
Noname manuscript No.
(will be inserted by the editor)

Bias and Variance in Software Effort Estimation
An Investigation of Bias-Variance Trade-Off Subject to Different Testing
Strategies

the date of receipt and acceptance should be inserted later

A typical dataset consists of a a matrix X and a vector Y. The input variables (a.k.a.
features) are stored in X, where each row corresponds to an observation and each column
corresponds to a particular variable. Similarly, the dependent variable is stored in a vector
Y, where for each observation in X there exists a response value.

Now assume that a prediction model represented by f̂(x) has been learned from a train-
ing dataset τ . So as to measure the errors between the actual values in Y and the predictions
given by f̂(x), we can make use of an error function represented by L(Y, f̂(x)). Some ex-
amples of error functions are squared loss (given in Equation 1) or absolute loss (given in
Equation 2).

L(Y, f̂(x)) =
(
Y − f̂(x)

)2
(1)

L(Y, f̂(x)) = |Y − f̂(x)| (2)

Given the assumptions that the underlying model is Y = f(X) + ε where E(ε) = 0 and
V ar(ε) = σ2

ε , then we can come up with a derivation of the squared-error loss for f̂(X) [1].
The error for a point X = x0 is:

Error(x0) = E
[(
Y − f̂(x0)

)2
|X = x0

]
= σ2

ε +
(
E[f̂(x0)− f(x0)]

)2
+ E

[
f̂(x0)− E[f̂(x0)]

]
= σ2

ε +Bias2(f̂(x0)) + V ar(f̂(x0))

= IrreducableError︸ ︷︷ ︸
1stTerm

+ Bias2︸ ︷︷ ︸
2ndTerm

+V ariance︸ ︷︷ ︸
3rdTerm

In the above derivation, the explanations of the 1st, 2nd and 3rd terms are as follows:

– The 1stTerm is the so called “irreducable error”, i.e. the variance of the actual model
around its true mean. This variance is inevitable regardless of how well we model f(x0),
only exception to that is when the actual variance is zero (when σ2

ε = 0).
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– The 2ndTerm is the square of the bias, which is the measure of how different the model
estimates are fromt the true mean of the underlying model.

– The 3rdTerm is the variance of the estimated model. It is the expectation of the squared
deviation of the estimated model from its own mean.

Furthermore, the above derivation is for an individual instance. The bias and variance values
associated with an algorithm f̂(X) is the mean of all individual values.

Then the question becomes how the bias and variance (from now on B&V ) relate to
different choices of the training size (K), i.e. the relation to cross-validation method (CV).
Here we will consider two cases of CV: leave-one-out (LOO) and 3-Way. Ideally when
training size is equal to the dataset size (K=N), we expect CV to be approximately unbiased
and to have high variance, because N training sets are so similar to one another. On the other
hand, for small values of K, say K=N/3 as in 3-Way, we expect lower variance and a higher
bias [1]. Naively put, the relationship is:

– LOO : Higher variance, lower bias
– 3-Way : Lower variance, higher bias

In an ideal case, when we plot B&V values of each individual test instances on x and y
axes respectively, we expect 2 clusters:

– Upper Left: Low bias, high variance; i.e. LOO results.
– Lower right: High bias, low variance; i.e. 3Way results.

Just for the sake of clarity, a very simple but ideal case would look like Figure 1. In that
figure, 30 hypothetical algorithms subject to both LOO and 3-Way are represented.
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Fig. 1 A simple simulation for the ideal case of B&V relation to testing strategies.

When we calculated theB&V values for 90 algorithms (the algorithms in Comba paper)
on various datasets, we were unable to observe the behavior of Figure 1, i.e. we did not
observe two distinct clusters at predicted B&V zones. On the contrary, we observed that
both B&V values are close to one another for LOO and 3Way, i.e. the two clusters mostly
overlap. Also, the ideal or predicted lowness and highness for B&V values were not visible
too. The actual B&V values were both high, regardless of the testing strategy. In Figure 2,
Figure 3, Figure 4 theB&V plots of 90 algorithms (i.e. 90 circles for 3-Way and 90 triangles
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for LOO) for Nasa93, Cocomo81 and Desharnais datasets are to be seen. All the values
reported in these figures are logged. Also note that the axes in these figures are not scaled,
because the differences are so small that scaling the axes makes it difficult to observe the
behavior of B&V . See in these figures, how the ideal behavior of B&V differs from the
actual case for software effort datasets. We have conducted these experiments on many
more datasets and the results are pretty much the same: 1) No ideal behavior for 3-Way and
LOO; 2) 3-Way and LOO B&V values overlap.
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Fig. 2 B&V values for Nasa93.
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Fig. 3 B&V values for Cocomo81.
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Fig. 4 B&V values for Desharnais.


