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Abstract

Many corporate code developers are the beta testers of
open source software.They continue testing until they are
sure that they have a stable version to build their code on.
In this respect defect predictors play a critical role to iden-
tify defective parts of the software. Performance of a defect
predictor is determined by correctly finding defective parts
of the software without giving any false alarms. Having
high false alarms means testers/ developers would inspect
bug free code unnecessarily. Therefore in this research we
focused on decreasing the false alarm rates by using repos-
itory metrics. We conducted experiments on the data sets of
Eclipse project. Our results showed that repository metrics
decreased the false alarm rates on the average to 23% from
32% corresponding up to 907 less files to inspect.

1. Introduction

In recent years, free and open source software (OSS) has
drawn increasing interest, both from the business and aca-
demic world. The main ideas of this development model
are described in the seminal work of Raymond [17], ’The
Cathedral and the Bazaar’, first published in 1997. Ray-
mond contrasts the traditional model of software develop-
ment, which he likens to a few people planning a cathedral
in splendid isolation, with the new ’collaborative bazaar’
form of open source software development. In the lat-
ter model, a large number of developer-turned users come
together without monetary compensation to cooperate un-
der a model of rigorous peer-review and take advantage
of parallel debugging which altogether leads to innovation
and rapid advancement in developing and evolving software
products. In order to enable this while minimizing dupli-
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cated work, the source code of the software needs to be ac-
cessible, which necessitates suitable licenses, and new ver-
sions need to be released often. Most often, the licence a
software is under is used to define whether it is open source
software or not[15, 18]. Nevertheless, usually a certain de-
velopment style and culture are also implicitly assumed, al-
though no formal definition or description of an open source
development process exists, and there is considerable vari-
ance in the practices actually employed by open source
projects.
Many software development companies increasingly use
OSS to write scripts and IDE s in order to adopt OSS to
their own environment. They usually use the beta versions
of OSS; report bugs or fix bugs. In a way those commercial
users (developers) act as the test team for OSS. Although
OSS is free, there is an opportunity cost for everyone in-
volved. So effective use of testing effort in OSS is as im-
portant as commercial software development. Any model or
method to be proposed should not cause developers to allo-
cate a large portion of their debugging effort to the unfruit-
ful exploration of erroneous alarms. Therefore in this re-
search we would like to answer the following research ques-
tion: "How can we decrease the false alarm rates in open
source projects?" Many researchers have proposed predic-
tive models using machine learning techniques[9, 20, 14].
Compared to other verification, validation and testing meth-
ods defect predictors are shown to be effective tools to sup-
port critical decisions such as "when to stop testing" in soft-
ware testing [9]. Traditionally static code attributes are
used for modeling software data in defect prediction. Al-
though static code attributes can automatically be extracted
from the source code their information content is limited.
Since software is a complex system with many possible ap-
proaches for abstracting it, there is a need to explore alter-
native metric sets such as history metrics and organizational
metrics for defect prediction.
In our research we used Eclipse Project up to version 3.0
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[2]. We conducted experiments by using bug data, static
code attributes, and repository metrics from Eclipse Project.
Our results showed that repository metrics are more cost ef-
fective leading to 28% less code inspection without com-
promising on the prediction accuracy.

2 Related Work

There has been a few research that focus on the usage of
repository metrics in defect prediction for OSS. Mockus et
al.[11] worked on predicting the defect density of Apache
as compared to commercial projects. This was done based
on a realtively small dataset, and they did not consider the
number of developers as a distinguishing factor. Koch and
Neumann[7] used process and product measures in a study
of open source frameworks. They found that a high number
of programmers and commits, as well as a high concentra-
tion are associated with problems in quality on class level,
mostly to violations of size and design guidelines. This un-
derlines the results of Koru and Tian[8], who have found
that modules with many changes rate quite high on struc-
tural measures like size or inheritance. On project level,
there is a distinct difference: Those projects with high over-
all quality ranking have more authors and commits, but a
smaller concentration have poor quality ranking. This leads
to a conclusion on a general level for OSS is that as many
people as possible should be attracted to a project. On the
other hand, these resources should, from the viewpoint of
product quality, be organized in small teams. Ideally, on
both levels, the effort is not concentrated on too few of the
relevant participants.
Learning-based defect predictors are often built using static
code attributes and historical data including the location of
defects from completed projects [19, 9, 20, 21, 14]. How-
ever, due to limited information content of static code at-
tributes, many algorithms suffer from a ceiling effect in
their prediction performances such that they are unable to
improve the defect detection performance using available
size and complexity metrics [10]. There are studies that fo-
cus on other factors affecting an overall software system
such as the dependencies, code churn metrics or organi-
zational (repository) metrics related with the development
process [13, 10]. Results of these studies show that the
ability of process-related factors to identify failures in the
system is significantly better than the performance of size
and complexity metrics. Zimmermann and Nagappan chal-
lenged the limited information content of data in defect pre-
diction. The authors proposed to use network metrics that
measure dependencies, i.e. interactions, between binaries of
Windows Server 2003. Results of their study show that the
network metrics have higher performance measures in find-
ing defective binaries than code complexity metrics. Moser
et al. also used repository metrics and they concluded that

repository metrics give better prediction results than static
code metrics [12]. In Moser et al.’s work only post-release
defect data of Eclipse Project defects are extracted. They
trained and tested on the same release. They also applied
a cost sentitive classification approach to improve the per-
formance of their model. They stated that cost sensitive ap-
proach would be hard to implement in real life. It is also dif-
ficult to derive clear conclusions from their results such that
whether the cost sensitive classification or usage of reposi-
tory metrics improved the results. In another study the ef-
fect of number of committers have been investigated in a
large scale commercial project. The outcome of this study
revealed that the number of developers did not have any ef-
fect on the defect density [23].
Many research so far focused mainly on the performance
of the defect predictor in terms of its probability of detec-
tion (pd rate). However, probability of false alarms (pf) is
equally important. High pf rate means that all defect-free
modules are classified as defective, which yields inspec-
tion of all these modules unnecessarily and contradicts with
the purpose of defect prediction. In our previous work we
tackled this problem as elimination of extraneous factors
(i.e.irrelevancies) in data that was composed of static code
attributes[22]. We achieved lower pf rates by using a filter-
ing algorithm to improve the performance of our model.

3 Methodology

3.1 Data Set

Eclipse project is a widely used multi-language software
development platform written mainly in java language[1].
Its source has its roots in IBM VisualAge IDE. The project
was made open-source in November 2001 and it was li-
censed initially under creative-commons license and later
Eclipse Public License. Both of these licences are compati-
ble with FSF standards for open source licences.
During the history span of Eclipse project that we exam-
ined, main committers to the project were IBM employees.
According to [6] this categorizes Eclipse as a strictly gov-
erned project with commercial open source characteristics.

3.2 Data Collection

For the purposes of this study Eclipse defect data sub-
mitted to Promise dataset[2, 24]was used as a basis. In min-
ing defects data of Eclipse Zimmermann et al.[24] made an
assumption to find post-pre release defects: since an open
source program life cycle is usually blurry, defects that oc-
curred within six months after a release are assumed to be
post-release while defects that are found before a release up
to six months are assumed to be pre-release defects.
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Table 1. Files and Defects for Eclipse Ver-
sions

Eclipse
Version

Nr. of
Files

Pre Release
Defected

2.0 6727 2609
2.1 7886 1785
3.0 10590 1821

We have extracted history metrics from the cvs revision sys-
tem and matched with Promise data set by writing custom
scripts in Python language. Our classification was done on
the source files by labeling the files containing one or more
defects as defected, and the files containing zero defects as
not defected. We used pre-release defective files, so for each
version of Eclipse, we constructed 3 metric sets using static
and repository metrics alone and by combining them. Num-
ber of files and pre-release defects for each release are given
in Table 1.
Open source projects usually have a small amount of core
developers doing majority of the commit work. Using
Sourceforge projects Koch[7] found that on average 10 per-
cent of developers are responsible for 90 percent of the
commits. Eclipse project’s commit effort does not show
this characteristic which is an unusual behavior for an open
source project as seen on Figure 1. Top 10% developers
of eclipse are responsible for less then 50% of commits.
10 history metrics were extracted from CVS repository of
Eclipse project:
1. Commits(Com)→ Number of commits on file cummu-
latively
2. Committers (Ctr) → Number of committers on file cu-
mulatively
3. Lines Added (Lad)→ Lines added cummulatively
4. Lines Removed (Lrm)→ Lines removed cummulatively
5. Commits Last Release (ComLR)→ Number of commits
for last release
6. Committers Last Release (CtrLR) → Number of com-
mitters on files for last release
7. Lines Added Last Release (LadLR) → Lines added on
files for last release
8. Lines Removed Last Release (LrmLR) → Lines added
on files for last release
9. Gini Inequality Coefficient (GINI)→ Commit inequality
coefficient of committers on files
10. Top Committer Percentage (TCPer) → Percentage of
top committers on files

While first 8 metrics have been in previous studies[13,
23, 12], GINI and Top Committer Percentage are new met-
rics and to the best of our knowledge they were not used in
any previous defect prediction work.

Figure 1. Commit Effort of Nth 10 percent
committers on defect count

Figure 2. Defect density for Eclipse Release
3.0 wrt Commit Count

Formula for finding Gini inequality of a file is given below:

µ =
Number of Commits

Number of Committers

Gini =
∑

∆Commits by Committer
µTotal Commits2

For the definition of top committers criteria of most com-
mits was used as a top committer criteria.

3.3 Important Trends In Repository Met-
rics

In Figure 2 it can be seen that defect proneness in-
creases for Eclipse project as number of committers in-
creases. From the Figure it is clear that there is a correlation
between defect densities.

In Figure 3 effect of top committer effort to defect prone-
ness is seen. Trend in the effect of top committers effect on
defect density is not as clear. Top defect rates are seen when
top committers are supported by other committers with a
small number of commits (1-10% other developer commits
and 90-99% top developer commits).
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Table 2. Confusion Matrix
actual defected defect free

predicted
defected A B

defect free C D

3.4 Defect Prediction Model

In this study, we have focused on increasing informa-
tion content of the input data by using additional metrics ex-
tracted from repository. We have used the Naive Bayes data
mining algorithm that achieves significantly better results
than many other mining algorithms for defect prediction [9].
One of the reasons for the success of Naive Bayes algorithm
is that it manages to combine signals coming from multiple
attributes. It simply uses attribute likelihoods derived from
historical data to make predictions for the modules of a soft-
ware system [4]. As the inputs to the model, we have mined
repository metrics together with the actual defect informa-
tion and static code attributes from Eclipse Project on three
versions.

3.5 Performance Measures

In order to assess the performance of our defect predic-
tor on various metric sets, we have calculated well-known
performance measures: probability of detection (pd), and
probability of false alarms (pf) rates [4]. Pd, which is also
defined as recall, measures how good our predictor is in
finding actual defective modules. Pf, on the other hand,
measures the false alarms of the predictor, when it classi-
fies defect-free modules as defective. In the ideal case, we
expect from a predictor to catch all defective modules (pd
= 1). Moreover, it should not give any false alarms by mis-
classifying actual defect-free modules as defective (pf = 0).
The ideal case is very rare, since the predictor is activated
more often in order to get higher probability of detection
rates [4]. This, in turn, leads to higher false alarm rates.
Thus, we need to achieve a prediction performance which is
as near to (1,0) in terms of (pd,pf) rates as possible. These
parameters are found from the confusion matrix shown in
table2. The optimum pf,pd rate combinations can vary from
project to project. On a safety critical project pd rate can be
more important while on a budget constrained project low
pf rate can be more important for resource allocation.

pd =
A

A+ C
(1)

pf =
B

B +D
(2)

Open source Weka Machine Learning program and its
Java API was used to implement our experiments[3]. When

Figure 3. Eclipse Top Committer Effort wrt Er-
ror Density

same dataset was used for training and testing 10-fold cross
validation was used to eliminate bias. Promise data of
Eclipse had around 200 metrics with various degrees of
independence so supervised feature selection algorithm of
Weka was employed to reduce the number of metrics as a
preprocessing step.
Since data distribution can not be assumed to be normal
Mann-Whitney U test was done on data to test the statical
significance of using different techniques.
We have also conducted a cost-benefit analysis of our re-
sults based on the work of Arisholm et al.[5]. Since our
focus in this research is to achieve lower pf rates we would
like to find out the benefit of having low pf rate in terms of
number of lines inspected keeping the pd rate constant. The
below formula takes all of our predictions and determines
the savings in inspection time in terms of effort spent. The
formula contains the files we marked correctly as defective
as well as our false alarms. Therefore it includes the pf rate
in it. The lower the pf rate the higher the benefit would be.
In other words the real value comes from the increase in "D"
and decrease in "B" which is the definition of pf.

pf ∝ A+B

A+B + C +D
(3)

Benefit % = pd− A+B

A+B + C +D
(4)

Benefit (files) = (pd− A+B

A+B + C +D
) ∗ Total Files

(5)

3.6 Results

We have compared our results for different metric sets.
In the first case same versions are used for test and training
to estimate the pre-release defects. The results of same ver-
sion testing can be seen at Table 3. We see that when repos-
itory metrics used alone both pd and pf improves. When
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Table 3. Comparison of Static,Repository and
Both Metrics Using Cross Validation

Metric Set Version Defect pd pf
All 2.0 Pre Release 0.68 0.35
All 2.1 Pre Release 0.68 0.27
All 3.0 Pre Release 0.68 0.29

Average 0.68 0.29
Std Dev 0 0.04

Repository 2.0 Pre Release 0.74 0.29
Repository 2.1 Pre Release 0.66 0.17
Repository 3.0 Pre Release 0.66 0.21

Average 0.67 0.23
Std Dev 0.05 0.09

Static 2.0 Pre Release 0.68 0.37
Static 2.1 Pre Release 0.68 0.29
Static 3.0 Pre Release 0.68 0.30

Average 0.68 0.32
Std Dev 0 0.04

Table 4. Comparison of Static,Repository and
Both Metrics For Different Versions

Metric Set Version Test Version pd pf
All 2.0 2.1 0.68 0.35
All 2.1 3.0 0.69 0.32

Repository 2.0 2.1 0.74 0.35
Repository 2.1 3.0 0.74 0.31

Static 2.0 2.1 0.68 0.37
Static 2.1 3.0 0.68 0.34

they are used in combination with static code attributes only
pf improves. In the case of static code attributes modules
with extreme characteristics (i.e. complexity, size) may
have been high and and hence their cumulative effect on
the overall model increase significantly. However, factors
such as number of commits, committers, lines added, lines
removed, top committer percentage, etc. may have impacts
on the module characteristics. Therefore these characteris-
tics (i.e. repository metrics) contain more relevant informa-
tion to detect the defective files. In the second case succes-
sive versions are used for estimating pre-release defects in
successive releases. The result of these tests can be seen at
Table 4. We see that whether we train on the same version
or use successive versions for training our results do not
change. Again the effect of repository metrics in lowering
pf rate is positive. All of our reported results passed Mann-
Whitney U test, P<0.5 so that low pfs are significantly better
in the case of repository metrics where pds are statistically
indifferent.

Cost-Benefit Analysis: As explained in section 3.4 we
conducted a cost-benefit analysis on our results. We looked
at the experiment results of training from the defects of pre-
vious release. We see that 30% was gained in inspection

Table 5. Comparison of Benefits for Using
Different Metric Sets with Successive Re-
leases

Metric Set Train Version Test Version Benefit % Benefit (Files)
Repository 2.0 2.1 0.28 2174

2.1 3.0 0.3 3173
Static 2.0 2.1 0.27 2094

2.1 3.0 0.27 2827
All Metrics 2.0 2.1 0.26 2031

2.1 3.0 0.28 2935

effort that corresponds to 3173 less files to inspect for re-
lease 3.0. The detailed results can be seen at Table 5.

4. Threats to Validity

Threats to validity in experimental studies, which in-
clude retrospective artifact analysis, can be categorized into
construct, internal, and external validity [16]. The experi-
mental design follows the framework suggested as a base-
line by Menzies et al. [9]. We have used 10-fold cross-
validation in all experiments. That is, data sets are divided
into 10 bins, 9 bins are used for training and 1 bin is used
for testing. Repeating these 10 folds ensures that each bin is
used for training and testing while minimizing the sampling
bias. Each holdout experiment is also repeated 10 times and
in each repetition the data sets are randomized to overcome
any ordering effect and to achieve reliable statistics. We
have applied Mann-Whitney U test with a p<0.5 in order to
determine the statistical significance of mean results. One
of the common threats to external validity of empirical re-
search is the difficulty of generalizing results. Open source
software projects may have distinct characteristics arising
from the organizational structure they evolve from or their
application domain. For this reason additional work should
be done before generalizing these findings for open source
projects.

5. Conclusions and Future Work

In this study we focused on improving the prediction per-
formance of our learning based model in terms of achieving
lower pf rates. In our previous work we had seen that al-
gorithms have reached a ceiling such that we have failed to
find a better algorithm to improve pf rates. On the other
hand static code attributes have limited information con-
tent. Descriptions of software modules only in terms of
static code attributes can overlook some important aspects
of software including: the type of application domain; the
skill level of the individual programmers involved in system
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development; contractor development practices; the vari-
ation in measurement practices; and the validation of the
measurements and instruments used to collect the data. For
this reason we augmented, and replaced static code mea-
sures with repository metrics such as past faults or changes
to code or number of developers who have worked on the
code, etc. We used data from 3 versions of Eclipse Project.
Bug data was already available at Promise Repository. We
mined and extracted the repository metrics by writing our
own scripts. Repository metrics on these projects are now
available in Promise Repository. Our results show that
repository metrics give better insight to software product
and hence we were able to lower pf rate on the average from
32% to 23% corresponding up to 907 less files to inspect
compared to using only static code attributes. Also while
answering our research question we have noted some other
interesting characteristics. We have seen that there is a lin-
ear relationship between the number of cumulative counts
and defect density. Also for the Eclipse project we did not
find any significant relationship between the ratio of "top"
committers in terms of commit count and defect density.
Open source development does not follow the same pro-
cess and patterns for different projects. As a future work a
large scale study of open source projects from different set
of backgrounds would be useful to validate our findings.
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