JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 1

Sampling Methods in Software Effort Estimation:
An Investigation on Bias-Variance Trade-Off

Ekrem Kocaguneli, Student Member, IEEE Tim Menzies, Member, IEEE Martin Shepperd, Member, IEEE

Abstract—

Background: More than half the software effort estimation studies focus on model comparisons, for which sampling methods are
fundamental. Studies adopt different sampling methods such as leave-one-out (LOO), 10-Way, 3-Way cross-validation. However, none
of the studies that we are aware of empirically justifies its sampling method. Aim: According to theory more and smaller test sets,
increase the variance and decrease the bias. However, there is no empirical investigation of this theoretical concept in software effort
estimation. In this paper, we empirically investigate whether theoretical assumptions hold for software effort datasets. Method: We
evaluated 90 different algorithms on 20 different effort datasets. For each algorithm, we calculated the bias and variance values under
LOO, 3Way and 10Way to check if they behave as predicted by the theory. Results: This extensive study showed that the theory does
not hold for effort estimation datasets. We observed that the majority of the methods have statistically same bias and variance values
under different sampling methods. Conclusion: Since effort datasets used here are indifferent to sampling methods, we conclude that
the bias-variance trade-off is not the main concern for selecting a sampling method. When opting for a particular sampling method, we
recommend consideration of run-times and reproducibility of the results.

Index Terms—Software Cost Estimation, Experimentation, Bias, Variance

1 INTRODUCTION

Sampling method is an important topic for software effort
estimation (from now on SEE) studies and an empirical study
to compare the pros and cons of different sampling methods
in SEE is urgent.

The biggest research topic in SEE since 1980s is the
introduction and comparison of new methods [?]. In their
comprehensive systematic review Jorgensen and Shepperd
report 61% of selected SEE papers deal with that topic [?].
This group of papers use historical data, i.e. and not a single
one of them employs a data collection methodology.

Ideally a learned theory should be applied to new scenarios
to observe if the predicted effect occurs in practice. Only
generating theories from historical data entails an internal
validity threat, which we would like to call “fixed-scenario-
problem”. fixed-scenario-problem is the lack of new scenarios
in evaluation and it threats the evaluation experiments like the
ones reported in [?]. Therefore, studies without a new scenario
for the learned model are limited within their experimental
settings.

On the other hand it is impractical to expect every study to
collect new data. The mitigation to fixed-scenario-problem is
possible by simulating the application of a method to a new
situation. A sampling method (from now on SM) forms the
basis of such a simulation [?], [?].

There is a wide palette of available SMs used in the litera-

o Ekrem Kocaguneli and Tim Menzies are with the Lane Department of

Computer Science and Electrical Engineering, West Virginia University.
E-mail: ekocagun@mix.wvu.edu, tim@menzies.us

e Martin Shepperd is with the School of Information Systems Computing &
Maths, Brunel University. E-mail: martin.shepperd@brunel.ac.uk

This research is funded in part by NSFE,CISE, project #0810879

ture: Leave-one-out (LOO), 3Way and 10Way are some exam-
ples to the most commonly used ones [?], [?], [?], [?]. Similar
to choosing colors from a palette, the choice of different SMs
results in a different picture. For example, theoretically LOO
results in high-variance and low-bias in the results, whereas
3Way generates just the opposite (low-variance, high-bias) and
10Way in between the two methods [?], [?]. The change from
one method to the other is known as bias and variance (from
now on B&V) trade-off. Employment the right SM and correct
interpretation of B&V trade-off is crucial to the validity of a
particular study.

To our surprise, in SEE domain there is no study employing
a rigorous experimentation to observe the effects of different
SMs. Kitchenham et al. have already identified and raised
the issue of SM selection [?]; however, their mentioning is
more of a pointer to future work rather than an investigation.
Hence, this paper is a natural follow-up of previous SEE
studies. Furthermore, it is the first of its kind to rigorously
investigate the B&V trade-off inherent in different SMs and
it concerns more than half the SEE field. In this paper, we
present B&V trade-off results of 3 different SMs: LOO, 3Way
and 10Way cross-validation. Our experimentation includes 90
methods applied on 20 datasets.

The results show that B&V behavior of SMs are different
than the predicted: For the majority of the algorithms, B&V
values of LOO, 3Way and 10Way are statistically the same.
However, we have seen orders of magnitude differences in
terms of run times, see Figure 1 for exact values. The values
of Figure 1 belong to experiments coded in MATLAB and
run on a 64-bit dual-core machine. Given these findings, we
recommend focusing on experimental concerns to choose an
SM. If the main concern is the exact reproduction of the
current work, then LOO is to be used. Otherwise, if the

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 2

SM Run Time

LOO More than 86,400
3Way 14,280

10Way | 28,860

Fig. 1. The run times in seconds for different SMs. Note
that LOO is orders of magnitude slower than 3Way and
10Way. These run times are for all the datasets included.
Execution of LOO was terminated after 24 hours.

lower run times are the main concern, then we recommend
3Way or 10Way. 3Way generates lower run times than 10Way,
but 10Way is more commonly used in SEE (see Figure 3
for mapping of studies to SMs). Therefore, unless 10Way
is prohibitively slower (days of run times) than 3Way, we
recommend 10Way over 3Way.

1.1 Contributions

The contributions of this research are:

e The first systematic investigation of B&V trade-off in
SEE domain

e An extensive experimentation of 20 datasets and 90
algorithms

o Showing that B&V trade-off is not the main concern for
SEE

« Recommendations based on experimental concerns:

— For lower run-times the order of preference is: 1)
10Way, 2) 3Way, 3) LOO.
— For reproducibility prefer LOO

2 TERMINOLOGY

A typical SEE dataset consists of a matrix X and a vector Y.
The input variables (a.k.a. features) are stored in X, where
each row corresponds to an observation and each column
corresponds to a particular variable. Similarly, the dependent
variable is stored in a vector Y, where for each observation in
X there exists a response value.

Now assume that a prediction model represented by f (z)
has been learned from a training dataset and the actual values
in the training set were generated by an unknown function
f(x). So as to measure the errors between the actual values
in Y and the predictions given by f (z), we can make use of
an error function represented by L(Y, f(z)). Some examples
of error functions are squared loss (Equation 1) and absolute
loss (Equation 2).

LY, @) = (v — (@) n

LY, f(z)) = Y — f(2) 2

Given the assumptions that the underlying model is
Y = f(X) + ¢ where E(¢) = 0 and Var(e) = o2, then we
can come up with a derivation of the squared-error loss for
F(X) [?]. The error for a point X = g is:

1l
=
| —
/~
~
I
~~»
—~
8
=)
S~—"
N—
o
>
|
8
o
[

Error(zg)

+B [f(z0) ~ Blf(z0)]
= 052 + BiaSQ(f(l‘o)) + Va?“(f(xo))

= IrreducableError + Bias®
—

1stTerm 2ndTerm

+ Variance
————

3rdTerm

In the above derivation, the explanations of the 15¢, 274 and
374 terms are as follows:

e The 15T erm is the so called “irreducable error”,i.e. the
variance of the actual model around its true mean. This
variance is inevitable regardless of how well we model
f(zo), only exception to that is when the actual variance
is zero (when o2 = 0).

e The 2"9Term is the square of the bias, which is the
measure of how different the model estimates are fromt
the true mean of the underlying model.

o The 3"%Term is the variance of the estimated model. It is
the expectation of the squared deviation of the estimated
model from its own mean.

Furthermore, the above derivation is for an individual instance.
The B&V values associated with an algorithm f(X) is the
mean of all individual values.

An important question associated with SMs is how B&V
relate to different choices of the training size (K). In this study
we consider three different SMs: LOO, 3Way and 10Way.
These SMs are selected due to their frequent use in SEE (see
Figure 4). The brief descriptions of SMs applied on a dataset
of size N are:

« LOO

— Take one instance at a time as the test set
— Build the learner on the remaining /N — 1 instances
(training set)
— Use the model to estimate for the test set
e 3Way
— Randomize order of rows in data
— Divide dataset into 3 subsets of size close or equal
to N/3
— Use each subset as the test set and the remaining
subsets as the training set
— Repeat above procedure 10 times
o 10Way
— Randomize order of rows in data
— Divide dataset into 10 subsets of size close or equal
to N/10
— Use each subset as the test set and the remaining
subsets as the training set

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 3

3Way e
107 aa 4, 10Way
m N LOO 4
1) 8 & A,
C_?S Ai A
> 6 AA AA*
3
§ 4 J'-... ...
: *A
>
2 »’
0

0 2 4 6 8 10
Bias Values

Fig. 2. A simple simulation for the “expected” case of
B&V relation to testing strategies.

— Repeat above procedure 10 times

“Theoretically” when training size (K) is equal to the
dataset size (K=N), we expect SM to be approximately unbi-
ased and to have high variance, because N training sets are so
similar to one another and N models are used for estimation.
On the other hand, for small values of K, say K=N/3 as in
3Way, we expect low variance and high bias [?]. For an SM
that has training sizes between LOO and 3Way, say K=N/I10
as in 10Way, expected B&V values are between those of LOO
and 3Way. Naively put, the “expected” relationship is:

« LOO : High variance, low bias
e 3Way : Low variance, high bias

o 10Way : Values between LOO and 3Way

In an ideal case, when we plot B&V values of each
individual test instance on x and y axes respectively, we expect
3 clusters:

o Upper Left : Low bias, high variance; i.e. LOO results.
o Lower right : High bias, low variance; i.e. 3Way results.
o Center : In-between B&V; i.e. 10Way results.

A very simple but ideal case would look like Figure 2.
Figure 2 is only demonstrative and B&V values are randomly
generated.

3 RELATED WORK
3.1 Bias-Variance Trade-Off

The SMs and the B&V trade-off are critical to assess different
learners [?], [?], [?], [?]. The issue has been both theoreti-
cally [?], [?], [?] as well as practically investigated [?], [?],
[?1, [?]. It is our understanding that the theoretically expected
and actual behavior of different SMs may or may not overlap.
Depending on dataset size and type, actual B&V values may
be different than expected.

The size and type of effort estimation datasets are quite
unique: noisy and limited in size [?], [?]. Kitchenham and
Mendes have discussed the effects of SMs on B&V in the
context of cross-within-company data [?] and suggested that
LOO biases positively towards within-company data. However,
their discussion is based on their extensive expert knowledge
of the area and does not include an experimentation. Aside

Dataset Used by
telecom 1?1, 7]

kemerer [?1, 12, 2]
cocomo81o 21, 121, 1?1,
desharnaisL1 [?1,
cocomo81s [?1, 121, 1?1,
desharnaisL.3 [?1,

albrecht 21, 121, 121, 1?1, 2], [?]
cocomo8le [21, 121, [?]
nasa93_center_5 21, 121, 1
desharnais.2 [?1

desharnais 21, 1?1, 71 20, 20, 120, 120, 120, 121, [?]
maxwell [?1, 1?]

sdr [?1, 12
nasa93_center_1 [?1, [?1, [?]
miyazaki94 [?]
nasa93_center_2 [?1, 121, [2]
finnish [?1, 2]
cocomo81 [?1, 121, [?1, 1?1,
nasa93 [?1, 1?1, [7]
china this study

Fig. 3. A sample of effort estimation papers that use the
data sets explored in this paper.

Method | Used by
(21 71, [?]
LOO (21, [?], [?]
(7], [?]
Others (ad-hoc, 6-Way etc.) {Z}’ {Z}’ {:}
10-Way {Z}’ 23, 121
3-Way [?]

Fig. 4. Distribution of the studies in Figure 3 w.r.t. their
SM. Majority of the studies use LOO. LOO is followed by
ad-hoc methods, 10-Way then 3-Way.

from Kitchenham et al’s study [?], there is no other SEE
study investigating the B&V trade-off associated with SMs.

In Figure 3 we list the studies that use one or more of the
datasets used in our work, then in Figure 4 we grouped all
these studies according to their adopted SM. Note that we did
not include the studies of Figure 3 into Figure 4 if no explicit
statement of the adopted SM was made. Figure 4 shows that
LOO and 10Way are the most popular SMs, followed by
other ad-hoc methods, then by 10Way and then by 3-Way.
A wide range of different SMs are adopted in SEE and most
of the time without a justification. Therefore, an empirical
investigation of SMs is critical and urgent; hence, the rest of
this paper.

3.2 Effort Estimation Methods

Effort estimation is the activity of predicting the amount of
effort required to complete a software development project [?].
Estimation activities are carried out through:

e algorithmic methods

¢ non-algorithmic methods

Algorithmic methods learn a model from historical data
and pass new projects through that model to generate their
estimates. The number of proposed algorithmic methods and
associated variants easily exceed tens of thousands. Figure 3
of [?] shows that for analogy-based effort estimation (which is
just one branch of algorithmic methods), likely combinations
are more than 6000. Some other examples to algorithmic

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 4

methods are: various kinds of regression (simple, partial
least square, stepwise, regression trees), neural networks and
instance-based algorithms, just to name a few. In Appendix A,
we provide the algorithmic methods used in this study.

Non-algorithmic methods utilize the best knowledge of
experienced human experts. Such non-algorithmic methods,
a.k.a. expert-based estimation, is defined to be a human inten-
sive approach that is most commonly adopted in practice [?].
In expert-based variants, estimates are produced by domain
experts based on their very own personal experience. On one
hand, these methods are flexible and intuitive as they can be
applied in a variety of circumstances where other estimating
techniques do not work. For example, when there is no
historical data or the requirements of a project are unavailable
at the initial stages, a rough estimate in a very short period of
time can be provided by expert estimates. On the other hand
-regardless of the efforts to establish guidelines for expert-
based methods [?]- there are still many ad-hoc methods used
in practice. Shepperd et al. [?] do not consider expert based
estimation as an empirical method, since the means of deriving
an estimate are not explicit and therefore not repeatable,
nor easily transferable to other staff. In addition, knowledge
relevancy is also a problem, as an expert may not be able to
justify estimates for a new application domain. Lastly, from an
experimental point of view SMs do not make sense for expert
estimates, because expert estimates are based on the expert’s
personal experience rather than different divisions of train/test
sets. Hence, the rest of this paper excludes non-algorithmic
methods from the discussion of B&V.

4 METHODOLOGY
4.1 Algorithms: Pre-Processors & Learners

This study uses 10 different pre-processors x 9 learners = 90
algorithms. The selection is based on two criteria:

o Learners and pre-processors must come from SEE liter-

ature; e.g. [?1, [?], [?1, [?], [?], 21, 71, [?], [?).

o Learners must make different assumptions about the data.
This second criteria is based on data-mining theory that
different learners are built on different assumptions, hence they
have different biases [?], [?], [?], [?].

We hence used 10 pre-processors:

o Three simple preprocessors: none, norm, and log;

o One feature synthesis method: PCA;

o Two feature selection methods: SFS and SWreg;

o Four discretization methods: Based on equal fre-

quency/width.

and 9 learners:

o Two iterative dichotomizers: CART(yes), CART(no);

o A neural net: NNet;

o Four regression methods: LReg, PCR, PLSR, SWReg.

o Two instance-based learners: ABEO-INN, ABE(0-5NN;
Note that “ABE” is short for analogy-based effort estimation.
ABEO-kNN is a standard analogy-based estimator with exe-
cution steps of:

o Normalization of data to zero-one interval;

o A Euclidean distance measure;

o Estimates generated using the k nearest neighbors.
For detailed descriptions of all these learners, see Appendix A.

4.2 Experiments

Get estimates: Let A; (i € {1,2,...,90}) be one of the
90 algorithms and let D; (j € {1,2,...,20}) be one of the
20 datasets. Also let SMy (k € {1,2,3}) be one of the
3 SMs. In this step every A; is run on every D); subject to
every SMj,. In other words every A; x D; x S M}, combination
is exhausted, and actuals as well as related predictions are
stored to be used for B&V calculations. As it is impractical
for many practitioners to wait the run of an estimator more
than a day, the LOO experiments including “china” dataset
(with 499 instances) were stopped after the run time exceeded
one day. Hence, we did not include B&V values of china
dataset in §5, but we make us of its run-times.

Calculate B&V values: The actuals and predictions com-
ing from A; X D; x SMj, runs are used to calculate the B&V.
At the end of this step, we have 1 array of individual B&V
values for every A; x D; x SMj. Another interpretation is
that for every algorithm-dataset combination (A; x D;) we
have 3 arrays of B&V values (1 for each SM;). The overall
B&V values associated with every A; x D; x SM;, are the
mean of individual values.

Statistical Check on B&V values: In this step we check if
the 3 arrays of B&V values for every A; x D; combination
are statistically different from one another (checks are based
on Mann-Whitney at 95% confidence interval). This way we
can see if the run of an algorithm on a single dataset subject
to different SMs generate significantly different B&V values.
Since we have 3 different SMs, for every A; x D; there are
3 different tuples to look at: LOO vs. 3Way, LOO vs. 10Way,
3Way vs. 10Way. When we are done with all the A; x D;
combinations, we also see what percent of the 90 algorithms
resulted in significantly different B&V values.

Observe Run Times: The total execution time of the
experimentation is associated with particular implementation
method, i.e. different implementations of the same algorithm
will have different run times. Therefore, we used standard
MATLAB functions in this study: All methods except ABEO-
INN and ABEO-5NN, and all pre-processors except discretiz-
ers are found in MATLAB libraries.

The run times are also greatly affected by particular SMs.
Each SM dictates a different number of times a learner is
trained. The training-time of a learner is much greater than
the testing-time. Once a learner is trained, the prediction for a
particular test instance is instantaneous. Below are the number
training times required for each SM:

e LOO: N ftrains where N is the dataset size.

e 3Way: 10 repeats x 3 bins = 30 trains

o 10Way : 10 repeats x 10 bins = 100 trains
From above number of training times, we expect 3Way to
be the fastest SM. The difference between LOO and 10Way is
supposed to be greatly influenced by the dataset size: Until 100
instances, we expect LOO and 10Way to produce comparable
run times, whereas after 100 instances we expect LOO to be
much slower.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 5
Historical Effort Data
Dataset Features Size Description Units Min Median Mean Max Skewness
cocomo81 17 63 NASA projects months 6 98 683 11400 4.4
cocomo8le 17 28 Cocomo81 embedded projects months 9 354 1153 11400 3.4
cocomo8lo 17 24 Cocomo81 organic projects months 6 46 60 240 1.7
cocomo81s 17 11 Cocomo81 semi-detached projects months 59 156 849.65 6400 2.64
nasa93 17 93 NASA projects months 8 252 624 8211 42
nasa93_center_1 17 12 Nasa93 projects from center 1 months 24 66 139.92 360 0.86
nasa93_center_2 17 37 Nasa93 projects from center 2 months 8 82 223 1350 2.4
nasa93_center_5 17 40 Nasa93 projects from center 5 months 72 571 1011 8211 3.4
desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0
desharnaisL1 11 46 Projects in Desharnais that are developed with Languagel hours 805 40355 57389 23940 2.09
desharnaisL.2 11 25 Projects in Desharnais that are developed with Language2 | hours 1155 3472 51167 14973 1.16
desharnaisL.3 11 10 Projects in Desharnais that are developed with Language3 hours 546 1123.5 1684.5 5880 1.86
sdr 22 24 Turkish software projects months 2 12 32 342 39
albrecht 7 24 Projects from IBM months 1 12 22 105 2.2
finnish 8 38 Software projects developed in Finland hours 460 5430 76783 26670 0.95
kemerer 7 15 Large business applications months 232 130.3 219.24 1107.3 2.76
maxwell 27 62 Projects from commercial banks in Finland hours 583 5189.5 8223.2 63694 3.26
miyazaki94 8 48 Japanese software projects developed in COBOL months 5.6 38.1 87.47 1586 6.06
telecom 3 18 Maintenance projects for telecom companies months 23.54 222.53 284.33 1115.5 1.78
china 18 499 Projects from Chines software companies hours 26 1829 3921 54620 3.92
Total: 1198

Fig. 5. The 1198 projects used in this study come from 20 data sets. Indentation in column one denotes that indented

dataset is a subset of another one.

4.3 Datasets

There is at least one study in SEE using one or more of the
20 datasets used in our study (see Figure 3). Therefore, the
results presented here are based on a large corpus and concern
a number of previously published SEE studies. The description
of 20 datasets used in this study are provided in Figure 5.
These datasets are available at http://promisedata.org/data.

As described in Figure 5, the datasets were collected in
different parts of the world:

e The desharnais dataset

projects,

e cocomo81 and nasa93 include projects developed in the

United States,
« sdr, contains projects of various software companies in
Turkey [?].

Note that three of these data sets (nasa93_center_1,
nasa93_center_2, nasa93_center_5) come from different de-
velopment centers around the United States. Another three of
these data sets (cocomo8le, cocomo81o, cocomo81s) repre-
sent different kinds of projects (embedded, organic and semi-
detached respectively) developed by different team sizes and
under different constraints [?].

Note also in Figure 5, the skewness of the effort values (up
to 6.06): The datasets are extremely heterogeneous with as
much as 60-fold variation. There is also some divergence in
the features used to describe the datasets:

includes Canadian software

e While data sets have some effort values in common
(measured in terms of man-months or man-hours), no
other feature is shared by all data sets.

o The cocomo* and nasa* data sets use the features defined
by Boehm [?]; e.g. analyst capability, required software
reliability, memory constraints, and use of software tools.

o The other data sets use a wide variety of features includ-
ing, number of entities in the data model, number of basic
logical transactions, query count and number of distinct
business units serviced.

3-Way o
15.15 | 10V -
[%2] “a
o)
>
E 15.1 s 4 N .
@ L S
énn §
E 15.05 ?.r?’ .
a A"DJL I: d
> 15 a o A A eemA .AO$,AA‘
14.95
6 8 10 12 14 16
Bias Values

Fig. 6. B&V values for cocomo81.

5 RESULTS

After calculating the B&V values for 90 algorithms on all the
datasets, we were unable to observe the behavior of Figure 2,
i.e. we did not observe three clusters at predicted B&V zones.
On the contrary, we observed that B&V values associated with
different SMs were very close to one another.

For example, see in Figure 6 the mean B&V values of 90
algorithms for cocomo81 dataset. Note that different SMs are
represented with different symbols and for every SM there
are 90 symbol occurrences corresponding to 90 algorithms.
The B&V values associated with each SM overlap, instead of
forming separate clusters. Also, the expected relative low and
high B&V values of SMs (see Figure 2 for expected low and
high) were not visible too. Unlike the expected behavior, the
actual B&V values were both high, regardless of the utilized
SM.

All the values reported in Figure 6 are logged. Also note that
the axes are not scaled to an interval (say 1 to 20), because

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 6

dataset | bias | variance
3Way 10Way 3Way 10Way

LOO 43 82 57 80

cocomo8l 3Way K 21 . 40

LOO 91 100 76 93

cocomo8lo 3Way B 90) 63

LOO 68 89 54 78

cocomo8le 3Way N 36 . 19

LOO 62 87 56 74

cocomo8ls 3Way N o . 34

1asa93 LOO 81 90 62 76

3Way | - 59 - 60

nasa93_center_1 LOO o4 04 41 84

- - 3Way | - 81 - 47

nasa93_center_2 Ig\).i/gy ?4 22 _77 Z ;

nasa93_center_5 Ig\).i/gy _87 3? _70 i?

desharnais LOO 100 100 91 93

3Way | - 100 - 81

desharnaisL1 ;\%Sy] 00 égo _9 ! gé

desharnaisL.2]3“81210}/ ?9 égo _91 2;
desharnaisL.3]3“815}/ ?4 ég() _60 igo

sdr LOO 52 64 29 62

) 3Way | - 20 - 17

LOO 99 100 79 93

albrecht 3Way B 73) 50

finnish LOO 100 100 91 92

s 3Way | - 100 - 84

K LOO 92 100 78 86

emerer 3Way | - 82 - 58

1 LOO 94 100 81 89

maxwe 3Way | - 82 - 64

miyazakiod lgg?y K 2(3) 52 ;2

telecom LOO 100 100 91 96

3Way | - 100 - 70

Fig. 8. Percentage of algorithms for which B&V values
coming from different SMs are the same. Note the very
high percentage values, meaning that for the majority
of the algorithms different SMs generate statistically the
same values.

the differences are so small that scaling the axes makes it
impossible to observe the behavior of B&V values.

We have conducted these experiments on all the datasets
and generated Figure 6 for every dataset. However, the results
are the same:

e 1) No expected behavior of LOO, 3-Way and 10Way;
o 2) No distinct clusters, i.e. overlapping B&V values of
LOO, 3-Way and 10Way.

As plots do not provide additional information and as
repeating Figure 6 for every dataset is not possible due to
space constraints, we summarized these B&V values in terms
of quartile charts in Figure 7. Figure 7 shows every dataset in a
separate row, which is then divided into 3 sub-rows. Sub-rows
correspond to 3 different SMs and they show the related B&V
quartile charts separately. In every quartile chart, the median
(represented with a dot), 25" quartile (the left horizontal line-
end) and the 75" quartile (the right horizontal line-end) are
shown. Note in Figure 7, how median as well as the quartiles
of different SMs occur on top of one another. In other words,
Figure 7 proves our findings from Figure 6 in a much larger
scale.

Another way to investigate the B&V values associated
with different SMs is to check their statistical significance.

5 100
2
s 80
(7]
& 60
2
[\
> 40
‘>.‘<’ 20 i LOO vs 3Way —=—
* LOO vs 10Way
0 3Way vs 10Way s

0 2 4 6 8 1012 14 16 18 20
Ranking via percent ties

Fig. 9. Sorted bias values of LOO, 3Way and 10Way.
Actual values are given in Figure 8.

100
pe]
Q
S 80
()
& 60
© o -
> 40 e
(>F<S 20 A LOO vs 3Way —=—
. - LOO vs 10Way

0 3Way vs 10Way - O
0 2 4 6 8 10 12 14 16 18 20
Ranking via percent ties
Fig. 10. Sorted variance values of LOO, 3Way and

10Way. Actual values are given in Figure 8.

Figure 8 shows what percent of 90 algorithms had statistically
the same bias or variance values coming from tuples of SMs.
Every cell of Figure 8 reports the percentage associated with a
comparison between tuples of SMs (LOO vs. 3Way, LOO vs.
10Way, 3Way vs. 10Way). Note the extremely high percentage
values in Figure 8, meaning that for a very high percent of
the algorithms, the difference in B&V values coming from
different SMs are statistically insignificant.

Figure 9 and Figure 10 provide another perspective to
Figure 8: Sorted percentages of every SM tuple in Figure 8.
See in both figures that the percentage values of 3Way vs.
10Way are lowest, whereas the percentages associated with
LOO vs. 3Way and LOO vs. 10Way are much higher. B&V
values of LOO are much closer to 3Way and 10Way. However,
the B&V values of 3Way and 10Way more separate from one
another.

In Figure 5 we see run times for two different settings.

o All datasets included:A total of 1198 instances, where the
largest dataset (china) has 499 instances.

e china dataset excluded: A total of 699 instances, where
the largest dataset has 93 instances.

Our expectation that LOO would be much slower than 3Way
and 10Way for large datasets turned out to be true. When
3Way and 10Way finished execution on 1198 instances within

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 7

Dataset | SM | Bias

| Variance

crap 3Way

3Way
10Way
LOO

cocomo81

Ry

3Way
10Way
LOO

cocomo8lo

3Way
10Way
LOO

cocomo8le

3Way
10Way
LOO

cocomo8ls

3Way
10Way
LOO

nasa93

“*++?4+l

3Way
10Way
LOO

nasa93_center_1

6$L

3Way
10Way
LOO

nasa93_center_2

¢ ¢ 4

3Way
10Way
LOO

nasa93_center_5

644

3Way
10Way
LOO

desharnais

desharnaisL1 10Way

LOO

3Way
10Way
LOO

desharnaisL.2

© 060 o 00000
o0 e 00 o 000

3Way
10Way
LOO

desharnaisL.3

3Way
sdr 10Way
LOO

3Way
10Way
LOO

albrecht

Sl

3Way
10Way
LOO

finnish

3Way
10Way
LOO

kemerer

Loy

3Way
10Way
LOO

maxwell

¢ 64

3Way
10Way
LOO

miyazaki94

3Way
10Way
LOO

telecom

T
]
\
[
]
\
\
|
\
[
]
\
[
]
\
[
|
\
[
]
\
[
]
\
[
]
\
\
3Way I
\
[
]
\
[
]
\
[
|
\
[
]
\
[
]
\
[
]
\
\
|
\
[
]
\
[
]
\
\

Fig. 7. B&V values in quartiles for all datasets.

the course of hours, LOO was still not finished with china
dataset at the end of an entire day. Another expected result
that LOO and 10Way would have comparable run times for
datasets of size up to 100 also turned out to be correct. Note
the execution times of LOO and 10Way for 699 instances are
very close. Finally, since 3Way requires the least amount of
learner training, its execution is the fastest in both cases.

6 THREATS TO VALIDITY

One obvious threat to the validity of our results is the
implementation of the algorithms. Although we used standard
functions from MATLAB libraries, there is still considerable
code into which standard functions were embedded. Therefore,
run-times will be different in other implementations. However,

666+T+

since all SMs are run on the same code-base, the relative
position of SMs in terms of run-times would remain the same.

Another validity threat concerning the run-times is the
particular machine on which the experiments are run. Similar
to implementation, different machines will yield different run-

SM | 499/1198 instances | 93/699 instances
LOO More than 86, 400 4,980
3Way | 14,280 3,720
10Way | 28,860 5,280

Fig. 11. The run times in seconds. Column name con-
vention is: largest dataset size/total number of instances.
Execution of LOO was terminated after 24 hours.

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 8

times, but the relative position of SMs will remain the same.

The choice of SMs in this work depends on the literature
using one or more of datasets used here. On the other hand,
different choices of SMs may also have an effect on the
results. We fully support that claim and leave it as a future
work. However, we also remind that this study based on 90
algorithms and 20 datasets is much more extensive than most
of the SEE papers.

7 CONCLUSIONS

This study is a natural result of the prior work on SEE and
it relates to more than half of the field. To the best of our
knowledge, it is the first empirical investigation on B&V
trade-off inherent in different SMs.

Our experimentation investigates a very large space of 90
algorithms and 20 datasets. The results present the surprising
finding that B&V values in SEE domain behave quite different
than the expected: Different SMs are statistically the same.
However, there is no similarity between SMs in terms of their
run times. On the contrary, there are orders of magnitude
differences.

We finish this study with recommendations based on our
empirical findings. For reproducibility purposes the suitable
SM turns out to be LOO. For lower run times the SMs to be
used -in the order of preference- are 10Way and 3Way.

8 FUTURE WORK

The most likely future direction to this work is the reproduc-
tion of it with new datasets (and possibly with new algorithms)
to see if the B&V behavior persists.

Another future direction is to investigate further, why theo-
retical and actual behavior of B&V differs from one another
in SEE datasets.

Finally, repeating the B&V analysis reported here with
other SMs in SEE (including the ad-hoc methods) and reaching
a consensus to determine which SMs should be used under
which conditions is the ultimate goal of this initial analysis.

APPENDIX

A. METHODS

This study uses 90 algorithms, which are product of 10
pre-processors combined with 9 learners. The details of the
learners as well as the pre-processors are provided below.

A.1. Ten Pre-processors

In this study, we investigate:

o Three simple preprocessors: none, norm, and log;

o One feature synthesis methods called PCA;

o Two feature selection methods: SFS (sequential forward
selection) and SWreg;

o Four discretization methods: divided on equal fre-
quency/width.

None is the simplest preprocessor- all values are unchanged.

With the norm preprocessor, numeric values are normalized
to a 0-1 interval using Equation 3. Normalization means that
no variable has a greater influence than any other.

normalizedValue — (actualValue — min(allV alues))

(maz(allV alues) — min(allValues))

With the log preprocessor, all numerics are replaced with
their natural logarithm value. This logging procedure mini-
mizes the effects of the occasional very large numeric values.

Principal component analysis [?], or PCA, is a feature
synthesis preprocessor that converts a number of possibly
correlated variables into a smaller number of uncorrelated
variables called components. The first component accounts for
as much of the variability in the data as possible, and each
succeeding component accounts for as much of the remaining
variability as possible.

Some of the preprocessors aim at finding a subset of all
features according to certain criteria such as SFS (sequential
forward selection) and SWR (stepwise regression). SFS adds
features into an initially empty set until no improvement is
possible with the addition of another feature. Whenever the
selected feature set is enlarged, some oracle is called to assess
the value of that set of features. In this study, we used the
MATLAB, objective function (which reports the the mean-
squared-error of a simple linear regression on the training
set). One caution to be made here is that exhaustive search
algorithms over all features can be very time consuming (2"
combinations in an n-feature dataset), therefore SFS works
only in forward direction (no backtracking).

SWR adds and removes features from a multi-linear model.
Addition and removal is controlled by the p-value in an F-
Statistic. At each step, the F-statistics for two models (models
with/out one feature) are calculated.

Discretizers are pre-processors that maps every numeric
value in a column of data into a small number of discrete
values:

o width3bin: This procedure clumps the data features into
3 bins, depending on equal width of all bins see Equation
4.

maz(allValues) — min(allV alues)

binWidth = ceiling (
n
C))
o width5bin: Same as width3bin except we use 5 bins.
o freq3bin: Generates 3 bins of equal population size;
o freq5bin: Same as freq3bin, only this time we have 5

bins.

A.2. Nine Learners

Based on our reading of the effort estimation literature, we
identified nine commonly used learners that divide into
o Two instance-based learners: ABE0-INN, ABE(0-5NN;
o Two iterative dichotomizers: CART(yes),CART(no);
o A neural net: NNet;
o Four regression methods: LReg, PCR, PLSR, SWReg.

Instance-based learning can be used for analogy-based esti-
mation (ABE). Since it is not practical to experiment with

JOURNAL OF IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. Y, SOMEMONTH 201Z 9

the all ABE variants, we focus on two standard variants.
ABEQ is our name for a very basic type of ABE that we
derived from various ABE studies [?], [?], [?]. In ABEO-xNN,
features are firstly normalized to O-1 interval, then the distance
between test and train instances is measured according to
Euclidean distance function, x nearest neighbors are chosen
from the training set and finally for finding estimated value
(a.k.a adaptation procedure) the median of x nearest neighbors
is calculated. We explored two different x:

o ABEO-INN: Only the closest analogy is used. Since the
median of a single value is itself, the estimated value
in ABEO-INN is the actual effort value of the closest
analogy.

e ABEO-5NN: The 5 closest analogies are used for adap-
tation.

Iterative Dichotomizers seek the best attribute value splitter
that most simplifies the data that fall into the different splits.
Each such splitter becomes a root of a tree. Sub-trees are
generated by calling iterative dichotomization recursively on
each of the splits. The CART iterative dichotomizer [?] is
defined for continuous target concepts and its splitters strive
to reduce the GINI index of the data that falls into each split.
In this study, we use two variants:

o CART (yes): This version prunes the generated tree using
cross-validation. For each cross-validation, an internal
node is made into a leaf (thus pruning its sub-nodes). The
sub-tree that resulted in the lowest error rate is returned.

o CART (mo): Uses the full tree (no pruning).

In Neural Nets, or NNet, an input layer of project details is
connected to zero or more “hidden” layers which then connect
to an output node (the effort prediction). The connections are
weighted. If the signal arriving to a node sums to more than
some threshold, the node “fires” and a weight is propagated
across the network. Learning in a neural net compares the out-
put value to the expected value, then applies some correction
method to improve the edge weights (e.g. back propagation).
Our NNet uses three layers.

This study also uses four regression methods. LReg is
a simple linear regression algorithm. Given the dependent
variables, this learner calculates the coefficient estimates of
the independent variables. SWreg is the stepwise regression.
As a pre-processor SWreg is used to select features for other
learners, here we use SWreg as a learner (that is, the predicted
value is a regression result using the features selected by
the last step of SWreg). Partial Least Squares Regression
(PLSR) as well as Principal Components Regression (PCR)
are algorithms that are used to model a dependent variable.
While modelling an independent variable, they both construct
new independent variables as linear combinations of original
independent variables. However, the ways they construct the
new independent variables are different. PCR generates new
independent variables to explain the observed variability in
the actual ones. While generating new variables the dependent
variable is not considered at all. In that respect, PCR is similar
to selection of n-many components via PCA (the default value
of components to select is 2 in MATLAB implementation, so
we used it that way) and applying linear regression. PLSR, on

the other hand, considers the independent variable and picks
up the n-many of the new components (again with a default
value of 2) that yield lowest error rate. Due to this particular
property of PLSR, it usually results in a better fitting.

