
Notes on Turkish Software Industry: Developer
Participation and Effort Estimation

Ekrem Kocaguneli
Lane Department of Computer

Science and Electrical
Engineering

West Virginia University
Morgantown, WV 26505, USA
ekocagun@mix.wvu.edu

Bora Caglayan, Ayse
Tosun

Computer Engineering
Department

Bogazici University
34342 Bebek, Istanbul,

TURKEY
bora.caglayan@boun.edu.tr,
ayse.tosun@boun.edu.tr

Ayse Bener
Ted Rogers School of

Information Technology
Management

Ryerson University
Toronto, CANADA

ayse.bener@ryerson.ca

ABSTRACT
Software effort estimation is critical for resource allocation
and planning. Accurate estimates enable managers to dis-
tribute the workload among resources in a balanced man-
ner. Organizations use different project management tools.
However, the actual workload of developers may be different
from the values observed in such tools. In this research, we
provide an overview of effort estimation activities in Turkish
software companies operating in various domains. We anal-
yse the developer workload through churn data. As a result,
we observe that in Turkish software industry, effort estima-
tion is viewed as an important topic. However, there is a big
room for research to transfer the ad-hoc methods employed
to empirical ones. Furthermore, we observe that resource
allocation after estimates does not conform to actual devel-
oper workloads. The common characteristic of developer
contribution in different projects is: More than 80% of edits
in code are performed by a small number of developers.

1. INTRODUCTION
Being able to estimate the development effort of a software
project accurately is an important indicator of mature soft-
ware development processes. Software effort estimation as
well as resource planning and monitoring has been addressed
in various contexts [3, 11, 13, 17]. A considerable number of
the studies have used publicly available datasets in their ex-
perimental settings [11, 13, 17]. These results from publicly
available datasets have provided a global picture of two is-
sues: Software effort estimation and resource planning.

In our research, we tackle the two problems in a local context
and provide a local picture of Turkish software industry. In
terms of effort estimation we provide details about the es-
timation models that are used by companies in Turkey. As

for the resource planning, we focus on programmer related
activities and evaluate programmer contribution. Our re-
search includes a wide range of companies from various do-
mains: Banking, telecommunication as well as white good
companies (embedded software development units). When
evaluating our results, we compare them to findings com-
ing from open source projects. Our purpose in that is to
see whether there are any similarities between development
activities in open source and closed company settings.

As a result of our research we have seen that the importance
of software effort estimation as well as resource planning is
well understood in Turkish software industry. Companies
have their own ad-hoc models of dealing with effort esti-
mation as well as resource planning. For effort estimation
companies use linear regression models, a form of expert
judgement or a combination of the two. The programmer
activities and workload distribution is monitored and man-
aged through third party or in-house developed project man-
agement tools.

Although both problems are tackled by companies, there is
some discomfort in their implementation. The parameters
of regression models used for software effort estimation are
determined by humans. Estimation include features identi-
fied by experts and weights assigned to them also by experts.
However, as the characteristics of the projects change over
time and number of factors that are important in software
effort increase, human judgement becomes less effective and
the linear models based on human expert judgement become
obsolete. One clarification we need to make is that, this way
of model building is not a form of estimation through expert
judgement. Estimation through expert judgement entails
experts discussing and estimating the actual effort, whereas
here experts only specify parameters of linear model [7].

Another problem regarding the monitoring of developer par-
ticipation through project management tools is that, most of
the time everyone completes similar work hours through the
tool, whereas some developers are believed to produce more
than the others. The fact that some developers producing
more than the others is not a new concept. Koch has con-
ducted an extensive case study in which he has questioned
the manpower distribution on open source projects and has



come up with the conclusion that commercial projects and
open source projects share common characteristics [10]. In
both commercial and open source projects, the manpower
distribution and corresponding production per developer in
terms of static code attributes like lines of code (LOC) show
different characteristics. In Turkish software industry, we
have seen similar results among the projects we have anal-
ysed. Although workload is evenly distributed to developers,
more than 80% of all source code development is performed
by less than 20% of the developers.

Our dataset is composed of six projects coming from mul-
tiple software companies from different domains in Turkey.
For our analysis we make use of churn analysis as well as
static code attributes. Since we collect our data from pri-
vate companies, the proprietary rights is a big concern. We
analyse the churn data of all the projects in our research and
give the necessary information regarding our analysis. We
also use these projects as the basis of software effort estima-
tion related interviews. However, project names, company
names as well as the developer names will be kept anony-
mous due to proprietary rights.

To guide us in the right direction we have formed three re-
search questions. With these research questions our aim was
to question how widely software effort estimation practices
were employed in Turkish software industry and what was
the implications of all the estimation and planning activities
on the developer participation. The three research questions
we formed are:

RQ1 How widely is effort estimation practices employed?

RQ2 Which effort estimation methods are used?

RQ3 How does estimation and planning activities reflect on
developer participation?

The rest of the paper is organized as follows: In Section 2
we provide background information regarding software ef-
fort estimation modelling as well as case studies focusing on
programmer participation, in Section 3 we give the details
of our datasets. Then we continue with Section 4 in which
we provide the methodology we adopted in this research.
Section 5 provides the results we elicited from our analysis.
In Section 6 we identify the potential threats to the validity
of our research. Finally we conclude our research in Section
7.

2. BACKGROUND
In this research we present a snapshot of Turkish software in-
dustry in two parts: 1) Effort estimation methods currently
adopted and 2) activity in terms of developer participation.
The first part is be about our observations that we elicited
during various projects with the industry. The second part
is closer to a case study of developer participation in Turkish
software industry and our conclusions will be based on churn
analysis of various different projects coming from different
software companies in Turkey. Therefore, in this section
we provide some background information for both parts. In
Section 2.1 we present some background information regard-
ing software effort estimation and in Section 2.2 we present
information regarding case studies.

2.1 Software Effort Estimation
We can categorize software effort estimation into two groups
[16]: Expert judgement-based techniques and model-based
techniques. Former approach entails experts discussing the
effort of a new project and reaching a consensus on the esti-
mated value, whereas the latter includes the use of a model
that calculates the estimated value. Model-based methods
may also use expert opinion for parameter specification etc.
however, the estimated value is indicated by the model itself
and not the expert.

A very widely used technique in software effort estimation
domain is expert judgement [6]. The employment of expert
judgment methods may be either through well defined meth-
ods like Delphi [2] or via ad-hoc methods like formal meet-
ings between experts in an organization. Although expert
judgement methods are highly regarded in various settings,
they have their own pitfalls. To begin with, the application
of expert judgement methods may create an atmosphere of
competing interests. The competing interests may be be-
tween different departments of an organization or between
experts with different levels of expertise. In the former case,
the urgent needs of a particular department may result ear-
lier deadlines for the project, which would in return affect
the allocation of many resources and which eventually may
challenge or even fail the project. In the latter case, estima-
tions of a senior expert may be more dominant to those of a
junior expert regardless of their accuracy. Secondly, human
experts are evaluated as poor in terms of improving their
estimation skills [7]. Lastly, an organization willing to com-
pletely rely on expert judgement methods for software effort
estimation would keep in mind that lack of good experts
will result in imprecise estimations. Furthermore bad es-
timations would affect critical decisions regarding whether
or not to start new projects or when to cancel challenged
projects.

Unlike expert judgement-based techniques, model-based meth-
ods rely on parametric or algorithmic models. Paramet-
ric methods adapt an expert-proposed model to local data.
Therefore, for the use of parametric methods collection of lo-
cal data is a must. One of the most widely known example
to parametric methods is the COCOMO method proposed
by Boehm [3]. Algorithmic methods are useful when local
data does not conform to the specifications of a parametric
method. Algorithmic methods employ various algorithms
to evaluate local data, build a model and make an estima-
tion. Some well known examples to algorithmic methods are
linear regression, case based reasoning systems, neural nets
and model trees [9, 11,13,17].

The latter approach is useful in the case where local data
does not conform to the specifications of the expert’s method.
A few examples of induced prediction systems are linear
regression, neural nets, model trees and analogies [13, 17].
These methods have been mostly aided with certain types
of patches such as noise removal, instance selection, feature
selection or by feature reduction. Depending on the funda-
mental assumptions of each algorithm, a different patch can
be selected.

Certain organizations may choose to use an expert judge-
ment and some other organizations may prefer to go with a



model-based approach, or alternatively a combination of the
two in different settings. Regardless of the adopted method,
the goal of any estimation model is to attain high estimation
accuracy values.

2.2 Type of Research
According to two-dimension classification scheme proposed
by Basili et. al. [1], our research falls into the class of blocked
subject-project studies, which examine objects across a set
of teams and a set of projects. To increase the granularity
of this classification we can say that our research is a case
study of effort estimation practices and developer contribu-
tion in Turkish software industry. Any study can be a formal
experiment, a case study or a survey depending how many
teams and how many projects are considered in this study
and what the scale of the study is [8]. Due to the nature
of formal experiments, they are limited in size and need
careful control. Case studies focus on what happens on a
typical project and surveys on the other hand focus on what
is happening over various types of projects. In our research
we deal with different companies and different projects that
were developed with different languages. Furthermore, we
are more of an observer than an experimenter in our re-
search. This is due to the fact that rather than being able
to experiment the response of projects as well as project
teams in response to a changing factor, we merely observed
the effort estimation practices and developer contributions
across multiple projects and multiple companies. From our
reading of Kitchenham et. al. [8] our research conforms to
the definition of a case study.

Different case studies regarding both effort estimation prac-
tices and developer participations have been conducted in
different settings. For example Jorgensen et. al. addresses
the effort estimation practices and budget overruns in Nor-
wegian software industry [14]. Koch questions effort mod-
elling as well as developer participation over open source
software projects in his extensive survey [10]. Although sim-
ilar case studies have been conducted by different researchers
in different contexts previously, to the best of our knowledge
there is no previous study evaluating the effort estimation
practices and developer participation in the context of the
Turkish software industry.

3. DATA
In our research we analyse 6 different projects coming from
different companies. Both in terms of their development
languages and in terms of their magnitude they are very dif-
ferent from one another. Ideally the suggested and practised
strategy for selecting projects in case studies is random sam-
pling [8, 14]. However, private organizations are not com-
pletely optimistic about sharing churn data and static code
attribute information of all their projects. Therefore, in our
research we have asked them to provide us with representa-
tive projects of their software development activities. This
may have introduced a selection bias into our study and we
will address this issue as threat to validity more broadly in
Section 6.

The project names and their particular characteristics are
provided in Figure 1. Due to proprietary rights, we will
name the projects and developers with numbers. The prop-
erties of projects given Figure 1 are number of develop-

ers employed, total edited lines of code (total edited LOC
= added LOC + deleted LOC ), total number of commits
that were performed during the lifecycle of the project and
the language in which the project was developed. We see
from Figure 1 that our sample set contains a wide variety
of projects in terms the features given in the same Figure.
The smallest project in terms of size (Project1) employs only
3 developers and a total of 5579 LOC were edited for this
project. The biggest project in terms of size (Project3) on
the other hand employs 98 developers and includes a total
of 1324956 edited LOC. Therefore, although we were unable
to apply random selection in our research, the organization
selected representative projects cover projects with quite dif-
ferent characteristics.

4. METHODOLOGY
In this section we provide the details about the methodology
we adopted and present our research questions that guided
us in this research.

4.1 Estimation Models
Our method for observing the estimation models employed
in organizations is to conduct various meetings with domain
experts in these organizations. The aim of those meetings
were two-fold: 1) Understanding the company practices and
needs then 2) forming a questionnaire. The initial meetings
consisted of half an hour to one hour individual interviews.
Those meetings aimed at getting to know the companies,
learning their problems as well as the aspects they would
like to improve in their current estimation practices. We
also wanted to interview a wide spectrum of positions in the
company to get a grasp of different perspectives. For exam-
ple in one of the reported companies, we have interviewed 2
senior executives, 5 analysts, 3 architects and 2 developers.
The questionnaire that formed eventually pinpoints key as-
pects of software effort estimation in those companies. The
domain experts to whom we have conducted this question-
naire are responsible for software effort estimation related
activities or for the effort estimation model (if organization
has any). Questionnaire consists of 25 questions. A small
sample of the questionnaire is as follows:

• What kind of an output do you expect from an esti-
mation model?

• What kind of an estimation do you perform in your
projects?

• What kind of metrics do you extract from your project?
And how do you evaluate them?

To be parsimonious in space, we do not provide all the ques-
tions and their possible answers here (for further information
please feel free to contact any of the authors).

4.2 Metrics for Developer Participation
We analysed churn data to understand developer participa-
tion. From churn data analysis we first extracted the commit
information of projects from source code control systems.
Since different companies use different types of source con-
trol systems, this process takes some time. For each source



Project Total # of developers Total edited LOC Total # of commits Dev. Language
Project1 3 5,579 72 Java
Project2 110 623,173 12,384 Java+JSP
Project3 97 1,324,956 23,403 PL/SQL
Project4 7 7,034 212 Java
Project5 11 16,358 322 Java+JSP
Project6 19 68,550 2,387 C

Figure 1: 6 projects coming from different organizations. Projects have a wide diversity in terms of their
size, developers they use and the languages they were developed in.

control system, we wrote scripts to extract the commit in-
formation.

In this research we extracted the commit information asso-
ciated with each developer for each project. For each devel-
oper we extracted the information of how many lines of code
(LOC) was added and deleted in each commit. Furthermore,
we recorded the total number of commits performed by each
developer. In this paper we will name the total of added and
deleted lines of code as edited lines of code.

editedLOC = addedLOC + deletedLOC (1)

After extracting the commit information related to each de-
veloper from the projects, we used two metrics to measure
developer participation in projects. The first metric we used
is the percentage edited LOC (Perc.LOC) for each devel-
oper in a project. Percentage edited LOC is the ratio of total
edited LOC by a developer to the sum of edited LOC for all
developers. The calculation of Perc.LOC for developeri is
given in Equation 2, where n corresponds to the total num-
ber of developers.

Perc.LOC =
editedLOCdeveloperi ∗ 100∑n

j=1 editedLOCdeveloperj

(2)

The second metric we used to evaluate the developer par-
ticipation is the percentage of commits (Perc.Commit) per-
formed by each developer during the development of a soft-
ware project. Calculation of Perc.Commit is similar to that
of Perc.LOC. Perc.Commit is the ratio of total number
of commits performed by a single developer to the number
of commits that was conducted by all the developers who
worked in this project. The calculation of Perc.Commit is
given in Equation 3, where n is the total number of devel-
opers in that project.

Perc.Commit =
totalCommitsdeveloperi ∗ 100∑n

j=1 totalCommitsdeveloperj
(3)

5. RESULTS
In this section we present the results of our research. While
presenting the results, we follow the research questions we
have formed in this research.

RQ1 How widely is effort estimation practices em-
ployed?

Previously it was reported by Lederer et. al. in their survey
that the software managers puts a high importance on the
necessity of software effort estimation [12]. On a scale from
1 (min) to 5 (max) the average importance attributed to
software effort estimation practice was 4.7 [12]. In our case
study of Turkish industry we observed a similar tendency.
However, rather than asking the importance attributed to
software effort estimation, we asked whether the company
conducts any estimation related activity or employs an es-
timation model. All the companies we questioned performs
software estimation related activities. Of course the level of
the activities change drastically, some companies have un-
dergone into projects for developing their own algorithmic
model, whereas some companies suffice with formal or in-
formal meetings among domain experts. However, the fact
that all companies perform estimation related activities at
different levels show that all the companies are well aware of
the software effort estimation concept. Therefore, we can say
that effort estimation practices are widely employed, but the
level of employment differs greatly from company to com-
pany.

RQ2 Which effort estimation methods are used?

Every company in our case implicitly or explicitly employs
a software effort estimation model. 2 of the companies em-
ploys a linear regression based model, in which attributes
and the weights related to these attributes are defined by
domain experts (the explicit cases). One of these two com-
panies have recently switched to a machine learning based
estimation method. The other companies employs expert
judgement in their estimation activities. However, they do
not strictly follow a Delphi like expert judgement estimation
method. Instead they follow their ad-hoc processes that en-
tails a number of meetings between domain experts for dis-
cussing the cost of a project. This shows that mostly used
estimation method is expert judgement. That is probably
due to the fact that it is a method that requires the least ef-
fort. However, since the companies do not record the initial
expert estimates of a project it is almost impossible to track
the efficiency of this method. Although being the minority
case, two companies use an algorithmic model and only of
these two companies have undergone the effort of developing
a complex estimation model that employs machine learning
algorithms.

RQ3 How does estimation and planning activities
reflect on developer participation?

After initial estimates of software effort, each company plans
the allocation of their resources. For resource allocation and



planning of effort, companies use various project manage-
ment tools. Some of the companies prefer their in-house de-
veloped project management tools, whereas some prefer to
use open source or commercial tools. From our interviews
with domain experts in each company, it is our understand-
ing that managers try to distribute the total effort evenly to
employees working in particular projects. Keeping track of
planned efforts is again performed on the project manage-
ment tools. Each employee to whom a task is assigned and a
certain hours of effort is allocated is responsible to record the
actually performed effort into the management tool. How-
ever, the consensus among the domain experts from different
companies is that the actual effort values is nothing but a
confirmation of the planned values. Therefore, the virtu-
ally even allocation of resources on the project management
tools may be misleading. In that case using churn data may
be helpful to get a better view of actual effort spent by de-
velopers. On the other hand, none of the companies we have
conducted this case study uses churn data for observing the
participation of developers to the project.

For each project in these companies, we extracted churn data
from their source control system and analysed the developer
contribution. We have seen that a big portion of the whole
development activity is performed by a very limited number
of developers. So the answer to our third research question
is that reflection of estimation and planning activities on the
developer participation is relatively weak. In other words,
the effort of managers to evenly distribute the development
effort among developers does not effectively occur in actual
development environment. In the next paragraphs, we will
evaluate the results for each project separately.

Figure 2: The Perc.LOC and Perc.Commit informa-
tion for Project1. Developer 1 is responsible for
more than 80% of the whole edited LOC.

In Figure 2 we see the Perc.LOC and Perc.Commit infor-
mation regarding Project1. The x-axis corresponds to dif-
ferent developers whereas the y-axis is the percentage value
associated with Perc.LOC and Perc.Commit. Project1 is
the smallest project among 6 projects both in terms of size
as well as in terms of employed developers. We can see that
the majority of the edited LOC in context of this project
was developed by a single developer. Developer 1 has edited
more than 80% of the total edited LOC. The difference be-
tween developers in terms of Perc.Commit metric becomes
less. However, this may be due to the fact that Developer

1 prefers to commit less often and the other two developers
prefer to commit their changes more often.

Figure 3 provides the Perc.LOC and Perc.Commit values
of Project2. Project2 is has the highest number of devel-
opers employed. A total of 110 developers have contributed
to this project during its development lifecycle. The differ-
ence between developer contribution in Project2 is less than
that of Project1. However, this may be due to the effect of
distributing a value of 100% to 110 developers. We see in
Figure 3 that after 8 developers, the contribution of indi-
vidual developers goes below 2%. Furthermore, we can see
from Figure 3 that the contribution of more than half of the
developers is less than 1%.

In Figure 4 we see the Perc.LOC and Perc.Commit values
of Project3. Project3 is another densely populated project
with 97 developers in total. The behaviour of developer con-
tribution of Project3 is similar to that of Project2, i.e. only
a small group of developers have a contribution of more than
2% and a large number of developers (after developer 31) is
responsible for less than 1% of the total edited LOC. We
also observe from Figure 4 that the behaviour of Perc.LOC
is very similar to that of Perc.Commit. Although there are
some irregularities between the two lines, this may be due
to different commit habits of individual developers.

Figure 5: Project4 Perc.LOC and Perc.Commit infor-
mation. Developer 1 and developer 2 has more than
80% of the Perc.LOC, whereas the rest is shared by
other 5 developers.

Figure 5 summarizes the developer contribution of Project4.
Project4 is a relatively small project when compared to
Project2 and Project3. The contribution pattern among
7 developers employed in Project4 is similar to previous
projects. Only two developers account for more than 80%
of the whole edits and the remaining 5 developers account
for less than 20% of the edits. Furthermore, like previous
projects the Perc.LOC and Perc.Commit lines go hand in
hand in Project4 as well.

Perc.LOC and Perc.Commit information associated with
Project5 are given in Figure 6. Project5 has 11 developers
employed in the development phase. Among 11 developers
the first three developers edits more than 80% of all the
edited LOC. With Developer 5 the contribution of develop-



Figure 3: Project2 has the highest number of developers employed. Only 8 developers contribute more than
2% to the project. The participation of more than half of the developers is less than 1%.

Figure 4: Project3 has 97 developers participating in the development activity. Majority of the developers
have limited contribution in the development activity. After developer 31, the participation of developers is
less than 1%.

ers in terms of Perc.LOC goes below 5% per developer. One
suspicious point in Figure 6 is that there is a considerable
difference between Perc.LOC and Perc.Commit values of
Developer 1, who is the top developer. The likely explana-
tion to that case could be that Developer 1 was reviewing the
code of other programmers and some of the developers were
committing through Developer 1. Although this scenario is
very likely in open source communities, this is not the case
for this particular company and project. After our inquiry
with the company, we have learned that such a review and
commit scenario does not exist for Project5.

The last project in our research is Project6. Figure 7 pro-
vides the Perc.LOC and Perc.Commit information of Project6.
In Project6 a total of 19 developers are employed. Among
19 developers the first two developers alone have the total
of more than 50% of Perc.LOC. Starting with Developer 5,
the individual participation of developers fall below 5% in
terms of Perc.LOC. Furthermore, as in the case of all the
previous projects the Perc.Commit line in Figure 7 behaves
very similar to the line of Perc.LOC.

6. THREATS TO VALIDITY
The most obvious threat to our research is the selection pro-
cess of the projects. Unlike widely used method of random
selection of projects, our projects are selected by the experts
of the organizations. Expert selection is based on the fact
that projects shall be representative of the company. When
considering the wide range of projects in our research we can
consider the dataset as representative of the organizations.
However, it cannot be proven that there is no selection bias
coming from domain experts.

The number of projects evaluated is also a very big threat to
the validity of our results. We are aware of the fact that only
six projects can be viewed insufficient to draw sound conclu-
sions in an empirical study. In addition, those projects were
selected by domain experts, which also limits the validity of
the findings. It would have been much better, if we could
have used many more projects and if we have selected those
projects randomly without human intervention. However,
the data shared by the companies (detailed project plans
and individual employee performance) is viewed very sensi-



Figure 6: Perc.LOC and Perc.Commit values of
Project5. Similar trend of previous projects con-
tinues here. The first three developers account for
more than 80% of all edited LOC.

Figure 7: Project6 Perc.LOC and Perc.Commit val-
ues. Out of 19 developers, the first 2 developers
account for more than 50% of the total edited LOC.

tive and confidential by managers. Therefore, although we
forced our chances to get as many projects as we can and
although we are aware of the limitations, we are bound to
decisions made by company managements.

Another threat to validity is the selected metrics to evalu-
ate the developer participation. Churn data stored in source
control systems of open source projects and private organi-
zations have some characteristic differences. Therefore, use
of Perc.LOC and Perc.Commit may be questionable. How-
ever, edited LOC and commit count are successfully used in
studies about open source projects [4, 10], so we also based
our metrics on edited LOC and commit count as well.

Final threat to validity of our results is the complexity of
the code that is committed by a developer. In other words,
the differences between developers in terms of Perc.LOC
can be due to the fact that some developers may be working
on more complex parts of the software, hence being able to
produce less LOC. Unfortunately we were able to get the
source code of a single project to analyse the complexity

of committed code. Depending on our analysis we did not
see such an effect. The average complexity of the committed
code by each developer was more or less the same. Of course
we cannot generalize our finding to all 6 projects. However,
this may be a hint that code complexity is not a strong
validity threat for this research.

7. CONCLUSION
In this research we observed the effort estimation and its
use in planning activities in the local perspective of Turkish
software industry. We also addressed the implications of es-
timation and planning activities on developer contribution
in software development. Our dataset in this research in-
cluded 6 projects coming from different companies that spe-
cialize in different domains. Our analysis concerning these 6
projects were performed in two phases. For effort estimation
activities, we conducted personal meetings with domain ex-
perts to gain an insight into their estimation and planning
processes. For the developer contribution analysis on the
other hand, we extracted churn data from source control
systems of different companies and derived our metrics from
the extracted churn data.

One implication of our study is that Turkish industry is well
aware of the software effort estimation concept and appre-
ciates its importance. All companies in our research implic-
itly or explicitly employ certain estimation methods. How-
ever, estimation practices are mostly far from having a scien-
tific basis. Rather than following literature in effort estima-
tion, organizations suffice with ad-hoc developed processes.
Among the companies we worked with, only one company
had a solid machine learning based effort estimation model
that was developed and implemented by our research team.

Another implication of our research is about developer par-
ticipation. The workload distribution that is being tracked
by managers through project management tools does not re-
flect the actual participation of developers. In all 6 projects
we analysed in our research, we see that majority of the
edited LOC is committed by a very limited number of de-
velopers. The fact that most of the code is developed by a
limited number of developers is previously reported in open
source domain [4, 5, 10, 15]. Skewed effort distribution was
studied in multiple projects and it was observed that %90
of the churn were done by the %20 of the developers [10]
in an open source setting. Although software development
in a private organization has very different characteristics in
comparison to open source software development, they share
common properties in terms of developer participation.

8. ACKNOWLEDGMENT
This research is supported in part by Turkish State Planning
Organization (DPT) under project number 2007K120610.

9. REFERENCES
[1] V. R. Basili, R. W. Selby, and D. H. Hutchens.

Experimentation in software engineering. IEEE Trans.
Softw. Eng., 12(7):733–743, 1986.

[2] B. Boehm, C. Abts, and S. Chulani. Software
development cost estimation approaches: A survey.
Annals of Software Engineering, 10:177–205, 2000.



[3] B. W. Boehm. Software Engineering Economics.
Prentice Hall PTR, Upper Saddle River, NJ, USA,
1981.

[4] B. Caglayan, A. Bener, and S. Koch. Merits of using
repository metrics in defect prediction for open source
projects. In FLOSS ’09: Proceedings of the 2009 ICSE
Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development, pages
31–36, Washington, DC, USA, 2009. IEEE Computer
Society.

[5] K. Crowston, K. Wei, Q. Li, and J. Howison. Core and
periphery in free/libre and open source software team
communications. In HICSS ’06: Proceedings of the
39th Annual Hawaii International Conference on
System Sciences, page 118.1, Washington, DC, USA,
2006. IEEE Computer Society.

[6] M. Jø rgensen. A review of studies on expert
estimation of software development effort. Journal of
Systems and Software, 70:37–60, February 2004.

[7] M. Jorgensen and T. Gruschke. The impact of
lessons-learned sessions on effort estimation and
uncertainty assessments. IEEE Trans. Softw. Eng.,
35(3):368–383, May-June 2009.

[8] B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case
studies for method and tool evaluation. IEEE Softw.,
12(4):52–62, 1995.

[9] E. Kocaguneli. Better methods for configuring
case-based reasoning systems. Master’s thesis,
Bogazici University, 2010.

[10] S. Koch. Effort modeling and programmer
participation in open source software projects.
Information Economics and Policy, 20(4):345 – 355,
2008. Empirical Issues in Open Source Software.

[11] Y. Kultur, B. Turhan, and A. B. Bener. ENNA:
software effort estimation using ensemble of neural
networks with associative memory. In SIGSOFT
’08/FSE-16: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software
engineering, pages 330–338, New York, NY, USA,
2008.

[12] A. L. Lederer and J. Prasad. Information systems
software cost estimating: a current assessment. J Inf
technol, 8:22–33, 1993.

[13] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting
Best Practices for Effort Estimation. IEEE Trans.
Softw. Eng., 32:883–895, 2006.

[14] K. Moløkken-Østvold, M. Jørgensen, S. S. Tanilkan,
H. Gallis, A. C. Lien, and S. E. Hove. A survey on
software estimation in the norwegian industry. IEEE
International Symposium on Software Metrics, pages
208–219, 2004.

[15] G. Robles, S. Koch, J. M. Gonzlez-Barahona, and
J. Carlos. Remote analysis and measurement of libre
software systems by means of the cvsanaly tool. In In
Proceedings of the 2nd ICSE Workshop on Remote
Analysis and Measurement of Software Systems
(RAMSS, pages 51–55, 2004.

[16] M. Shepperd. Software project economics: a roadmap.
In FOSE ’07: 2007 Future of Software Engineering,
pages 304–315, 2007.

[17] M. Shepperd and G. Kadoda. Comparing software
prediction models using simulation. IEEE Trans.

Softw. Eng., pages 1014–1022, 2001.


