
Notes on Turkish Software Industry: Developer
Participation and Effort Estimation

Ekrem Kocaguneli
Lane Department of Computer Science and

Electrical Engineering
West Virginia University

Morgantown, WV 26505, USA
ekocagun@mix.wvu.edu

Bora Caglayan, Ayse Tosun
Ayse Bener

Computer Engineering Department
Bogazici University

34342 Bebek, Istanbul, TURKEY
bora.caglayan@boun.edu.tr,

ayse.tosun@boun.edu.tr,
bener@boun.edu.tr

ABSTRACT
Software effort estimation is used for the purpose of re-
source allocation and planning. Accurate estimates enable
managers to accurately assess their available resources and
distribute the workload among programmers in a balanced
manner. To assign the tasks and work-hours to developers,
organizations use different project management tools. How-
ever, the actual participation of developers may be different
from the values observed through project management tools.

In this research, we provide an overview of effort estimation
activities of software companies in Turkey that specialize in
various domains. For each company we analyze the devel-
oper participation through churn data of a representative
project.

As a result of our analysis we observe that Turkish software
industry is mature enough to appreciate the importance of
software effort estimation, yet using ad-hoc methods. Fur-
thermore, we observe that developer participation in differ-
ent projects share common characteristics: More than 80%
of the whole edits in code are performed by a very limited
number of developers.

1. INTRODUCTION
Being able to estimate the development effort of a soft-
ware project accurately is an important indicator of mature
software development processes. Planning and accurately
managing the activities and resources associated with soft-
ware development is also at least as important as accurate
estimation. Software effort estimation as well as resource
planning and monitoring has been adressed in various con-
texts [3, 11, 13, 17]. A considerable number of the studies
have used publicly available datasets in their experimental
settings [11, 13, 17]. Results elicited from publicly available

datasets have provided a global picture of two issues: Soft-
ware effort estimation and resource planning.

In our research, we tackle the two problems in a local con-
text and provide a local picture of Turkish software industry.
In terms of effort estimation we provide details about the
estimation models that are used by companies in Turkish
software industry. As for the resource planning, we focus on
programmer related activies and evaluate programmer par-
ticipation. Our research includes a wide range of companies
from various domains: Banking, telecommunication as well
as white good companies. When evaluating our results, we
compare them to findings coming from open source projects.
Our purpose in that is to see whether there are any simimlar-
ities between development activies in open source and closed
company settings.

As a result of our research we have seen that the importance
of software effort estimation as well as resource planning is
well understood in Turkish software industry. Companies
have their own ad-hoc models of dealing with effort esti-
mation as well as resource planning. For effort estimation
companies use linear regression models, a form of expert
judgment or a combination of the two. The programmer ac-
tivities and workload distribution is monitored and managed
through third party or in-house developed project manage-
ment tools.

Although each problem is tackled by companies, there are
some discomfort regarding both issues. The regression mod-
els used for software effort estimation are built on expert
judgment. Estimation include features identified by experts
and weights assigned to them also by experts. However,
as the characteristics of the projects change over time and
more factors become important on the software effort, hu-
man judgment becomes less effective and the linear models
based on human expert judgment become obselete. This
fact also has been pointed out by Jorgensen et. al. as
the poor capability of humans to improve their expert judg-
ment. [7]. Another discomfort regarding the monitoring de-
veloper participation through project management tools is
that most of the time everyone completes the assigned work
hours through the tool whereas some developers are believed
to produce more than the others. The fact that some devel-
opers producing more than the others is not a new concept.



Koch has conducted an extensive case study in which he
has questioned the manpower distribution on open source
projects and has come up with the conclusion that com-
mercial projects and open source projects share common
characteristics [10]. In both commercial and open source
projects, the manpower distribution and corresponding pro-
duction per developer in terms of static code attributes like
lines of code (LOC) show different characteristics. In Turk-
ish software industry, we have seen similar results among
the projects we have analyzed. Although workload is evenly
distributed to developers, more than 80% of all source code
development is performed by less than 20% of the develop-
ers.

Our datasets are composed of various projects coming from
multiple software companies from different domains in Turkey.
For our analysis we make use of churn analysis as well as
static code attributes. Since we collect our data from pri-
vate companies, the proprietary rights is a big concern. We
analyze the churn data of all the projects in our research
and give the necessary information regarding our analysis.
However, project names, company names as well as the de-
veloper names will be kept anonymous due to proprietary
rights.

The rest of the paper is organized as follows: In Section 2
we provide background information regarding software ef-
fort estimation modeling as well as case studies focusing on
programmer participation, in Section 3 we give the details
of our datasets. Then we continue with Section 4 in which
we provide the methodology we adopted in thise research.
Section 5 provides the results we elicited from our analysis.
In Section 6 we identify the possible threats to the validity
of our research. Finally we conclude our research in Section
7.

2. BACKGROUND
In this research we present a snapshot of Turkish software in-
dustry in two parts: 1) Effort estimation methods currently
adopted and 2) activity in terms of developer participation.
The first part is be about our observations that we elicited
during various projects with the industry. The second part
is closer to a case study of developer participation in Turkish
software industry and our conclusions will be based on churn
analysis of various different projects coming from different
software companies in Turkey. Therefore, in this section
we provide some background information for both parts. In
Section 2.1 we present some background information regard-
ing software effort estimation and in Section 2.2 we present
information regarding case studies.

2.1 Software Effort Estimation
We can categorize software effort estimation into two groups
[16]: Expert judgment-based techniques and model-based
techniques.

A very widely used technique in software effort estimation
domain is expert judgment [6]. The employment of expert
judgment methods may be either through well defined meth-
ods like Delphi [2] or via ad-hoc methods like formal meet-
ings between experts in an organization. Although expert
judgment methods are highly regarded in various settings,
they have their own pitfalls. To begin with, the application

of expert judgment methods may create an atmosphere of
competing interests. The competing interests may be be-
tween different departments of an organization or between
experts with different levels of expertise. In the former case,
the urgent needs of a particular department may result ear-
lier deadlines for the project, which would in return affect
the allocation of many resources and which eventually may
challenge or even fail the project. In the latter case, estima-
tions of a senior expert may be more dominant to those of a
junior expert regardless of their accuracy. Secondly, human
experts are evaluated as poor in terms of improving their
estimation skills [7]. Lastly, an organization willing to com-
pletely rely on expert judgment methods for software effort
estimation shall keep in mind that lack of good experts will
result in imprecise estimations. Furthermore bad estima-
tions would affect critical decisons regarding whether or not
to start new projects or when to cancel challenged projects.

Unlike expert judgment-based techniqes, model-based meth-
ods rely on parametric or algorithmic models. Parametric
methods adapts an expert-proposed model to local data.
Therefore, for the use of parametric methods collection of
local data is a must. One of the most widely known example
to parametric methods is the COCOMO method proposed
by Boehm [3]. Algorithmic methods are useful when local
data does not conform to the specifications of a parametric
method. Algorithmic methods employ various algorithms
to evaluate local data, build a model and make an estima-
tion. Some well known examples to algorithmic methods are
linear regression, case based reasoning systems, neural nets
and model trees [9, 11,13,17].

The latter approach is useful in the case where local data
does not conform to the specifications of the expert’s method.
A few examples of induced prediction systems are linear
regression, neural nets, model trees and analogies [13, 17].
These methods have been mostly aided with certain types
of patches such as noise removal, instance selection, feature
selection or by feature reduction. Depending on the funda-
mental assumptions of each algorithm, a different patch can
be selected.

Certain organizations may choose to use an expert judgment
and some other organizations may prefer to go with a model-
based approach, or alternatively a combination of the two
in different settings. Regardless of the adopted method, the
goal of any estimation model is to attain high estimation
accuracy values.

2.2 Type of Research
According to two-dimension classification scheme proposed
by Basili et. al. [1], our research falls into the class of blocked
subject-project studies, which examine objects accross a set
of teams and a set of projects. To increase the granularity
of this classification we can say that our research is a survey
of effort estimation practices and developer participation in
Turkish software industry. Any study can be a formal ex-
periment, a case study or a survey depending how many
teams and how many projects are considered in this study
and what the scale of the study is [8]. Due to the nature
of formal experiments, they are limited in size and need
careful control. Case studies focus on what happens on a
typical project and surveys on the other hand focus on what



is happening over various types of projects. In our research
we deal with different companies and different projects that
were developed with different languages. Furthermore, we
are more of an observer in our research rather than experi-
menter. This is due to the fact that rather than being able
to experiment the response of projects as well as project
teams in response to a changing factor, we merely observed
the effort estimation practices and developer participations
accross multiple projects and multiple companies. From our
reading of Kitchenham et. al. [8] our research conforms to
the definition of a survey.

Different surveys regarding both effort estimation practices
and developer participations have been conducted in differ-
ent settings. For example Jorgensen et. al. addresses the
effort estimation practices and budget overruns in Norveg-
ian software industry [14]. Koch questions effort modeling
as well as developer participation over open source software
projects in his extensive survey [10]. Although similar sur-
veys have been conducted by different researchers in differ-
ent contexts previously, to the best of our knowledge there is
no previous survey evaluating the effort estimation practices
and developer participation in the context of a less mature
software industry such as the Turkish market.

3. DATA
In our research we analyze 6 different projects coming from
different companies. Both in terms of their development lan-
guages and in terms of their magnitude they are very differ-
ent from one another. Ideally the suggested and practiced
strategy for selecting projects in surveys is random sam-
pling [8, 14]. However, private organizations are not com-
pletely optimistic about sharing churn data and static code
attribute information of all their projects. Therefore, in our
research we have asked them to provide us with representa-
tive projects of their software development activities. This
may have introduced a selection bias into our study and we
will address this issue as threat to validity more broadly in
Section 6.

The project names and their particular characteristics are
provided in Figure 1. Due to proprietary rights, we will
name the projects and developers with numbers. The prop-
erties of projects given Figure 1 are number of develop-
ers employed, total edited lines of code (total edited LOC
= added LOC + deleted LOC ), total number of commits
that were performed during the lifecycle of the project and
the language in which the project was developed. We see
from Figure 1 that our sample set contains a wide variety
of projects in terms the features given in the same Figure.
The smallest project in terms of size (Project1) employs only
3 developers and a total of 5579 LOC were edited for this
project. The biggest project in terms of size (Project3) on
the other hand employs 98 developers and includes a total
of 1324956 edited LOC. Therefore, although we were unable
to apply random selection in our research, the organization
selected representative projects cover projects with quite dif-
ferent characteristics.

4. METHODOLOGY
In this section we provide the details about the methodology
we adopted and present our research questions that guided
us in this research.

4.1 Estimation Models
Our method for observing the estimation models employed
in organizations is to conduct face to face meetings with
domain experts in these organizations. The domain experts
we have met are the people who are responsible for software
effort estimation related activities or for the effort estimation
model (if organization has any).

4.2 Metrics for Developer Participation
We analyzed churn data to understand developer particpa-
tion. From churn data analysis we first extracted the commit
information of projects from source code control systems.
Since different companies use different types of source con-
trol systems, this process takes some time. For each source
control system, we wrote scripts to extract the commit in-
formation.

In this research we extracted the commit information asso-
ciated with each developer for each project. For each devel-
oper we extracted the information of how many lines of code
(LOC) was added and deleted in each commit. Furthermore,
we recorded the total number of commits performed by each
developer. In this paper we will name the total of added and
deleted lines of code as edited lines of code.

editedLOC = addedLOC + deletedLOC (1)

After extracting the commit information related to each de-
veloper from the projects, we used two metrics to measure
developer participation in projects. The first metric we used
is the percentage edited LOC (Perc.LOC) for each devel-
oper in a project. Percentage edited LOC is the ratio of total
edited LOC by a developer to the sum of edited LOC for all
developers. The calculation of Perc.LOC for developeri is
given in Equation 2, where n corresponds to the total num-
ber of developers.

Perc.LOC =
editedLOCdeveloperi

∗ 100Pn
j=1 editedLOCdeveloperj

(2)

The second metric we used to evaluate the developer par-
ticipation is the percentage of commits (Perc.Commit) per-
formed by each developer during the development of a soft-
ware project. Calculation of Perc.Commit is similar to that
of Perc.LOC. Perc.Commit is the ratio of total number
of commits performed by a single developer to the number
of commits that was conducted by all the developers who
worked in this project. The calculation of Perc.Commit is
given in Equation 3, where n is the total number of devel-
opers in that project.

Perc.Commit =
totalCommitsdeveloperi

∗ 100Pn
j=1 totalCommitsdeveloperj

(3)

4.3 Research Questions
To guide us in the right direction we have formed three re-
search questions. With these research questions our aim was
to question how widely software effort estimation practices
were employed in Turkish software industry and what was
the implications of all the estimation and planning activities



Project Total # of developers Total edited LOC Total # of commits Dev. Language
Project1 3 5,579 72 Java
Project2 110 623,173 12,384 Java+JSP
Project3 97 1,324,956 23,403 SQL
Project4 7 7,034 212 Java
Project5 11 16,358 322 Java+JSP
Project6 19 68,550 2,387 C

Figure 1: 6 projects coming from different organizations. Projects have a wide diversity in terms of their
size, developers they use and the languages they were developed in.

on the developer participation. The three research questions
we formed are:

RQ1 How widely is effort estimation practices employed?

RQ2 Which effort estimation methods are used?

RQ3 How does estimation and planning activies reflect on
developer participation?

5. RESULTS
In this section we present the results of our research. While
presenting the results, we follow the research questions we
have formed in this research.

RQ1 How widely is effort estimation practices em-
ployed?

Previously it was reported by Lederer et. al. in their survey
that the software managers puts a high importance on the
necessity of software effort estimation [12]. On a scale from 1
(min) to 5 (max) the average importance attributed to soft-
ware effort estimation practice was 4.7 [12]. In our survey of
Turkish industry we observed a similar tendency. However,
rather than questioning the importance attributed to soft-
ware effort estimation, we questioned whether the company
conducts any estimation related activity or employs an es-
timation model. All the companies we questioned performs
software estimation related activies. Of course the level of
the activities change drastically, some companies have un-
dergone into projects for developing their own algorithmic
model, whereas some companies suffice with formal or in-
formal meetings among domain experts. However, the fact
that all companies perform estimation related activities at
different levels show that all the companies are well aware of
the software effort estimation concept. Therefore, we can say
that effort estimation practices are widely employed, but the
level of employment differs greatly from company to com-
pany.

RQ2 Which effort estimation methods are used?

Every company in our survey implicitly or explicitly employs
a software effort estimation model. 2 of the companies em-
ploys a linear regression based model, in which attributes
and the weights related to these attributes are defined by
domain experts (the explicit cases). One of these two com-
panies have recently switched to a machine learning based
estimation method. The other companies employs expert
judgment in their estimation activities. However, they do
not strictly follow a Delphi like expert judgment estimation

method. Instead they follow their ad-hoc processes that en-
tails a number of meetings between domain experts for dis-
cussing the cost of a project. This shows that mostly used
estimation method is expert judgment. That is probabaly
due to the fact that it is a method that requires the least ef-
fort. However, since the companies do not record the initial
expert estimates of a project it is almost impossible to track
the efficiency of this method. Although being the minority
case, two companies use an algorithmic model and only of
these two companies have undergone the effort of developing
a complex estimation model that employs machine learning
algorithms.

RQ3 How does estimation and planning activies re-
flect on developer participation?

After initial estimates of software effort, each company plans
the allocation of their resources. For resource allocation and
planning of effort, companies use various project manage-
ment tools. Some of the companies prefer their in-house de-
veloped project management tools, whereas some prefer to
use open source or commercial tools. From our interviews
with domain experts in each company, it is our understand-
ing that managers try to distribute the total effort evenly
to employees working in particular projects. Keeping track
of planned efforts is again performed on the project man-
agement tools. Each employee to whom a task is assigned
and a certain hours of effort is allocated is responsible to
record the actually performed effort into the management
tool. However, the consensus among the domain experts
from different companies is that the actual effort values is
nothing but a confirmation of the planned values. Therefore,
the virtually even allocation of resources on the project man-
agement tools may be misleading. In that case using churn
data may be helpful to get a better view of actual effort
spent by developers. On the other hand, none of the com-
panies we have conducted this survey uses churn data for
observing the participation of developers to the project.

For each project in these companies, we extracted churn data
from their source control system and analyzed the developer
participation. We have seen that a big portion of the whole
development activity is performed by a very limited number
of developers. So the answer to our third research question
is that reflection of estimation and planning activities on the
developer participation is relatively weak. In other words,
the effort of managers to evenly distribute the development
effort among developers does not effectively occur in actual
development environment. In the next paragraphs, we will
evaluate the results for each project separately.



Figure 2: The Perc.LOC and Perc.Commit informa-
tion for Project1. Developer 1 is responsible for
more than 80% of the whole edited LOC.

In Figure 2 we see the Perc.LOC and Perc.Commit infor-
mation regarding Project1. The x-axis corresponds to dif-
ferent developers whereas the y-axis is the percentage value
associated with Perc.LOC and Perc.Commit. Project1 is
the smallest project among 6 projects both in terms of size
as well as in terms of employed developers. We can see that
the majority of the edited LOC in context of this project
was developed by a single developer. Developer 1 has edited
more than 80% of the total edited LOC. The difference be-
tween developers in terms of Perc.Commit metric becomes
less. However, this may be due to the fact that Developer
1 prefers to commit less often and the other two developers
prefer to commit their changes more often.

Figure 3 provides the Perc.LOC and Perc.Commit values
of Project2. Project2 is has the highest number of devel-
opers employed. A total of 110 developers have contributed
to this project during its development lifecycle. The differ-
ence between developer participation in Project2 is less than
that of Project1. However, this may be due to the effect of
distributing a value of 100% to 110 developers. We see in
Figure 3 that after 8 developers, the participation of indi-
vidual developers goes below 2%. Furthermore, we can see
from Figure 3 that the participation of more than half of the
developers is less than 1%.

In Figure 4 we see the Perc.LOC and Perc.Commit values
of Project3. Project3 is another densely populated project
with 97 developers in total. The behaviour of developer par-
ticipation of Project3 is similar to that of Project2, i.e. only
a small group of developers have a participation of more than
2% and a large number of developers (after developer 31) is
responsible for less than 1% of the total edited LOC. We
also observe from Figure 4 that the behaviour of Perc.LOC
is very similar to that of Perc.Commit. Although there are
some irregularities between the two lines, this may be due
to different commit habits of individual developers.

Figure 5 summarizes the developer participation of Project4.
Project4 is a relatively small project when compared to
Project2 and Project3. The participation pattern among
7 developers employed in Project4 is similar to previous
projects. Only two developers account for more than 80%

Figure 5: Project4 Perc.LOC and Perc.Commit infor-
mation. Developer 1 and developer 2 has more than
80% of the Perc.LOC, whereas the rest is shared by
other 5 developers.

of the whole edits and the remaining 5 developers account
for less than 20% of the edits. Furthermore, like previous
projects the Perc.LOC and Perc.Commit lines go hand in
hand in Project4 as well.

Figure 6: Perc.LOC and Perc.Commit values of
Project5. Similar trend of previous projects con-
tinues here. The first three developers account for
more than 80% of all edited LOC.

Perc.LOC and Perc.Commit information associated with
Project5 are given in Figure 6. Project5 has 11 developers
employed in the development phase. Among 11 developers
the first three developers edits more than 80% of all the
edited LOC. With Developer 5 the participation of develop-
ers in terms of Perc.LOC goes below 5% per developer. One
suspicious point in Figure 6 is that there is a considerable
difference between Perc.LOC and Perc.Commit values of
Developer 1, who is the top developer. The likely explana-
tion to that case could be that Developer 1 was reviewing the
code of other programmers and some of the developers were
commiting through Developer 1. Although this scenario is
very likely in open source communities, this is not the case
for this particular company and project. After our inquiry
with the company, we have learned that such a review and
commit scenario does not exist for Project5.



Figure 3: Project2 has the highest number of developers employed. Only 8 developers contribute more than
2% to the project. The participation of more than half of the developers is less than 1%.

Figure 4: Project3 has 97 developers participating in the development activity. Majority of the developers
have limited participation in the development activity. After developer 31, the participation of developers is
less than 1%.

Figure 7: Project6 Perc.LOC and Perc.Commit val-
ues. Out of 19 developers, the first 2 developers
account for more than 50% of the total edited LOC.

The last project in our research is Project6. Figure 7 pro-
vides the Perc.LOC and Perc.Commit information of Project6.
In Project6 a total of 19 developers are employed. Among
19 developers the first two developers alone have the total
of more than 50% of Perc.LOC. Starting with Developer 5,
the individual participation of developers fall below 5% in
terms of Perc.LOC. Furthermore, as in the case of all the
previous projects the Perc.Commit line in Figure 7 behaves
very similar to the line of Perc.LOC.

6. THREATS TO VALIDITY
The most obvious threat to our research is the selection pro-
cess of the projects. Unlike widely used method of random
selection of projects, our projects are selected by the experts
of the organizations. Expert selection is based on the fact
that projects shall be representative of the company. When
considering the wide range of projects in our research we can
consider the dataset as representative of the organizations.
However, it cannot be proven that there is no selection bias
coming from domain experts.



Another threat to validity is the selected metrics to evalu-
ate the developer participation. Churn data stored in source
control systems of open source projects and private organiza-
tions have some characteristic differences. Therefore, use of
Perc.LOC and Perc.Commit may be questionnable. How-
ever, edited LOC and commit count are successfully used in
studies about open source projects [4, 10], so we also based
our metrics on edited LOC and commit count as well.

Final threat to validity of our results is the complexity of
the code that is commited by a developer. In other words,
the differences between developers in terms of Perc.LOC
can be due to the fact that some developers may be working
on more complex parts of the software, hence being able to
produce less LOC. Unfortunately we were able to get the
source code of a single project to analyze the complexity of
commited code. Depending on our analysis we did not see
such an effect. The average complexity of the commited code
by each developer was more or less the same. Of course we
cannot generalize our finding to all 6 projects. However, this
may be a hint that code complexity is not a strong validity
threat for this research.

7. CONCLUSION
In this research we observed the effort estimation and its
use in planning activities in the local perspective of Turkish
software industry. We also addressed the implications of es-
timation and planning activities on developer participation
in software development. Our dataset in this research in-
cluded 6 projects coming from different companies that spe-
cialize in different domains. Our analysis concerning these
6 projects were performed in two phases. For effort estima-
tion activies, we conducted personal meetings with domain
experts to gain an insight into their estimation and plan-
ning processes. For the developer participation analysis on
the other hand, we extracted churn data from source control
systems of different companies and derived our metrics from
the extracted churn data.

One implication of our study is that Turkish industry is well
aware of the software effort estimation concept and appre-
ciates its importance. All companies in our research im-
plicityly or explicitly employ certain estimation methods.
However, estimation practices are mostly far from having
a scientific basis. Rather than following literature in effort
estimation, organizations suffice with ad-hoc developed pro-
cesses. Among the companies we worked with, only one
company had a solid machine learning based effort estima-
tion model. However, this is not a particular situation to
Turkish software industry. It is a known fact that indus-
try practices are usually more simplistic than the methods
suggested in the literature.

Another implication of our research is about developer par-
ticipation. The workload distribution that is being tracked
by managers through project management tools does not re-
flect the actual participation of developers. In all 6 projects
we analyzed in our research, we see that majority of the
edited LOC is commited by a very limited number of de-
velopers. The fact that most of the code is developed by a
limited number of developers is previously reported in open
source domain [4, 5, 10, 15]. Skewed effort distribution was
studied in multiple projects and it was observed that %90

of the churn were done by the %20 of the developers [10]
in an open source setting. Although software development
in a private organization has very different characteristics in
comparison to open source software development, they share
common properties in terms of developer participation.

8. ACKNOWLEDGMENTS
This research is funded in part by Tubitak EEEAG108E014.

9. REFERENCES
[1] V. R. Basili, R. W. Selby, and D. H. Hutchens.

Experimentation in software engineering. IEEE Trans.
Softw. Eng., 12(7):733–743, 1986.

[2] B. Boehm, C. Abts, and S. Chulani. Software
development cost estimation approaches: A survey.
Annals of Software Engineering, 10:177–205, 2000.

[3] B. W. Boehm. Software Engineering Economics.
Prentice Hall PTR, Upper Saddle River, NJ, USA,
1981.

[4] B. Caglayan, A. Bener, and S. Koch. Merits of using
repository metrics in defect prediction for open source
projects. In FLOSS ’09: Proceedings of the 2009 ICSE
Workshop on Emerging Trends in Free/Libre/Open
Source Software Research and Development, pages
31–36, Washington, DC, USA, 2009. IEEE Computer
Society.

[5] K. Crowston, K. Wei, Q. Li, and J. Howison. Core and
periphery in free/libre and open source software team
communications. In HICSS ’06: Proceedings of the
39th Annual Hawaii International Conference on
System Sciences, page 118.1, Washington, DC, USA,
2006. IEEE Computer Society.

[6] M. Jø rgensen. A review of studies on expert
estimation of software development effort. Journal of
Systems and Software, 70:37–60, February 2004.

[7] M. Jorgensen and T. Gruschke. The impact of
lessons-learned sessions on effort estimation and
uncertainty assessments. IEEE Trans. Softw. Eng.,
35(3):368–383, May-June 2009.

[8] B. Kitchenham, L. Pickard, and S. L. Pfleeger. Case
studies for method and tool evaluation. IEEE Softw.,
12(4):52–62, 1995.

[9] E. Kocaguneli. Better methods for configuring
case-based reasoning systems. Master’s thesis,
Bogazici University, 2010.

[10] S. Koch. Effort modeling and programmer
participation in open source software projects.
Information Economics and Policy, 20(4):345 – 355,
2008. Empirical Issues in Open Source Software.

[11] Y. Kultur, B. Turhan, and A. B. Bener. ENNA:
software effort estimation using ensemble of neural
networks with associative memory. In SIGSOFT
’08/FSE-16: Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software
engineering, pages 330–338, New York, NY, USA,
2008.

[12] A. L. Lederer and J. Prasad. Information systems
software cost estimating: a current assessment. J Inf
technol, 8:22–33, 1993.

[13] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting
Best Practices for Effort Estimation. IEEE Trans.
Softw. Eng., 32:883–895, 2006.



[14] K. Moløkken-Østvold, M. Jørgensen, S. S. Tanilkan,
H. Gallis, A. C. Lien, and S. E. Hove. A survey on
software estimation in the norwegian industry. IEEE
International Symposium on Software Metrics, pages
208–219, 2004.

[15] G. Robles, S. Koch, J. M. Gonzlez-Barahona, and
J. Carlos. Remote analysis and measurement of libre
software systems by means of the cvsanaly tool. In In
Proceedings of the 2nd ICSE Workshop on Remote
Analysis and Measurement of Software Systems
(RAMSS, pages 51–55, 2004.

[16] M. Shepperd. Software project economics: a roadmap.
In FOSE ’07: 2007 Future of Software Engineering,
pages 304–315, 2007.

[17] M. Shepperd and G. Kadoda. Comparing software
prediction models using simulation. IEEE Trans.
Softw. Eng., pages 1014–1022, 2001.


