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1. a. Bayes Risk: [pp. 24-25] Consider the problem of designing a pattern classification system where the goal is
to assign a d-dimensional feature vector x to one of c classes, ω1, . . .ωc , resulting in one of a actions, α1, . . .αa.
Denote as λ(αi |ω j) the cost of taking action αi when the true class of the input pattern x is ω j . Then the
conditional risk of taking action αi upon encountering feature vector x is

R(αi |x ) =
c
∑

j=1

λ(αi |ω j)P(ω j |x ),

for i = 1, . . . a. Thus, the decision policy would be to select that action αi for which R(αi |x ) is minimum. The
resulting minimum overall risk is called the Bayes Risk.

b. Minimum Distance Classifier: [p. 39] Given a feature vector x and a set of mean vectors µ1, . . .µc correspond-
ing to c classes, ω1, . . .ωc , the minimum distance classifier assigns x to that class whose mean vector is located
at the smallest Euclidean distance from x . Thus,

Assign x to class ω j∗ , where j∗ = arg min
j=1,...c

||x −µ j ||.

2. [see Figure 2.13 in p. 41 to view a similar problem]

The decision boundary can be computed as:

P(ω1|x) = P(ω2|x)
⇒ p(x |ω1|) = p(x |ω2), (since P(ω1) = P(ω2))
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Applying ln on both sides and multiplying by -1, we have:
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⇒ 4x2 = 8 ln2+ (x2 − x +
1

4
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⇒ 3x2 + x − 5.79= 0

⇒ x =−1.56 or x = 1.23

Thus the decision rule will be,
¨

x ∈ω1, if −1.56< x < 1.23,

x ∈ω2, otherwise.
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3. [see section 2.7]

Note that ωmax(x ) denotes the class that x is assigned to by the Bayes classifier. It could be one of ω1, . . .ωc
depending on the feature vector x . So, P(cor rect|x ) = P(ωmax |x ). Thus,

P(cor rect|x ) = P(ωmax |x )

⇒ P(cor rect) =

∫

P(ωmax |x )p(x )d x

⇒ P(er ror) = 1−
∫

P(ωmax |x )p(x )d x .�

4. [see section 2.5.1]

The entropy of a distribution p(x) is given by

H(p(x)) =−
∫

p(x) ln[p(x)] d x ,

where the integral is in the interval [−∞,∞]. In this case,
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Thus,
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(since

∫

p(x))d x = 1, and

∫

x2p(x)d x is the formula for the variance of a 0-mean gaussian distribution)
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