
Question 2:

a) The k values and the related confusion matrices are given below.

K Values K=1 K=5 K=9 K=13 K=17 K=21

Confusion
Matrices

 25 0 0
 0 24 1
 0 0 25

 25 0 0
 0 23 2
 0 0 25

 25 0 0
 0 24 1
 0 0 25

 25 0 0
 0 24 1
 0 0 25

 25 0 0
 0 25 0
 0 0 25

 25 0 0
 0 25 0
 0 0 25

b) The accuracy vs. k value graph is given below

c) As we can see from the accuracy graph above, all k values yield a high accuracy. K values of 1, 9

and 13 get the same accuracy values and there is a decrease in the accuracy value for k=5. For

k=17 and k=21 we achieve perfect accuracy, i.e. we were able to correctly classify all the

instances.

The MATLAB code that I have used for the above solution is as follows:

ks = [1 5 9 13 17 21]';

load iris.dat;

counter = 1;

iris1train = iris(counter:(counter+24),:);

counter = counter+25;

iris1test = iris(counter:(counter+24),:);

counter = counter+25;

iris2train = iris(counter:(counter+24),:);

counter = counter+25;

iris2test = iris(counter:(counter+24),:);

counter = counter+25;

iris3train = iris(counter:(counter+24),:);

counter = counter+25;

iris3test = iris(counter:(counter+24),:);

counter = counter+25;

trainSet = [iris1train;iris2train;iris3train];

for i=1:size(ks,1)

 confusionMatrix = zeros(3,3);

 kValue = ks(i);

 for j=1:size(iris1test,1)

 myClass = myKnn(iris1test(j,:),trainSet, kValue);

 confusionMatrix(1,myClass) = confusionMatrix(1,myClass) + 1;

 end

 for k=1:size(iris2test,1)

 myClass = myKnn(iris2test(k,:),trainSet, kValue);

 confusionMatrix(2,myClass) = confusionMatrix(2,myClass) + 1;

96.00%

97.00%

98.00%

99.00%

100.00%

101.00%

k=1 k=5 k=9 k=13 k=17 k=21

 end

 for l=1:size(iris3test,1)

 myClass = myKnn(iris3test(k,:),trainSet, kValue);

 confusionMatrix(3,myClass) = confusionMatrix(3,myClass) + 1;

 end

 kValue

 confusionMatrix

end

function [myClass] = myKnn(instance, trainSet, kValue)

classWins = zeros(3,1);

for i = 1:kValue

 closestNeighbor = trainSet(1,:);

 minDist = sqrt(sum((instance(1,(1:(size(instance,2)-1))) - trainSet(1,(1:(size(trainSet,2)-1)))).^2));

 myIndex = 1;

 for j = 2:size(trainSet,1)

 tempDist = sqrt(sum((instance(1,(1:(size(instance,2)-1))) - trainSet(j,(1:(size(trainSet,2)-1)))).^2));

 if tempDist < minDist

 minDist = tempDist;

 closestNeighbor = trainSet(j,:);

 myIndex = j;

 end

 end

 trainSet(myIndex,:) = [];

 classWins(closestNeighbor(1,size(closestNeighbor,2))) = classWins(closestNeighbor(1,size(closestNeighbor,2))) + 1;

end

[C myClass] = max(classWins);

end

