JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z

Sampling Methods in Software Effort Estimation:
An Investigation on Bias-Variance Trade-Off

Ekrem Kocaguneli, Student Member, IEEE Tim Menzies, Member, IEEE Martin Shepperd, Member, IEEE

Abstract—

Background: Experimental design is an important concept in software effort estimation. Many papers use different experimental
selections: leave-one-out-cross-validation (LOOCV) a.k.a. N-Way, 10-Way, 3-Way etc. Also there are different justifications for the
adopted strategies: The bias-variance trade-off, associated run times and so on.

Aim: The theory states that the more test sets we have (i.e. as x increases in x-Way), the variance increases and the bias decreases.
However, there is no systematic investigation of this theoretical concept. In this paper, we systematically investigate whether theoretical
assumptions hold for software effort datasets.

Method: We selected 20 different effort datasets and 90 different algorithms to compare different experimental settings. For each
dataset, we calculated the bias and variance of every algorithm under the experimental settings of LOOCV and 3-Way.

Results: As a result of our investigation on 90 algorithms and 20 effort datasets, we saw that the theory does not hold for effort
estimation. We have observed that LOOCV and 3-Way have very similar bias and variance values.

Conclusion: Seeing that LOOCV and 3-Way have almost exactly the same bias and variance values, we can conclude that for software
effort estimation the bias-variance trade-off is not the main concern of experimentation. Therefore, the main concern when opting for a

particular experimental strategy should be run-times and reproduction of the experiments.

Index Terms—Software Cost Estimation, Experimentation, Bias, Variance

1 INTRODUCTION

Sampling method is an important topic for software effort
estimation (from now on SEE) studies and an empirical study
to compare the pros and cons of different sampling methods
in SEE is urgent.

The biggest research topic in SEE since 1980s is the
introduction of new methods and comparing them to old
ones [11]. In their comprehensive systematic review Jorgensen
and Shepperd report 61% of selected SEE papers deal with
that topic” [11]. This group of papers use historical data,
i.e. and not a single one of them employs a data collection
methodology.

Only generating theories from historical data entails an
internal validity threat, which we would like to call fixed-
scenario-problem. Ideally a learned theory should be applied
to new scenarios to observe if the predicted effect occurs in
practice. The lack of new scenarios in evaluation is defined
to be the fixed-scenario-problem and it threats the evaluation
experiments like the ones reported in [11]. Therefore, studies
without a new scenario for the learned model are limited
within their experimental settings.

On the other hand it is impractical to expect every study to
collect new data. The mitigation to fixed-scenario-problem is
possible by simulating the application of a method to a new

o Ekrem Kocaguneli and Tim Menzies are with the Lane Department of

Computer Science and Electrical Engineering, West Virginia University.
E-mail: ekocagun@mix.wvu.edu, tim@menzies.us

e Martin Shepperd is with the School of Information Systems Computing &
Maths, Brunel University. E-mail: martin.shepperd@brunel.ac.uk

This research is funded in part by NSFE,CISE, project #0810879

situation. Sampling method (from now on SM) forms the basis
of such a simulation [2], [8].

There is a wide palette of available SMs used in the
literature [2], [7], [24], [32]: Leave-one-out (LOO), 10Way and
3Way are examples to the most commonly used ones. Similar
to choosing colors from a palette, the choice of different SMs
paints a different picture. For example, theoretically LOO
results in high-variance and low-bias in the results, whereas
10Way or 3Way generate just the opposite (low-variance, high-
bias) [10], [32]. The change of bias and variance (from now on
B&V) from one method to the other is known as B&V trade-
off. Employing the wrong SM or disregard of the B&V trade-
off due to particular SMs endanger the validity of a particular
study.

To our surprise, in SEE domain there is no study employing
a rigorous experimentation to observe the effects of different
SMs. Kitchenham et al. have already identified and raised the
issue of SM selection [19], [20]; however, their mentioning is
more of a pointer to future work rather than an investigation.
Hence, this paper is a natural follow-up of previous SEE
research. Furthermore, it is the first of its kind to rigorously
investigate the B&V trade-off inherent in different SMs and
it concerns more than half the SEE field. In this paper, we
present B&V trade-off results of 3 different SMs: LOO, 3Way
and 10Way cross-validation. Our experimentation includes 90
methods applied on 20 datasets.

The experimental results showed that B&V behavior of
SMs are different than the predicted: For most of the algo-
rithms, bias and variance values are statistically the same.
However, we have seen orders of magnitude differences in
terms of run times, see Figure 1 for exact values. The values

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 2

SM Run Time
LOO 8199.945 % 5
3Way 8199.945 x 3
10Way | 8199.945

Fig. 1. The run times in seconds for different SMs.

of Figure 1 belong to experiments coded in MATLAB and
run on a 64-bit dual-core machine. Given these findings, we
recommend considering experimental concerns to choose an
SM. If the main concern is the exact reproduction of the
current work by another researcher, then LOO should be used.
Otherwise, if the lower run times are the main concern, then
we recommend 3Way or 10Way.

1.1 Contributions

The contributions of this research are summarized below:

o The first systematic investigation of B&V trade-off in
SEE domain

e An extensive experimentation of 20 datasets and 90
algorithms

o Showing that B&V is not the main concern for SEE

+ Recommendations based on experimental concerns:

— For lower run-times the order of preference is: 1)
3Way, 2) 10Way, 3) LOO.
— For reproducibility prefer LOO

2 TERMINOLOGY

A typical dataset consists of a a matrix X and a vector Y. The
input variables (a.k.a. features) are stored in X, where each row
corresponds to an observation and each column corresponds
to a particular variable. Similarly, the dependent variable is
stored in a vector Y, where for each observation in X there
exists a response value.

Now assume that a prediction model represented by f (x)
has been learned from a training dataset 7. So as to measure
the errors between the actual values in Y and the predictions
given by f (), we can make use of an error function repre-
sented by L(Y, f(x)). Some examples of error functions are
squared loss (given in Equation 1) or absolute loss (given in
Equation 2).

LY,) = (v - f@) m

LY, f(x)) = [Y = f(=)] 2

Given the assumptions that the underlying model is
Y = f(X) + € where E(¢) = 0 and Var(e) = o2, then we
can come up with a derivation of the squared-error loss for
f(X) [1]. The error for a point X = xq is:

1l
=
| —
/~
~
I
~»
—~
8
o
S~—"
N—
o
>
|
8
o
[E——

Error(zg)

+B [f(z0) ~ Blf(z0)]
= 052 + BiaSQ(f(l‘o)) + Va?“(f(xo))

= IrreducableError + Bias®
—

1stTerm 2ndTerm

+ Variance
————

3rdTerm

In the above derivation, the explanations of the 15t, 2nd and
37? terms are as follows:

o The 1%!Term is the so called “irreducable error”, i.e. the
variance of the actual model around its true mean. This
variance is inevitable regardless of how well we model
f(z0), only exception to that is when the actual variance
is zero (when o2 = 0).

e The 2™ Term is the square of the bias, which is the
measure of how different the model estimates are fromt
the true mean of the underlying model.

o The 3"%Term is the variance of the estimated model. It is
the expectation of the squared deviation of the estimated
model from its own mean.

Furthermore, the above derivation is for an individual instance.
The bias and variance values associated with an algorithm
f(X) is the mean of all individual values.

Then the question becomes how the bias and variance (from
now on B&V) relate to different choices of the training size
(K), i.e. the relation to cross-validation method (CV). Here
we will consider two cases of CV: leave-one-out (LOO) and
3-Way. Ideally when training size is equal to the dataset size
(K=N), we expect CV to be approximately unbiased and to
have high variance, because N training sets are so similar to
one another. On the other hand, for small values of K, say
K=N/3 as in 3-Way, we expect lower variance and a higher
bias [1]. Naively put, the relationship is:

o LOO : Higher variance, lower bias
e 3-Way : Lower variance, higher bias

In an ideal case, when we plot B&V values of each
individual test instances on x and y axes respectively, we
expect 2 clusters:

o Upper Left: Low bias, high variance; i.e. LOO results.
o Lower right: High bias, low variance; i.e. 3Way results.

Just for the sake of clarity, a very simple but ideal case
would look like Figure 2.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 3

3Way -

10 LOO

3 8

2

g

> 6

(&)

% 4 . 00‘. .

= ° o ® [

C>6 :... .On .
2 (] ...o
0

Bias Values

Fig. 2. A simple simulation for the ideal case of B&V
relation to testing strategies.

3 RELATED WORK
3.1 Effort Estimation
3.1.1 Algorithmic Methods

There are many algorithmic effort estimators. For example,
if we restrict ourselves to just instance-based algorithms,
Figure ?? shows that there are thousands of options just in
that one sub-field.

As to non-instance methods, there are many proposed in the
literature including various kinds of regression (simple, partial
least square, stepwise, regression trees), and neural networks
just to name a few. For notes on these non-instance methods,
see §2?.

Note that instance & non-instance-based methods can be
combined to create even more algorithms. For example, once
an instance-based method finds its nearest neighbors, those
neighbors might be summarized with regression or neural
nets [26].

3.1.2 Non-Algorithmic Methods

An alternative approach to algorithmic approaches (e.g. the
instance-based methods of Figure ??) is to utilize the best
knowledge of an experienced expert. Expert based estimation
[12] is a human intensive approach that is most commonly
adopted in practice. Estimates are usually produced by domain
experts based on their very own personal experience. It is
flexible and intuitive in a sense that it can be applied in a
variety of circumstances where other estimating techniques
do not work (for example when there is a lack of historical
data). Furthermore in many cases requirements are simply
unavailable at the bidding stage of a project where a rough
estimate is required in a very short period of time.

Jorgensen [13] provides guidelines for producing realistic
software development effort estimates derived from industrial
experience and empirical studies. One important finding con-
cluded was that the combined estimation method in expert
based estimation offers the most robust and accurate com-
bination method, as combining estimates captures a broader
range of information that is relevant to the target problem, for
example combining estimates of analogy based with expert
based method. Data and knowledge relevance to the project’s

Dataset | Used by us Used by others
telecom [16] [34]
kemerer [16] [9], [34]
cocomo81o [21], [28], [30]
desharnaisL1 [21]
cocomo81s [21], [28], [30]
desharnaisL.3 [21]
albrecht [16], [9], [26], [27], [34], [35]
cocomo8le [3], [21], [30]
nasa93_center_5 [21], [28], [30]

desharnaisL.2 [21]

desharnais [15]-[17], [21] [14], [18], [25]-[27], [34]
maxwell [27], [33]
sdr [23], [36]
nasa93_center_1 [21], [28], [30]
miyazaki94 [31]
nasa93_center_2 [21], [28], [30]
finnish [6], [34]
cocomo81 [21], [28], [30] [4],
nasa93 [21], [28], [30]
china | this study

Fig. 3. A sample of effort estimation papers that use the
data sets explored in this paper.

Method | Used by

[15], [16], [25]
LOO [17], [21], [27]

[22], [34]
3-Way [22]

22], [2

10-Way 8]6’][I 128]
Others (ad-hoc, 6-Way etc.) {g%’] [2[?5’] [2[215]

Fig. 4. Distribution of the studies in Figure 3 w.r.t. their
SM. Majority of the studies use LOO. LOO is followed by
ad-hoc methods, 10-Way then 3-Way.

context and characteristics are more likely to influence the
prediction accuracy.

Although widely used in industry, there are still many ad-
hoc methods for expert based estimation. Shepperd et al. [35]
do not consider expert based estimation an empirical method
because the means of deriving an estimate are not explicit
and therefore not repeatable, nor easily transferable to other
staff. In addition, knowledge relevancy is also a problem, as
an expert may not be able to justify estimates for a new
application domain. Hence, the rest of this paper does not
consider non-algorithmic methods.

3.2 Bias-Variance Trade-Off

Figure 3 shows the studies used the datasets presented here.!

When the studies shown in Figure 3 are investigated we
see that they use different testing strategies. The below table
shows the distribution of these papers w.r.t. the testing strategy
they use.

4 METHODOLOGY
4.1 Datasets

The description of 20 datasets used in this study are provided
in Figure 5.

1. Make another table showing which methods these papers use.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 4

Historical Effort Data
Dataset Features Size Description Units Min Median Mean Max Skewness
cocomo81 17 63 NASA projects months 6 98 683 11400 4.4
cocomo8le 17 28 Cocomo81 embedded projects months 9 354 1153 11400 3.4
cocomo8lo 17 24 Cocomo81 organic projects months 6 46 60 240 1.7
cocomo81s 17 11 Cocomo81 semi-detached projects months 59 156 849.65 6400 2.64
nasa93 17 93 NASA projects months 8 252 624 8211 42
nasa93_center_1 17 12 Nasa93 projects from center 1 months 24 66 139.92 360 0.86
nasa93_center_2 17 37 Nasa93 projects from center 2 months 8 82 223 1350 2.4
nasa93_center_5 17 40 Nasa93 projects from center 5 months 72 571 1011 8211 3.4
desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0
desharnaisL1 11 46 Projects in Desharnais that are developed with Languagel hours 805 40355 57389 23940 2.09
desharnaisL.2 11 25 Projects in Desharnais that are developed with Language2 | hours 1155 3472 51167 14973 1.16
desharnaisL.3 11 10 Projects in Desharnais that are developed with Language3 hours 546 1123.5 1684.5 5880 1.86
sdr 22 24 Turkish software projects months 2 12 32 342 39
albrecht 7 24 Projects from IBM months 1 12 22 105 2.2
finnish 8 38 Software projects developed in Finland hours 460 5430 76783 26670 0.95
kemerer 7 15 Large business applications months 232 130.3 219.24 1107.3 2.76
maxwell 27 62 Projects from commercial banks in Finland hours 583 5189.5 8223.2 63694 3.26
miyazaki94 8 48 Japanese software projects developed in COBOL months 5.6 38.1 87.47 1586 6.06
telecom 3 18 Maintenance projects for telecom companies months 23.54 222.53 284.33 1115.5 1.78
china 18 499 Projects from Chines software companies hours 26 1829 3921 54620 3.92
Total: 1198

Fig. 5. The 1198 projects used in this study come from 20 data sets. Indentation in column one denotes a dataset
that is a subset of another dataset. For notes on these datasets, see the appendix.

4.2 Methods
4.2.1

In this study, we investigate:

Ten Pre-processors

o Three simple preprocessors: none, norm, and log;
o One feature synthesis methods called PCA,
e Two feature selection methods: SFS (sequential forward
selection) and SWreg;
o Four discretization methods: divided on equal fre-
quency/width.
None is the simplest preprocessor- all values are unchanged.
With the norm preprocessor, numeric values are normalized
to a 0-1 interval using Equation 3. Normalization means that
no variable has a greater influence that any other.

(actualValue — min(allV alues))

normalizedValue = (max(allValues) — min(allV alues))

With the log preprocessor, all numerics are replaced with
their logarithm. This logging procedure minimizes the effects
of the occasional very large numeric value.

Principal component analysis [2], or PCA, is a feature
synthesis preprocessor that converts a number of possibly
correlated variables into a smaller number of uncorrelated
variables called components. The first component accounts for
as much of the variability in the data as possible, and each
succeeding component accounts for as much of the remaining
variability as possible.

Some of the preprocessors aim at finding a subset of all
features according to certain criteria such as SFS (sequential
forward selection) and SWR (stepwise regression). SFS adds
features into an initially empty set until no improvement is
possible with the addition of another feature. Whenever the
selected feature set is enlarged, some oracle is called to assess
the value of that set of features. In this study, we used the
MATLAB, objective function (which reports the the mean-
squared-error of a simple linear regression on the training
set). One caution to be made here is that exhaustive search

algorithms over all features can be very time consuming (2"
combinations in an n-feature dataset), therefore SFS works
only in forward direction (no backtracking).

SWR adds and removes features from a multilinear model.
Addition and removal is controlled by the p-value in an F-
Statistic. At each step, the F-statistics for two models (models
with/out one feature) are calculated. Provided that the feature
was not in the model, the null hypothesis is: “Feature would
have a zero coefficient in the model, when it is added”. If the
null hypothesis can be rejected, then the feature is added to
the model. As for the other scenario (i.e. feature is already
in the model), the null hypothesis is: “Feature has a zero
coefficient”. If we fail to reject the null hypothesis, then the
term is removed.

Discretizers are pre-processors that maps every numeric
value in a column of data into a small number of discrete
values:

o width3bin: This procedure clumps the data features into
3 bins, depending on equal width of all bins see Equation
4.

mazx(allValues) — min(allV alues)

binWidth = cetling (-

C))
o widthSbin: Same as width3bin except we use 5 bins.
o freq3bin: Generates 3 bins of equal population size;
o freqSbin: Same as freq3bin, only this time we have 5
bins.

4.2.2 Nine Learners

Based on our reading of the effort estimation literature, we
identified nine commonly used learners that divide into

o Two instance-based learners: ABE0-INN, ABE(0-5NN;
o Two iterative dichotomizers: CART(yes),CART(no);

e A neural net: NNet;

o Four regression methods: LReg, PCR, PLSR, SWReg.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 5

Instance-based learning can be used for analog-based esti-
mation. A large class of ABE algorithms was described in
Figure ??. Since it is not practical to experiment with the
6000 options defined in Figure ??, we focus on two standard
variants. ABEQO is our name for a very basic type of ABE
that we derived from various ABE studies [14], [26], [29].
In ABE(O-xNN, features are firstly normalized to 0-1 interval,
then the distance between test and train instances is measured
according to Euclidean distance function, x nearest neighbors
are chosen from training set and finally for finding estimated
value (a.k.a adaptation procedure) the median of x nearest
neighbors is calculated. We explored two different x:

o ABEO-INN: Only the closest analogy is used. Since the
median of a single value is itself, the estimated value
in ABEO-INN is the actual effort value of the closest
analogy.

o ABEO-5NN: The 5 closest analogies are used for adap-
tation.

Iterative Dichotomizers seek the best attribute value splitter
that most simplifies the data that fall into the different splits.
Each such splitter becomes a root of a tree. Sub-trees are
generated by calling iterative dichotomization recursively on
each of the splits. The CART iterative dichotomizer [5] is
defined for continuous target concepts and its splitters strive
to reduce the GINI index of the data that falls into each split.
In this study, we use two variants:

o CART (yes): This version prunes the generated tree using
cross-validation. For each cross-val, an internal nodes is
made into a leaf (thus pruning its sub-nodes). The sub-
tree that resulted in the lowest error rate is returned.

e CART (no): Uses the full tree (no pruning).

In Neural Nets, or NNet, an input layer of project details is
connected to zero or more “hidden” layers which then connect
to an output node (the effort prediction). The connections are
weighted. If the signal arriving to a node sums to more than
some threshold, the node “fires” and a weight is propagated
across the network. Learning in a neural net compares the out-
put value to the expected value, then applies some correction
method to improve the edge weights (e.g. back propagation).
Our NNet uses three layers.

This study also uses four regression methods. LReg is
a simple linear regression algorithm. Given the dependent
variables, this learner calculates the coefficient estimates of
the independent variables. SWreg is the stepwise regression
discussed above. Whereas above, SWreg was used to select
features for other learners, here we use SWreg as a learner
(that is, the predicted value is a regression result using the
features selected by the last step of SWreg). Partial Least
Squares Regression (PLSR) as well as Principal Components
Regression (PCR) are algorithms that are used to model a
dependent variable. While modeling an independent variable,
they both construct new independent variables as linear com-
binations of original independent variables. However, the ways
they construct the new independent variables are different.
PCR generates new independent variables to explain the
observed variability in the actual ones. While generating new
variables the dependent variable is not considered at all. In that

respect, PCR is similar to selection of n-many components via
PCA (the default value of components to select is 2, so we
used it that way) and applying linear regression. PLSR, on
the other hand, considers the independent variable and picks
up the n-many of the new components (again with a default
value of 2) that yield lowest error rate. Due to this particular
property of PLSR, it usually results in a better fitting.

4.3 Experiments

5 RESULTS

When we calculated the B&V values for 90 algorithms (the
algorithms in Comba paper) on various datasets, we were
unable to observe the behavior of Figure 2, i.e. we did not
observe two distinct clusters at predicted B&V zones. On
the contrary, we observed that both B&V values are close to
one another for LOO and 3Way, i.e. the two clusters mostly
overlap. Also, the ideal or predicted lowness and highness for
B&V values were not visible too. The actual B&V values
were both high, regardless of the testing strategy. In Figure ??,
Figure 6, Figure 7 the B&V plots of 90 algorithms (i.e. 90
circles for 3-Way and 90 triangles for LOO) for Nasa93,
Cocomo81 and Desharnais datasets are to be seen. All the
values reported in these figures are logged. Also note that the
axes in these figures are not scaled, because the differences
are so small that scaling the axes makes it difficult to observe
the behavior of B&V. See in these figures, how the ideal
behavior of B&V differs from the actual case for software
effort datasets. We have conducted these experiments on many
more datasets and the results are pretty much the same: 1) No
ideal behavior for 3-Way and LOO; 2) 3-Way and LOO B&V
values overlap.

3-Way -
10-Way
15.15
" LOO - .
(0]
>
3 151 . 1ot
8 L el
S 15.05 o .
= ‘A"Jf ° {A .
K 7 2ol
15 a o 4 PR —— ox o gt 4
14.95
6 8 10 12 14 16

Bias Values

Fig. 6. B&V values for Cocomo81.

The plot of sorted B&V values of Figure 8 are given in
Figure 10 and Figure ??.

5.1 Conclusions
No difference between bias and variance.

REFERENCES

[1] The Elements of Statistical Learning. Springer, July 2003.
[2] E. Alpaydin. Introduction to Machine Learning. MIT Press, 2004.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 6

dataset | bias | variance
3Way 10Way 3Way 10Way
cocomos| LOO 43.33 82.22 56.67 80.00
3Way 21.11 40.00
cocomo8lo LOO 91.11 100.00 75.56 93.33
3Way 90.00 63.33
cocomo8le LOO 67.78 88.89 54.44 77.78
3Way 35.56 18.89
cocomo81s LOO 62.22 86.67 55.56 74.44
3Way 32.22 34.44
1asa93 LOO 81.11 90.00 62.22 75.56
3Way 58.89 60.00
nasa93_center_1]%“8,0 S 341“]“1‘ 6T67] igg;‘
- - 3Way . !
nasa93_center_2]';v?lo Barit g;gg 56 Z;;
- = ay . 3
nasa93_center_5],;\%O E6T6] 3??Z 000 ?‘ZZ?
- = ay . .
desharnais LOO 100.00 100.00 91.11 93.33
3Way 100.00 81.11
desharnaisL1 LOO | 100000 1000 | LIt 22
ay . §
desharnaisL2 ol] e
ay X d
. LOO 94.44 100.00 60.00 100.00
desharnaisL.3 3Way 85.56 4333
sdr LOO 5222 64.44 28.89 62.22
3Way 20.00 16.67
albrecht LOO 98.89 100.00 78.89 93.33
3Way 77.78 50.00
finnish LOO 100.00 100.00 91.11 92.22
3Way 100.00 84.44
Kemerer LOO 92.22 100.00 77.78 85.56
3Way 82.22 57.78
maxwell LOO 94.44 100.00 81.11 88.89
3Way 8222 64.44
miyazakio4 LOO 76.67 93.33 52.22 77.78
3Way 50.00 35.56
telecom LOO 100.00 100.00 91.11 95.56
3Way 100.00 70.00

Fig. 8. Percentage of ties. For every highlighted cell, the
percentage of ties w.r.t. the dataset size is given. LOO,
3Way and 10Way are represented by the letters a, b and
c respectively.

100
8 80
c
o
g 60
=
g 40
20 | as LOO vs 3Way —=—
LOO vs 10Way
3Way vs 10Way —-—a--

0
0 2 4 6 8 1012 14 16 18 20
Index

Fig. 9. Sorted bias values of LOO, 3Way and 10Way.
Actual values are given in Figure 8.

(3]

(4]
(51
(6]

A. Bakir, B. Turhan, and A. Bener. A new perspective on data
homogeneity in software cost estimation: A study in the embedded
systems domain. Software Quality Journal, 2009.

B. W. Boehm. Software Engineering Economics. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 1981.

L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and
Regression Trees. Wadsworth and Brooks, Monterey, CA, 1984.

L. C. Briand, K. El Emam, D. Surmann, I. Wieczorek, and K. D.
Maxwell. An assessment and comparison of common software cost
estimation modeling techniques. In ICSE ’99: Proceedings of the 21st

100
g 80
C
o
L 60
=
S 40
&
20 | ama LOO vs 3Way —=—
LOO vs 10Way
0 3Way vs 10Way - -

0 2 4 6 8 10 12 14 16 18 20
Index

Fig. 10. Sorted bias values of LOO, 3Way and 10Way.
Actual values are given in Figure 8.

(7]
(8]
(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

(23]

international conference on Software engineering, pages 313-322, New
York, NY, USA, 1999. ACM.

J. Demsar. Statistical Comparisons of Clasifiers over Multiple Data Sets.
Journal of Machine Learning Research, 7:1-30, 2006.

J. Demsar. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research, 7, 2006.

G. R. Finnie, G. E. Wittig, and J.-M. Desharnais. A comparison of
software effort estimation techniques: Using function points with neural
networks, case-based reasoning and regression models. Journal of
Systems and Software, 39(3):281 — 289, 1997.

T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical
learning. Springer, 2 edition, 2008.

M. Jg rgensen and M. Shepperd. A Systematic Review of Software
Development Cost Estimation Studies. /EEE Transactions on Software
Engineering, pages 33-53, Jan. 2007.

M. Jgrgensen. A review of studies on expert estimation of software
development effort. Journal of Systems and Software, 70(1-2):37-60,
2004.

M. Jorgensen. Practical guidelines for expert-judgment-based software
effort estimation. Software, IEEE, 22(3):57-63, 2005. 0740-7459.

G. Kadoda, M. Cartwright, and M. Shepperd. On configuring a case-
based reasoning software project prediction system. UK CBR Workshop,
Cambridge, UK, pages 1-10, 2000.

J. Keung. Theoretical maximum prediction accuracy for analogy-based
software cost estimation. In Software Engineering Conference, 2008.
APSEC °08. 15th Asia-Pacific, pages 495 =502, 3-5 2008.

J. Keung and B. Kitchenham. Experiments with analogy-x for software
cost estimation. In Software Engineering, 2008. ASWEC 2008. 19th
Australian Conference on, pages 229 —238, 26-28 2008.

J. W. Keung, B. A. Kitchenham, and D. R. Jeffery. Analogy-x: Providing
statistical inference to analogy-based software cost estimation. IEEE
Trans. Softw. Eng., 34(4):471-484, 2008.

C. Kirsopp and M. Shepperd. Making inferences with small numbers
of training sets. Software, IEE Proceedings, 149, 2002.

B. Kitchenham and E. Mendes. Why comparative effort prediction
studies may be invalid. In PROMISE ’'09: Proceedings of the 5th
International Conference on Predictor Models in Software Engineering,
pages 1-5, New York, NY, USA, 2009. ACM.

B. Kitchenham, E. Mendes, and G. H. Travassos. Cross versus Within-
Company Cost Estimation Studies: A Systematic Review. IEEE Trans.
Softw. Eng., 33(5):316-329, 2007.

E. Kocaguneli, G. Gay, Y. Yang, T. Menzies, and J. Keung. When to
use data from other projects for effort estimation. In ASE ’10: To Ap-
pear In the Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, New York, NY, USA,
2010.

E. Kocaguneli, T. Menzies, A. Bener, and J. Keung. Exploiting the
Essential Assumptions of Analogy-based Effort Estimation. To Appear
in IEEE Trans. Softw. Eng, 2011.

Y. Kultur, B. Turhan, and A. B. Bener. ENNA: software effort
estimation using ensemble of neural networks with associative memory.
In SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pages
330-338, New York, NY, USA, 2008.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z

[24] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking clas-
sification models for software defect prediction: A proposed framework
and novel findings. IEEE Transactions on Software Engineering, 2008.

[25] J. Li and G. Ruhe. Analysis of attribute weighting heuristics for analogy-
based software effort estimation method AQUA+. Empirical Software
Engineering, 13(1):63-96, 2008.

[26] Y. Li, M. Xie, and T. Goh. A study of project selection and feature
weighting for analogy based software cost estimation. Journal of
Systems and Software, 82:241-252, 2009.

[27] Y. Li, M. Xie, and G. T. A study of the non-linear adjustment for analogy
based software cost estimation. Empirical Software Engineering, pages
603-643, 2009.

[28] K. Lum, T. Menzies, and D. Baker. 2cee, a twenty first century effort
estimation methodology. In International Society of Parametric Analysis
Conference (ISPA / SCEA), May 2008.

[29] E. Mendes, 1. D. Watson, C. Triggs, N. Mosley, and S. Counsell.
A comparative study of cost estimation models for web hypermedia
applications. Empirical Software Engineering, 8(2):163—196, 2003.

[30] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting best practices for
effort estimation. /EEE Trans. Softw. Eng., 32:883-895, 2006.

[31] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki. Robust regression
for developing software estimation models. J. Syst. Softw., 27(1):3-16,
1994.

[32] G. Seni and J. Elder. Ensemble Methods in Data Mining: Improving
Accuracy Through Combining Predictions. Morgan and Claypool
Publishers, 2010.

[33] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris. Software productivity
and effort prediction with ordinal regression. Information and Software
Technology, 47(1):17 — 29, 2005.

[34] M. Shepperd and C. Schofield. Estimating software project effort using
analogies. [EEE Trans. Softw. Eng., 23(11):736 —743, nov 1997.

[35] M. Shepperd, C. Schofield, and B. Kitchenham. Effort estimation
using analogy. In Proceedings of the 18th International Conference
on Software Engineering, pages 170 —178, 25-29 1996.

[36] B. Turhan, O. Kutlubay, and A. Bener. Evaluation of feature extraction
methods on software cost estimation. In Empirical Software Engineering
and Measurement, 2007. ESEM 2007. First International Symposium on,
pages 497 -497, 20-21 2007.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z

Dataset | sM | Bias | Variance

3Way

| @
cocomo81 ‘ .
| @

10Way
LOO

3Way ‘ .

cocomo8lo 10Way ‘ .

LOO | @

3Way ‘
10Way
LOO

cocomo8le

3Way
10Way
LOO

cocomo81s

3Way
10Way
LOO

nasa93

3Way
10Way
LOO

nasa93_center_1

3Way
10Way
LOO

nasa93_center_2

nasa93_center_5 10Way

LOO

3Way
10Way
LOO

desharnais

3Way
10Way
LOO

desharnaisL 1

3Way
10Way
LOO

desharnaisL.2

3Way
10Way
LOO

desharnaisL.3

\
\
\
\
\
\
\
\
\
\
\
\
\
\
3Way ‘
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\

3Way
sdr 10Way | @

LOO | @

3Way ‘ .

albrecht 10Way ‘ .

LOO | @

3Way ‘
10Way
LOO

finnish

3Way
10Way
LOO

kemerer

3Way

maxwell 10Way

3Way
10Way
LOO

miyazaki94

3Way
10Way
LOO

telecom

\
|
\
\
|
|
\
LOO \
|
\
\
\
\
|

Ein 7 DRI vimhine in Aliardilace

