
Active Learning for Biomedical Citation Screening

Byron C. Wallace†‡, Kevin Small†
Carla E. Brodley†, Thomas A. Trikalinos‡

†Tufts University, Medford, MA
‡Tufts Medical Center, Boston, MA

byron.wallace@tufts.edu, kevin.small@tufts.edu
brodley@cs.tufts.edu, ttrkalinos@tuftsmedicalcenter.org

ABSTRACT
Active learning (AL) is an increasingly popular strategy for
mitigating the amount of labeled data required to train clas-
sifiers, thereby reducing annotator effort. We describe a
real-world, deployed application of AL to the problem of
biomedical citation screening for systematic reviews at the
Tufts Evidence-based Practice Center. We propose a novel
active learning strategy that exploits a priori domain knowl-
edge provided by the expert (specifically, labeled features)
and extend this model via a Linear Programming algorithm
for situations where the expert can provide ranked labeled
features. Our methods outperform existing AL strategies on
three real-world systematic review datasets. We argue that
evaluation must be specific to the scenario under consider-
ation. To this end, we propose a new evaluation framework
for finite-pool scenarios, wherein the primary aim is to label
a fixed set of examples rather than to simply induce a good
predictive model. We use a method from medical decision
theory for eliciting the relative costs of false positives and
false negatives from the domain expert, constructing a util-
ity measure of classification performance that integrates the
expert preferences. Our findings suggest that the expert can,
and should, provide more information than instance labels
alone. In addition to achieving strong empirical results on
the citation screening problem, this work outlines many im-
portant steps for moving away from simulated active learn-
ing and toward deploying AL for real-world applications.
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1. INTRODUCTION
In many real-world scenarios, unlabeled data is cheap and

plentiful while obtaining labels is expensive. This obser-
vation has motivated the development of pool-based active
learning [14], in which the learning algorithm is given access
to a (typically large) pool of unlabeled examples, U , and is
allowed to request labels for those examples in U which are
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believed to be the most useful for learning the target con-
cept. The intuition is that by selecting training examples
carefully, rather than at random, annotation costs can be
reduced. Buoyed by the empirical successes of active learn-
ing (AL) on benchmark classification tasks (e.g., [15, 26]),
there has been an increased interest in examining issues as-
sociated with deploying AL in “real-world” scenarios [25].

The work herein describes obstacles encountered and cor-
responding solutions for an AL approach to screening biomed-
ical citations for systematic reviews conducted by the Tufts
Evidence-based Practice Center (EPC). Citation screening is
a task in which reviewers peruse several thousand scientific
abstracts to determine whether the corresponding articles
are relevant to the systematic review being conducted. A
systematic review is an exhaustive assessment of the pub-
lished medical evidence for a specified drug or treatment.
Determining articles suitable for inclusion is a time-intensive
process. Moreover, this task is typically conducted by physi-
cians, whose time is expensive. This scenario, further dis-
cussed in Section 2, fits well with the pool-based active learn-
ing framework [14]. Our collaboration with the Tufts EPC
provides an ideal setting to work with domain experts in
clinical science, both to illuminate shortcomings in the as-
sumptions of active learning research and to develop new
methods for incorporating domain expertise into AL. We
are currently using an active learning system for two ongoing
systematic reviews; our experiences in this deployed setting
have motivated the approaches proposed in this work.

Most existing AL research (see [22] for a survey) empha-
sizes empirical evaluation of classifier performance resulting
from AL simulated over retrospectively assembled datasets.
However, these idealized settings tacitly make a number
of assumptions that are unwarranted in real-world situa-
tions, including: infallible annotators (including disregard-
ing variance in annotation difficulty), time-invariant target
concepts, and restricting the expert feedback exclusively to
labels (i.e. that no other expert information is available).
Furthermore, it is generally assumed that the goal of AL is
to derive a good predictive model, but in many document
retrieval applications (such as systematic reviews) the goal
is to find all of the relevant instances in a finite pool. This al-
ternative aim results in an increased emphasis on accounting
for asymmetric misclassification costs (e.g., a false negative
is often more costly than a false positive), class imbalance
in training, and the application of appropriate evaluation
metrics.

Our work deploying an AL system within the Tufts EPC
has elucidated many problems associated with these assump-



tions. For example, retrospective experiments over existing
systematic review datasets showed that uncertainty sam-
pling indeed induced classifiers with higher predictive ac-
curacy using fewer labels than random sampling. However,
sensitivity to the minority class (‘relevant’ citations) suffers
dearly for gains in accuracy when uncertainty sampling is
employed, particularly when datasets are imbalanced (see
Section 3). We also observed that in deployed (prospective)
AL, reviewers were frustrated by being restricted to provid-
ing only instance labels. For example, during an AL annota-
tion session, a reviewer noted that the model was ‘confused’
about clinical studies including children and knew that these
ought to be excluded. Machinery to explicitly communicate
this to the model could save significant expert time. Finally,
we have found that concept drift [30] and annotator drift oc-
curs (i.e., the target concept and annotators understanding
of it evolves over time).

In the remainder of this article, we make several contri-
butions to address these issues. To accommodate explicit
feature annotation, Section 4 describes a novel active learn-
ing strategy that exploits labeled features based on the Co-
Testing framework [16]. We extend this method using Linear
Programming (LP) to constrain the parameter space when
labeled features can be ranked. Section 5 describes appro-
priate evaluation in finite pool AL, where the goal is to cate-
gorize a fixed set of instances rather than induce a good pre-
dictive model. To this end, we utilize a method from med-
ical decision theory [28] that elicits a relative weighting of
sensitivity/accuracy from the domain expert(s) to evaluate
classifier performance and accounts for imbalanced classes
and asymmetric costs. We demonstrate empirically in Sec-
tion 6 that our methods outperform uncertainty sampling,
random sampling and a previous AL strategy for labeled fea-
tures [20] for the problem of citation screening; showing that
a priori information is an effective way of circumventing the
AL under class imbalance of Section 3. Finally, Section 6.4
presents a practical method for dealing with concept drift
that relies on the expert to identify a trustworthy subset
of labeled data, with which we achieve promising empirical
results.

2. BIOMEDICAL CITATION SCREENING
Systematic reviews are increasingly used to inform all lev-

els of healthcare. To minimize bias, a systematic review
develops and follows a protocol of well defined steps, includ-
ing: formulating answerable research questions, specifying
literature review criteria, conducting a comprehensive liter-
ature search, screening of the abstracts obtained from the
search to select potentially relevant studies, assessing full
articles according to specified literature review criteria, ex-
tracting data from accepted studies, assessing the quality of
included studies, synthesizing results according to the key
questions and the pre-specified protocol, performing meta-
analyses (when appropriate), and interpreting results [4].

To identify all eligible reports, reviewers begin by con-
ducting broad searches of the literature (e.g. PubMed) and
manually screen titles and then abstracts to obtain a cor-
pus of possibly pertinent citations (typically between 3%
to 15% of the broad search). All potentially eligible cita-
tions are then retrieved and reviewed in full text to select
those that are ultimately included in the systematic review.
Citation screening is a laborious and time-consuming, yet
critical, step in conducting systematic reviews where failure

to identify eligible research reports threatens the validity of
the review. Reviewers typically screen between 2,000 and
5,000 citations for a given review, of which approximately
200 to 1,000 are deemed relevant and are reviewed in full
text where at most a few dozen are ultimately included in
the systematic review. Much larger projects are not uncom-
mon. For example, a project that involved evidence reports
conducted for the United States Social Security Administra-
tion on the association of low birth weight, failure to thrive,
and short stature in children with disabilities, the Tufts EPC
screened over 33,000 abstracts.

An experienced reviewer (usually a physician) can screen
an average of two abstracts per minute, thus a project with
5,000 abstracts requires up to five person days (forty hours)
of uninterrupted work. Abstracts for difficult topics may
take several minutes each to evaluate, multiplying the to-
tal screening time several fold [29]. Furthermore, this re-
view effort will only continue to grow due to the exponential
growth of biomedical literature [10], motivating methods to
semi-automate this process.

Two interesting, interrelated properties of the citation
screening problem are the profound class imbalance and the
asymmetric misclassification costs inherent in the task. The
prevalence of the minority class (“relevant” citations) is usu-
ally around 10%. Moreover, incorrectly classifying a relevant
article as “irrelevant” may sacrifice the integrity of the entire
review, whereas incorrectly labeling as “relevant” an irrele-
vant article will only incur the additional cost of a reviewer
manually perusing the document. Hence the former type of
error is considerably more expensive than the latter type,
i.e., false negatives are costlier than false positives. A corol-
lary of this observation is that a “successful” machine learn-
ing approach to semi-automating citation screening needn’t
achieve particularly good accuracy, but rather must main-
tain high sensitivity while eliminating at least some of the ir-
relevant citations (i.e., achieving some degree of specificity).

3. THE PROBLEM OF HASTY GENERAL-
IZATION

This need for partial automation of citation screening nat-
urally fits within the pool-based active learning paradigm, in
which the model requests labels for the unlabeled examples
likely to be most helpful in learning the target concept. We
initially experimented with active learning over a few cita-
tion corpora from previously conducted systematic reviews.
For these reviews, we have the set of abstracts initially re-
trieved from the searches, and the subset thereof that was
deemed “relevant” after manual screening of the whole cor-
pus. We used Support Vector Machines (SVMs) as the base
classifier [27] due to their good empirical performance over
text data [12] and the Simple [26] method for uncertainty
sampling, which selects for labeling those instances closest
to the current separating hyperplane.

These experiments indicated that uncertainty sampling
rapidly produces models with high accuracy but lower sen-
sitivity compared to models trained on randomly selected
data. This is undesirable given the cost asymmetry present
in citation screening. We therefore set out to answer two
questions. First, why might uncertainty sampling induce
models with poorer sensitivity? Second, how can we miti-
gate this effect, so as to make the best use of our expert via
AL in imbalanced, asymmetric cost scenarios? The remain-



Figure 1: Figures 1a (left) and 1b (right) show the examples for which the passive (random) and Simple
strategies requested labels, respectively. In both plots the entire pool of examples (U , at the start of active
learning) is shown; examples that are darkened are those for which a label was requested by the corresponding
learning algorithm.

der of this section addresses the former question; we address
the latter question in Section 4.

Uncertainty sampling methods focus on refining the cur-
rent decision boundary [18]. This is done by first establish-
ing a rough approximation to the ideal decision boundary
and then sequentially requesting labels for examples nearest
this boundary. Intuitively, this strategy exploits the labeler
by ignoring examples whose labels are unlikely to move the
decision boundary, thus expediting the training process. In-
deed, uncertainty sampling has been shown to work well in
a variety of contexts [15, 26, 22]. However, this strategy im-
plicitly assumes that the initial approximation to the deci-
sion boundary is reasonable in the sense that as the learner
continues requesting labels, the learned boundary will ap-
proach the optimal boundary. This assumption is violated
in the case of XOR-like or multiple input distribution con-
cept clusters [1, 21], as uncertainty sampling may continue
to request labels along the initially discovered boundary, ig-
noring as-yet undiscovered partitions.

The most relevant existing work with respect to address-
ing hasty generalization is that of Schütze et al. [21], in
which they discuss practical issues in active learning for text
classification. Consistent with our observations, they found
this problem, which they call the missed-cluster effect, to
be problematic in real world active learning for text clas-
sification, particularly when there is class imbalance (and
many real world datasets are imbalanced). Other work [18,
1] has also addressed this problem more generally as a trade-
off between exploration (random sampling) and exploitation
(uncertainty sampling). The problem with these approaches
in the more specific case of imbalanced data is that they are
greedy in that they explore (i.e., with random sampling or
the Kernel Farthest-First heuristic [1]) with probability pro-
portional to how successful exploration has been thus far.
These methods therefore tend to regress to “standard” ac-
tive learning, because exploration will only rarely be fruitful
when there is class imbalance; namely, on rare occasions
when it selects a minority example.

The problem of hasty generalization is perhaps easiest un-
derstood with a toy example. Consider the two-dimensional
target concept depicted in Figure 1. Here the instances rep-
resented by squares comprise the minority class, of which
there are two clusters (one in the lower left-hand corner,
the other in the upper-right quadrant). We simulated AL
over this data using a Support Vector Machine (SVM) [27]
with an RBF kernel and two different learning strategies:
passive, which randomly selects examples from U for the ex-
pert to label, and Simple [26]. The examples selected for
labeling by these two algorithms are darkened in the two
sub-plots, Figures 1a and 1b, which correspond to random
sampling and Simple, respectively. We allowed the learners
to request labels for 25% of the total data.

Figure 1a shows the examples that were selected using
the passive (random) strategy. In this case, the learner was
trained on a representative, i.i.d. sample of the data, and
discovered examples from each of the two minority clusters.
However, random sampling was clearly inefficient, in the
sense that it queried for the labels of many irrelevant exam-
ples, thus wasting our simulated expert’s time. To expedite
the training process, and to induce a more accurate model,
one might appeal to active learning here. However, hasty
generalization is a potential pitfall in this approach. This is
illustrated in Figure 1b, which shows the examples for which
Simple requested labels. The training examples selected via
Simple are visibly biased, clustering around the initial ap-
proximation to the decision boundary in the lower left quad-
rant. The learner completely misses the upper-right cluster
of squares. The active learner hastily generalized from the
examples it initially encountered, and will subsequently mis-
classify squares in the missed cluster as circles.

The question, then, is: how can we exploit the expert
via AL when we have an imbalanced class distribution and
asymmetric costs? In the following section, we propose using
labeled features to achieve this aim. In particular, labeled
features (n-grams, in our case) that are known to the expert
at the outset of AL can be used to circumvent the problem of



hasty generalization by combining a priori knowledge with
the model induced over the current set of labeled instances.
Indeed, Shütze et al. [21] explicitly suggested that using
domain knowledge may be a fruitful way of avoiding the
missed-cluster effect.

4. EXPLOITING LABELED FEATURES
Most existing work in active learning restricts the model,

or “learner”, to requesting only instance labels from the or-
acle, likely due in part to the constraints of available bench-
mark datasets. However, there has been some recent work in
exploiting labeled features1 in addition to labeled instances
[7, 20, 31]. Druck et al. [7] propose an active learning
framework in which the expert labels features rather than
instances and uses the generalized expectation (GE) crite-
ria to build a predictive model from labeled features [6]. In
addition, they present a method for selecting unlabeled fea-
tures for the expert to label, analogous to active learning
methods selecting unlabeled instances to be labeled.

Raghavan et al. [20, 19] present a method for interleav-
ing feature and instance labels. They augment the standard
pool-based AL scenario by incorporating feature feedback
during the learning process. They also propose a method
for selecting features to have the expert label. This infor-
mation is then incorporated into the classification algorithm
somehow; either through feature scaling or adding labeled
pseudo-instances to the dataset. Most relevant to our work
here, they propose an active learning strategy that uses the
labeled features directly by performing uncertainty sampling
in the reduced space of the labeled features [19]. We include
comparisons of our proposed approach to this method in
Section 6.

In other related work, Zaidan et al.’s annotator rationale
approach [31] elicits from the expert an ‘explanation’ for
their labels. These rationales are then used to construct
contrast examples, in which features associated with the pro-
vided rationale are removed. The intuition is that the model
should be less confident about its prediction for these con-
trast examples; this is encoded in the SVM constraint func-
tion. Elsewhere, Sindhwani et al. [24] presented a method
for querying an oracle for labels on both features and in-
stances.

What distinguishes our work primarily is that we are not
interested in actively querying the user to label features.
Instead, we assume that sets of terms that are indicative of
class membership are known a priori to the expert. This is
a realistic assumption, particularly in the citation screening
scenario, wherein the physicians bring a wealth of domain
knowledge to the task. Indeed, the PubMed search strings
used to find the initial corpus of potentially relevant citations
is itself constructed using such keywords. The physicians
undertaking systematic reviews start with a well-formulated
question, and their domain expertise allows them to enumer-
ate n-grams pertinent to this question. More generally, it
is not unreasonable to assume that users would know some
discriminative terms upfront in other text classification do-
mains. For example, consider an active learning task to
classify a set of newspaper articles into ‘sports’ and ‘world
news’ categories; surely someone training such a classifier
could provide terms indicative of the former rather than the

1A labeled feature is a feature that has been designated as
being indicative of membership in a particular class.

latter (‘golf’ and ‘baseball’, for example). An additional dif-
ference in our work is that we are not interested in building
a predictive model using the labeled features directly. In-
stead, we want to exploit these features to improve AL per-
formance. To this end, we adopt the Co-Testing approach
introduced by Muslea [16].

4.1 Labeled Features for AL via Co-Testing
One way of looking at labeled features is as a distinct view

of the data. A view is a particular feature space used to rep-
resent a given dataset. Blum and Mitchell [2] demonstrated
that multiple, redundant views can be exploited in super-
vised learning through the co-training paradigm. Muslea et
al. [16] extended this method for active learning via their
Co-Testing strategy, which works as follows. Suppose we
have two views, V1 and V2. Learn two hypotheses H1 and
H2 over these views, respectively. Now define contention
points as those unlabeled examples about whose labels H1

and H2 disagree and request the label for one of these points.
This approach is appealing because if these two models dis-
agree on a particular example x, then by definition the label
for x must be informative, as at least one of the two models
is currently incorrect. Note that Co-Testing is a specific case
of Query by Committee [8].

We propose building a simple, intuitive model over the la-
beled n-grams in tandem with a linear-kernel Support Vector
Machine [27] over a standard bag-of-words (BOW) represen-
tation of the corpus. For the former, we use an ‘odds-ratio’
based on term counts, i.e., the ratio of positive to negative
terms in a document. In particular, suppose we have a set of
positive features (i.e., n-grams indicative of relevance), PF ,
and a set of negative features NF . Then, given a document
d to classify, we can compute the likelihood of d being a
relevant as:

X
w+∈PF

Id(w
+) + 1X

w−∈NF

Id(w
−) + 1

(1)

Where Id(w) is indicator function which is 1 if w is in d
and 0 otherwise. Note that we add pseudo-counts to both
the negative and positive sums, to avoid division by zero.
Then the direction of this ratio gives a class prediction and
the magnitude of the ratio gives a confidence.2 For example,
if d contains ten times as many positive terms as it does
negative terms, the class prediction is + and a proxy for our
confidence is ten.

We can now use this model for Co-Testing as follows.
First, generate the set of contention points, i.e., those un-
labeled examples about whose class membership the SVM
model induced over the BOW representation disagrees with
the labeled feature classifier defined above. Of these, select
for labeling the example x with the largest ratio. In this
case the SVM model predicts that x belongs to one class,
but the labeled features present in x strongly suggest that
it belongs to the other. The hope is that such examples will
be informative to the model, given the disparity between
the shallow “semantic” classifier that uses labeled features

2In order to ensure that the magnitude is symmetric in the
respective directions, one may either flip the ratio so that
the numerator is always larger than the denominator, or one
may take the log of the ratio.



and the more nuanced “black-box” SVM method, induced
on the instances labeled thus far. This strategy should not
be subject to the problem of hasty generalization because it
relies on a priori information external to the current SVM
model. Our empirical results, presented in Section 6, con-
firm that this method - which we call CoFeature - improves
classifier performance (with respect to the metric of interest)
compared to passive learning, AL via Simple and Simple
performed over the pruned labeled feature space as proposed
by Raghavan et al.[20].

4.2 Exploiting Ranked Labeled Features with
Linear Programming

In the preceding section, we assumed that the expert pro-
vided a list of features with binary labels (either indicative
of relevance or indicative of irrelevance). However, in many
cases the expert may also be able to provide a ranking, in-
dicating which features are more or less representative of
class membership, relative to one another. For example,
in the proton beam systematic review the doctor indicated
that hadrontherapy is more indicative of a relevant abstract
than proton ion, and conversely that electron beam is more
indicative of an irrelevant abstract than photon beam. En-
coding such domain information is an attractive proposition
because it exploits domain knowledge provided by the expert
to (hopefully) induce a better generalized model.

Here we present our Linear Programming (LP) formula-
tion for learning a linear classifier with the ability to explic-
itly encode parameter constraints based on ranked features
as provided by the expert. Similar to existing LP meth-
ods [17], we begin by assuming that we have a set of pos-
itive instances (relevant citations) P and a set of negative
instances N . We define our objective function as:

min c1

P
P pi

|P| + (1− c1)

P
N nj

|N | − c2ρ− c3γ (2)

0 ≤ c1 ≤ 1; 0 ≤ c2, c3

In line with intuition, this penalizes false positives and
false negatives in the training set (note that the relative
costs of these mistakes is governed by the c1 term). This
formulation also encourages a large gap between the least
negative and least positive terms, i.e., the negative and pos-
itive n-grams nearest one another (γ), as well as between
the terms within the respective classes (ρ). The relative em-
phasis on these two latter terms is defined by c2 and c3,
respectively; these are user defined constants that represent
the tradeoff between expert knowledge and optimizing the
parameter vector using available data. Next, we write down
constraints for false positives and false negatives [17]:

pi ≥ −w · x + b+ 1 ∀x ∈ P; i = 1, . . . , |P| (3)

nj ≥ w · x− b+ 1 ∀x ∈ N ; j = 1, . . . , |N | (4)

0 ≤ pi, nj i = 1, . . . , |P|; j = 1, . . . , |N |

Note that the pis and nis denote the magnitude of the er-
ror for false negatives and false positives, respectively (this
is a function of their distance from the learned hyperplane).
Thus for each positive instance, the constraint specified by
Equation 3 is added such that pi > 0 iff the optimal weight
vector as defined by the utility function of Equation 2 will

-lb

-0.5*lb

0

0.5*ub

ub

1 2 3 4 5 4 3 2 1

w

x

ub*exp(-0.5*x)
-lb*exp(-0.5*x)

positive rankingsnegative rankings

ρ

γ

Figure 2: Parameter space function enforced by LP.

result in a false negative for the particular instance. Cor-
respondingly, Equation 4 specifies the constraints added for
negative instances such that nj > 0 iff the instance will be
classified as a false positive. If the data is linearly separable,
pi = 0 and nj = 0 for all i, j.

We next extend this model to account for term rankings
using explicit parameter constraints:

wa − wb ≥ zab [ρ · f (r(a), r(b))] ∀a, b : a � b (5)

wc − wd ≥ γ ∀c, d : c � d (6)

This formulation encodes a parameter gap associated with
each rank position as shown in Equation 5. Namely, given
two sets of terms A and B such that A and B are adjacent
rankings and all of the members a ∈ A are ranked higher
than the members b ∈ B, denoted as a � b. zab ∈ {−1, 1}
denotes if A,B represent irrelevant or relevant terms respec-
tively and f(x, y) → R denotes a function used to scale
the relative parameter gap between each pair of rankings.
Additionally, we encode a boundary gap between the lowest
ranking positive terms c ∈ C and the lowest ranking negative
terms d ∈ D; this is a method for maximizing the classifier
margin. We again note that the objective function attempts
to maximize these gaps to effectively encode the available
domain knowledge.

The final element of this formulation is an appropriate
function to model the relative parameter values based on the
ranked term information. We note that one could use any
function deemed appropriate for the domain and features.
For the proton beam dataset and associated n-grams, we as-
sume that the magnitude of the parameters grows exponen-
tially with rank, displayed graphically in Figure 2. The in-
tuition behind an exponentially growing function is that the
highest ranked terms are significantly more indicative of rel-
evance/irrelevance than lower ranking terms. This assump-
tion is made in part due to informal discussions with the
our expert regarding the relative importance (in his view)
of certain terms versus others. Formally, we have:

f(x, y) = e−κx − e−κy (7)



Using this LP formulation, we can use one of several solvers3

to learn the weight vector directly. As in our CoFeature
method, this classifier is used as a view to select contention
points with the SVM model.

5. CLASSIFIER EVALUATION FOR THE CI-
TATION SCREENING PROBLEM

In this section we first propose two metrics appropriate for
evaluating classifiers in situations wherein the primary aim
is annotating a fixed dataset. We next propose a method
for eliciting from the user a relative weighting on the cost
of false positive versus the cost of a false negative. Indeed,
without knowing the tradeoffs involved, it is impossible to
assess how a classifier is performing. If sensitivity is twice
as important as specificity, then the relative performances
of two classifiers will potentially be quite different than if
the reverse holds. Thus classifiers must be evaluated with
respect to the task to which they are to be applied.

5.1 Finite Pool Active Learning
Active learning methods are typically compared using a

hold-out set. This evaluates the predictive performance of
the classifier induced with a given AL strategy, with respect
to some metric (e.g., accuracy or F-measure). However,
there is an important distinction to be made between the
goal of constructing a good predictive model and the trans-
ductive task of categorizing a finite set of instances into their
respective ranked classes. We are interested in the latter for
the biomedical citation screening problem. We are not pri-
marily concerned with building a good discriminative model,
but rather we are attempting to designate all of the docu-
ments in a database of citations as “relevant” or “irrelevant”;
aside from the ability to derive this annotated database, the
predictive performance of the induced classifier is inconse-
quential. We are thus viewing the classifier as tool to reduce
labor in annotation as opposed to an end in itself.

To formalize the above intuition, we define two metrics
we have proposed elsewhere [29]: yield and burden. Recall
that we are concerned with the following two outcomes: the
fraction of truly relevant citations in U correctly identified,
and the amount of reviewer effort expended, compared to
manually screening all of the citations. Let tpT and tnT

denote the positive (“relevant”) and negative (“irrelevant”)
citations labeled by the reviewer during the training process.
Further, let tpU , fpU , tnU , and fnU denote the number of
true positives, false positives, true negatives and false neg-
atives over the remaining, unlabeled abstracts in the pool,
U , as generated by the classifier. Finally, let N denote the
total number of citations. Then we can calculate these two
metrics as shown in Equations 8 and 9.

yield =
tpT + tpU

tpT + fnU + tpU
(8)

burden =
tpT + tnT + tpU + fpU

N
(9)

We note that yield and burden are roughly equivalent to
sensitivity and specificity, except that they also take into
account those examples for which a learner has requested
labels. (Also, burden is a cost measure, and therefore should

3We use GLPK (http://www.gnu.org/software/glpk/).

be minimized rather than maximized). Thus if a learner is
somehow good at querying for the labels of difficult exam-
ples, and therefore does not have to predict labels for these
instances, it is rewarded.

5.2 Eliciting Relative Weights from the Expert
Most work in information retrieval on metrics for the eval-

uation of text classifiers has focused on the weighted F -
measure [13], i.e., the weighted harmonic mean of sensitivity
and precision. This weighting is defined by β, which appro-
priately encodes the tradeoffs inherent in the scenario under
consideration. We follow in this tradition here, save for the
caveat that rather then sensitivity and precision, we use the
above proposed metrics of yield and burden. We assume
that cost(fp) = β · cost(fn) for some β, implying that max-
imizing yield is β times as important as minimizing burden.

We are left with the question of how to elicit from the do-
main expert this β. We borrow a method from medical deci-
sion making developed for diagnostic test assessment to infer
this weight by means of a thought experiment [28]. Suppose
that a predictive model, or an oracle, provides the probabil-
ity that a given citation is irrelevant. If this probability is
sufficiently low, a rational reviewer will want to peruse the
abstract in full to ascertain if it should be included or not.
On the other hand, if the probability is high enough, a ratio-
nal reviewer will not bother to read the abstract. There is
some threshold probability pt at which the reviewer forgoes
reading the abstract. In other words, they are at this point
indifferent to whether or not they read the abstract because
the expected value of reading it at this point is equal to the
expected value of not reading it. Suppose that we elicit this
pt from the expert. Further, let V(tp), V(fp), V(fn), and
V(tn) denote the value of a true positive, false positive, false
negative and true negative, respectively. We have:

pt ·V(tp)+(1−pt) ·V(fp) = pt ·V(fn)+(1−pt) ·V(tn) (10)

The LHS of Equation 10 is the expected value of reading
the abstract; the RHS is the expected value of not reading
the abstract. This implies:

V(tp)− V(fn)

V(tn)− V(fp)
=

1− pt
pt

= β (11)

Then V(tp) − V(fn) is the penalty of not reading a rele-
vant abstract, and V(tn)−V(fp) is the cost associated with
reading an irrelevant abstract. Thus 1−pt

pt
is the ratio of the

cost of a false negative to the cost of a false positive; this is
our desired β. We propose using this β directly in an eval-
uation metric. We define our metric, which we call Utilityβ ,
as follows:

β · yield+ (1− burden)

β + 1
(12)

For evaluation purposes, we elicited this weighting from
the project lead on one of the ongoing systematic reviews
here at the Tufts EPC. We asked him at what probability
of a document being irrelevant would he exclude it without
reading the abstract. We asked the same question, increas-
ing the number of citations that needed to be screened for
the hypothetical project. In line with our expectations, pt
decreased slightly when the set of citations that needed to



be screened became large. Specifically, for N <= 10,000 ab-
stracts, the threshold pt given was 95%, which translates to
a β of 19. When N is > 10,000, he changed pt to 90%, giv-
ing a β of 9. We use β=19 in our experimental evaluations,
because most systematic reviews conducted here comprise
10,000 or fewer citations.

6. EXPERIMENTAL RESULTS
We first present experimental results using our feature

‘odds ratio’ Co-Testing algorithm (referred to as CoFeature)
over three systematic reviews for which we were given la-
beled terms by the reviewers. We compare our approach
to random sampling, uncertainty sampling via Simple, and
Simple in the labeled-features space [20]. We then present
results using our Linear Programming method over the Pro-
ton Beam dataset, which is the only dataset for which we
have ranked labeled terms. Finally, we present promising re-
sults on mitigating the effects of concept drift in a deployed
active learning setting by incorporating expert feedback.

Evaluation is carried out with respect to the metric of in-
terest, i.e., U19, following our above results. This dispropor-
tionately emphasizes sensitivity to the minority class (“rel-
evant” citations), as is pertinent for our scenario. We note
that Simple outperforms our method on all datasets with
respect to accuracy; this again illustrates the necessity of
using the correct metric for the situation for evaluation.

6.1 Experimental Setup
All classification is performed using Support Vector Ma-

chines (SVM) [27] with linear kernels as they have been
shown to perform well with high dimensional data [9]. We
use a modified version of LibSVM [3] and its Python inter-
face. All SVMs are induced over a feature space comprising
a binary bag-of-words encoding of concatenated citation ti-
tle and abstract text, with the exception of Simple in the
pruned space, which operates in the labeled terms space
only. Prior to evaluation over the as-yet unlabeled examples,
the C parameter is tuned via grid search4 over the training
data acquired during AL. We also set the class penalty ratio
to 100:1, i.e., we set the cost of a false negative to 100x that
of a false positive. Our experimental setup is as follows. We
instantiate the four learners and give each of them labels for
the same two ‘seed’ citations; one “relevant” and one “irrel-
evant”. We then allow each learner to request 5 labels per
round of active learning. Every 25 labels, we evaluate the
learners as described above and report results. Due to our
severe class imbalance, we under-sample the majority class
(at random) so that the class distribution is equal prior to
building the classifier used in evaluation; this strategy has
been shown effective in mitigating the effects of class imbal-
ance [11]. All results reported are averages over ten inde-
pendent runs.

6.2 Feature Co-Testing Results
Results over the COPD dataset are shown in Figure 3.

Note that the COPD is a smaller dataset than proton beam,
comprising 1,601 citations, 196 of which are “relevant”. We
show performance for up to 800 labeled examples. We were
given 22 labeled n-grams; 15 positive and 7 negative. Our
CoFeature method maintains higher Utility19 until about

4When performing grid search, we keep the C that maxi-
mizes a weighted metric, i.e., β · sensitivity + specificity.

Figure 3: Utility19 over the copd dataset. Our CoFea-
ture approach outperforms all baseline methods.

Figure 4: Utility19 over the micro nutrients dataset.
Our CoFeature approach outperforms all baseline
methods.

Figure 5: Utility19 over the proton beam dataset. Our
Linear Program (lp) and CoFeature approaches out-
perform all baseline methods.



the 500 label mark, at which point Simple performs com-
parably.

Figure 4 displays results over the micro nutrients dataset.
There are 4,010 citations in this dataset, 258 of which were
found to be “relevant”. This is an interesting dataset be-
cause there is a preponderance of positive n-grams; 47 ver-
sus 2 negatives. In this case, our feature Co-Testing strategy
clearly dominates the other methods.

6.3 Ranked Labeled Features Results
Figure 5 shows results over the proton beam dataset for

the four methods. There are 4,751 documents in this dataset,
of which 243 were deemed “relevant”, where we follow the
experimental procedure delineated above. The reviewer pro-
vided us with 43 ranked positive features and 26 ranked neg-
atives. There were 5 discrete groups of ranked positive terms
(the terms in the most positive group were thus five times as
indicative of a “relevant” citation as those in the least posi-
tive group) and 3 groups of ranked negative terms provided
by the reviewer. We show results for up to 1,000 labels, at
which point the performance of the classifiers remains rel-
atively constant. The first significant observation is that
both our Co-Feature and LP approaches clearly dominate
the other baseline methods until ∼ 600 queries, at which
point Simple catches up. The second important observa-
tion is that the LP method is able to exploit ranked features
in early active learning rounds to outperform Co-Feature.

For this particular experiment κ = 0.1, c1 = 0.75, c2 =
0.1, c3 = 0.2. As each weight parameter was bounded be-
tween the range −100 ≤ wi ≤ 100 to cover 7 rankings, we
selected user defined values which balanced expected gap
sizes with empirical error without significant parameter tun-
ing due our limited data setting. With these settings, the
LP method slightly outperforms Co-Feature from 50-150 and
200-300 queries. Our results with other parameter settings
show that if we set the parameters to bias the LP to fa-
vor domain knowledge, we then see large gains during early
rounds, but performance plateaus more slowly. If we set the
parameters to bias the LP toward empirical error, then we
observe a less pronounced early jump with a steadier per-
formance increase. We thus conclude that the best use of
rankings is to begin with a bias toward the ranking and de-
crease this importance as labeling proceeds. How this should
be done precisely remains a problem for future work.

6.4 Dealing With Concept Drift
We have presented our core technical contribution, and

now briefly turn our attention to work done on an ongoing
systematic review regarding sleep apnea, in which the doc-
tors are using our system. Specifically, we investigate how
one might use the expert to help identify the presence of,
and mitigate the effects due to, concept drift.

It is generally assumed that the target concept being learned
in AL is fixed and immutable over time; indeed, simulating
AL retrospectively would not be possible without such an
assumption. However, in practice this is rarely the case.
In our application we have found that the target concept
changes over time, i.e., undergoes concept drift. We can uti-
lize some established ideas in addressing this problem. No-
tably, Widmer and Kubat [30] suggest building a classifier
over a window of the W most recently labeled instances.

While intuitively appealing, the obvious problem with this
strategy is the W parameter; how can we know which labels

are reliable? In our case, we found that experts themselves
are capable of identifying when during the training process
the labels likely became reliable. For example, in our de-
ployed work with a systematic review pertaining to sleep
apnea, the criteria for inclusion of abstracts changed a num-
ber of times at the start of screening. In particular, the cri-
teria was tightened, meaning more citations were included
than should have been. We asked the reviewer when during
labeling this tightening occurred, and used all subsequent
examples as our training set (i.e., our window W ) to build
a classifier cW . We then applied cW to the noisy labels, i.e.,
those preceding W . Because the criteria was tightened, we
asked the expert to review those articles that were previously
labeled as relevant, but that cW designated as irrelevant.
The reviewer ended up flipping the label from ‘relevant’ to
‘irrelevant’ for 21 out of the 45 (or about 47%) we showed
him. This was valuable, because in addition to training a
new classifier with the corrected labels, we saved labor in
that those 21 citations needn’t be pulled and reviewed in full
text, which is a time-intensive endeavor compared to just re-
reading the abstract. The fact that nearly half the labels of
the selected examples were flipped indicates the extent to
which concept drift can occur in the initial stages of citation
screening; this approach of active, iterative re-labeling is a
potential way around this problem.

7. CONCLUSIONS AND FUTURE WORK
Our work on a deployed active learning system at the

Tufts Evidence-based Practice Center (EPC) has provided
us a unique opportunity to collaborate with domain experts
in clinical science to extend the applicability and utility of
the AL framework. We have focused on making the most
of our domain experts by incorporating their a priori do-
main knowledge into the active learning process, as opposed
to exploiting only instance labels. This was achieved with
a novel algorithm for active learning with labeled features
based on Co-Testing, which empirically outperformed exist-
ing active learning methods on three real-world systematic
review datasets. We extended this approach for the spe-
cial case when the expert is able to provide ranked labeled
features via a novel Linear Programming algorithm.

We proposed a new framework for evaluating active learn-
ing methods of domains like citation screening that empha-
sizes correctly categorizing all examples in a finite pool of in-
stances, rather than focusing on the predictive performance
of induced classification models. Furthermore, making use of
existing work in medical decision theory [28], we elicit from
the domain expert the relative costs of incorrectly catego-
rizing positive and negative examples as ‘negative’ and ‘pos-
itive’, respectively. We maintain that such context-specific
costs must be taken into account when evaluating classifica-
tion systems; such systems will not be deployed in a vacuum.

Additionally, our collaboration with the EPC has high-
lighted other problems with the assumptions in the stan-
dard pool-based AL framework. For example, concept drift
is tacitly assumed not to occur in the oracle-model, but is
a reality nonetheless. We proposed a simple method with
good empirical results for addressing this issue that relies
on the expert to identify a set of trustworthy labels.

In future work, we plan on applying the decision-theoretic
ProActive Learning framework developed by Donmez and
Carbonell [5] to the citation screening problem. This frame-
work relaxes some of the unrealistic postulates in AL and



addresses how best to make use of multiple experts (in this
work, we eschewed the issue of multiple reviewers even though
often 1-3 doctors will participate in the citation screening
task of a systematic review). We plan on extending their
approach for the case in which the costs of each expert are
known up front, as they are in our application. Continu-
ing in this vein, it may be fruitful to consider under what
conditions we should request redundant labels from multiple
reviewers for a given citation. Sheng et al. [23] addressed
this ‘crowd-sourced’ scenario, i.e., a situation wherein you
have access to multiple, noisy labelers. Their strategies may
be adopted in the future to the case of multiple physicians
with different reviewing abilities.

8. ACKNOWLEDGMENTS
Byron Wallace and Tom Trikalinos were supported in NIH

grant R01HS018494-01. Kevin Small was supported by NIH
grant 3UL1RR025752-02S2 and Carla Brodley was supported
by NSF grant IIS-0803409.

9. REFERENCES
[1] Y. Baram, R. El-Yaniv, and K. Luz. Online choice of

active learning algorithms. J. Mach. Learn. Res.,
5:255–291, 2004.

[2] A. Blum and T. Mitchell. Combining labeled and
unlabeled data with co-training. In CLT, pages
92–100, 1998.

[3] Chih-Chung and C.-J. Lin. LIBSVM: A library for
support vector machines, 2001.

[4] C. Counsell. Formulating questions and locating
primary studies for inclusion in systematic reviews.
Ann. Intern. Med., 127:380–387, Sep 1997.

[5] P. Donmez and J. G. Carbonell. Proactive learning:
cost-sensitive active learning with multiple imperfect
oracles. In CIKM, pages 619–628, 2008.

[6] G. Druck, G. S. Mann, and A. McCallum. Learning
from labeled features using generalized expectation
criteria. In SIGIR, pages 595–602, 2009.

[7] G. Druck, B. Settles, and A. McCallum. Active
learning by labeling features. In EMNLP, pages 81–90.
ACL Press, 2009.

[8] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby.
Selective sampling using the query by committee
algorithm. In Machine Learning, pages 133–168, 1997.

[9] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical
guide to support vector classification, 2003.

[10] L. Hunter and K. B. Cohen. Biomedical language
processing: What’s beyond pubmed? Mol Cell,
21(5):589–594, March 2006.

[11] N. Japkowicz. Learning from imbalanced data sets: A
comparison of various strategies. AAAI Workshop on
Learning from Imbalanced Data Sets, 2000.

[12] T. Joachims. Text categorization with support vector
machines: Learning with many relevant features. In
Machine Learning: ECML-98, pages 137–142, 1998.

[13] D. Lewis. Evaluating and optimizing autonomous text
classification systems. In SIGIR, pages 246–254, 1995.

[14] D. Lewis and W. Gale. A sequential algorithm for
training text classifiers. In SIGIR, pages 3–12, New
York, NY, USA, 1994.

[15] A. Mccallum and K. Nigam. Employing EM and
pool-based active learning for text classification. In
ICML, pages 350–358, San Francisco, CA, USA, 1998.

[16] I. Muslea, S. Minton, and C. A. Knoblock. Active
learning with multiple views. Journal Artificial
Intelligence Research (JAIR), 27:203–233, 2006.

[17] W. N. S. O. L. Mangasarian and W. W. Wolberg.
Breast cancer diagnosis and prognosis via linear
programming. Operations Research, (43):570–577,
1995.

[18] T. Osugi, D. Kun, and S. Scott. Balancing exploration
and exploitation: A new algorithm for active machine
learning. In ICDM, pages 330–337, Washington, DC,
USA, 2005.

[19] H. Raghavan and J. Allan. An interactive algorithm
for asking and incorporating feature feedback into
support vector machines. In SIGIR, pages 79–86, 2007.

[20] H. Raghavan, O. Madani, and R. Jones. Active
learning with feedback on features and instances. J.
Mach. Learn. Res., 7:1655–1686, 2006.

[21] V. E. Schütze, H. and J. Pedersen. Performance
thresholding in practical text classification. In CIKM,
pages 662–671, New York, NY, USA, 2006.

[22] B. Settles. Active learning literature survey. Technical
Report 1648, University of Wisconsin–Madison, 2009.

[23] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get
another label? improving data quality and data
mining using multiple, noisy labelers. In KDD, 2008.

[24] V. Sindhwani, P. Melville, and R. D. Lawrence.
Uncertainty sampling and transductive experimental
design for active dual supervision. In ICML, pages
120–128, 2009.

[25] K. Tomanek and F. Olsson. A web survey on the use
of active learning to support annotation of text data.
In NAACL Workshop on AL for NLP, pages 45–48,
Boulder, Colorado, June 2009.

[26] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. In
Journal of Machine Learning Research, pages
999–1006, 2000.

[27] V. N. Vapnik. The Nature of Statistical Learning
Theory. 1995.

[28] A. J. Vickers and E. B. Elkin. Decision curve analysis:
A novel method for evaluating prediction models.
Medical Decision Making, 26:565–574, 2006.

[29] B. C. Wallace, T. A. Trikalinos, J. Lau, C. E. Brodley,
and C. H. Schmid. Semi-automated screening of
biomedical citations for systematic reviews. BMC
Bioinformatics, 11, 2010.

[30] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. In Journal of
Machine Learning, pages 69–101, 1996.

[31] O. F. Zaidan, J. Eisner, and C. Piatko. Machine
learning with annotator rationales to reduce
annotation cost. In NIPS Workshop on Cost Sensitive
Learning, December 2008.


