrics.

As for our second goal, we are confident that there are simi-
larities between wrapper selected and R-Square selected fea-
tures. In other words, some of the features that have high R-
Square values are selected by wrapper algorithm. However,
there are also considerable differences between the wrapper
selected features and R-Square selected features. For exam-
ple in Nasa93 dataset, 3 out of 6 wrapper selected features
are different than R-Square selected features. These results
show that although high R-Square valued features are im-
portant for high estimation accuracy, high R-Square value
is not the only factor for estimation accuracy. As we see
in each one of the 3 datasets, combination of some high R-
Square valued features with some other low R-Square val-
ued features creates better estimation than choosing only
the features that had high R-Square values.

8. REFERENCES
[1] E. Alpaydin. Introduction to Machine Learning. MIT

Press, 2004.

[2] B. Boehm, C. Abts, and S. Chulani. Software
development cost estimation approaches: A survey.
Annals of Software Engineering, 10:177–205, 2000.

[3] B. W. Boehm. Software Engineering Economics.
Prentice Hall PTR, Upper Saddle River, NJ, USA,
1981.

[4] J. Desharnais. Analyse statistique de la productivitie
des projets informatique a partie de la technique des

point des fonction. Master’s thesis, Univ. of Montreal,
1989.

[5] R. G. Douglas and J. H. Torrie. Principles and
procedures of statistics. New York, McGraw-Hill, 1960.

[6] N. E. Fenton. Software metrics: A rigorous approach.
1991.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software: an update. SIGKDD Explor. Newsl.,
11(1):10–18, 2009.

[8] M. Jorgensen. A review of studies on expert
estimation of software development effort. Journal of
Systems and Software, 70:37–60, February 2004.

[9] M. Jorgensen and T. Gruschke. The impact of
lessons-learned sessions on effort estimation and
uncertainty assessments. IEEE Trans. Softw. Eng.,
35(3):368–383, May-June 2009.

[10] B. Kitchenham and K. Känsälä. Inter-item
correlations among function points. In ICSE ’93:
Proceedings of the 15th international conference on
Software Engineering, pages 477–480, Los Alamitos,
CA, USA, 1993. IEEE Computer Society Press.

[11] B. Kitchenham and E. Mendes. Why comparative
effort prediction studies may be invalid. In PROMISE
’09: Proceedings of the 5th International Conference
on Predictor Models in Software Engineering, pages
1–5, New York, NY, USA, 2009. ACM.

[12] B. A. Kitchenham, E. Mendes, and G. H. Travassos.
Cross versus within-company cost estimation studies:
A systematic review. IEEE Trans. Softw. Eng.,
33(5):316–329, 2007.

[13] E. Kocaguneli. Better methods for configuring
case-based reasoning systems. Master’s thesis, 2010.

[14] Y. Kultur, B. Turhan, and A. B. Bener. ENNA:
software effort estimation using ensemble of neural
networks with associative memory. In SIGSOFT
’08/FSE-16: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software
engineering, pages 330–338, New York, NY, USA,
2008.

[15] K. Lum, T. Menzies, and D. Baker. 2cee, a twenty
first century effort estimation methodology. ISPA /
SCEA, pages 12 – 14, 2008.

[16] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting
best practices for effort estimation. IEEE Trans.
Softw. Eng., 32:883–895, 2006.

[17] T. Menzies, D. Port, Z. Chen, and J. Hihn. Simple
software cost analysis: safe or unsafe? SIGSOFT
Softw. Eng. Notes, 30(4):1–6, 2005.

[18] M. Shepperd. Software project economics: a roadmap.
In FOSE ’07: 2007 Future of Software Engineering,
pages 304–315, 2007.

[19] M. Shepperd and G. Kadoda. Comparing software
prediction models using simulation. IEEE Trans.
Softw. Eng., pages 1014–1022, 2001.

