Effort Modeling and Programmer Participation in Open
Source Software Projects

Stefan Koch
Institute for Information Business
Vienna University of Economics and Business Administration
Augasse 2-6, A-1090 Vienna, Austria
stefan.koch@wu-wien.ac.at

Abstract

This paper analyses and develops models for programmer participation and effort
estimation in open source software projects. This has not yet been a centre of research,
although any results would be of high importance for assessing the efficiency of this model
and for various decision-makers. In this paper, a case study is used for hypotheses generation
regarding manpower function and effort modeling, then a large data set retrieved from a
project repository is used to test these hypotheses. The main results are that Norden-Rayleigh-
based approaches need to be complemented to account for the addition of new features during
the lifecycle to be usable in this context, and that programmer-participation based effort
models show significantly less effort than those based on output metrics like lines-of-code.

1 Introduction

Open source software development (Feller & Fitzgerald, 2002; Raymond, 1999) has
generated increasing interest in the last years, both from the business and academic world. As
some projects in different application domains like Linux together with the suite of GNU
utilities, GNOME, KDE, Apache, sendmail, bind, and several programming languages have
achieved huge success in their respective markets, new business models have been developed
and tested by businesses. Academic interest into this new form of collaborative software
development has arisen from very different backgrounds including software engineering,
sociology, management or psychology.

The main ideas of this development model are described in the seminal work of Raymond
(Raymond, 1999), ‘The Cathedral and the Bazaar’, in which he contrasts the traditional type
of software development of a few people planning a cathedral in splendid isolation with the
new collaborative bazaar form of open source software development. In this, a large number
of developer-turned users come together without monetary compensation to cooperate under a
model of rigorous peer-review and take advantage of parallel debugging that leads to
innovation and rapid advancement in developing and evolving software products, thus
forming an example for ‘egoless programming’ as proposed by Weinberg already in 1971
(Weinberg, 1998). In order to allow for this to happen and to minimize duplicated work, the
source code of the software needs to be accessible, and new versions need to be released
often. To this end, software licenses that grant the necessary rights to the users, like free
redistribution, inclusion of the source code, the possibility for modifications and derived
works and some others have been developed. One model for such licenses is the Open Source
Definition, which lists a number of requirements for specific licenses (Perens, 1999). The
most prominent example which fulfils these criteria while still being even more stringent, is
the GNU General Public Licence (GPL), developed by the GNU project and advocated by the
Free Software Foundation (Stallman, 2002).

While the differences between the decentralized open source process and traditional
software engineering practices have been debated (Bollinger et al., 1999; McConnell, 1999;
Vixie, 1999), and also quantitative studies of development projects and communities have

Published online by __ (¢ lf
http://epub.wu-wien.ac.at)"3_12!') e

been undertaken (Dempsey et al., 2002; Dinh-Trong & Bieman, 2005; Ghosh & Prakash,
2000; Koch & Schneider, 2002; Koch, 2004; Krishnamurthy, 2002; Mockus et al., 2000,
2002), some points remain to be explored. One of the most important questions remaining is
the effort for developing open source software, which is not known even to the leaders of the
respective project, and thus the efficiency of this model. As software engineering has dealt
with the problem of estimating the effort for a software project for decades and has produced
a multitude of methods to this end, their use seems a natural answer. These include the well-
known COCOMO (Boehm, 1981), which offers an algorithmic formula for estimating the
effort based on a quantification of the lines-of-code. This model has lately been modified and
updated with the publication of COCOMO Il (Boehm et al., 2000). Other options for effort
estimation include the software equation by Putnam (Putnam, 1978), also forming the base for
the proprietary SLIM, approaches based on the function point metric (Albrecht & Gaffney,
1983), diverse machine-learning approaches or proprietary models like ESTIMACS. Both the
COCOMO approaches and Putnam’s work are based on a general formulation of a
development project introduced by Norden (Norden, 1960), termed the Norden-Rayleigh
model. This model is based on the derivation of a manpower function giving the number of
people participating in a development project at a given time. Therefore the effort estimation
leads to another important question, whether the participation in open source projects can be
modeled and predicted using approaches created in the context of traditional software
development, or whether new models have to be developed. The answer to these questions
will, besides showing insights into open source software development, give important input to
effort estimation and the applicability of different effort models in this context.

The work on effort estimation on open source software development project has to date
been very limited (Koch & Schneider, 2002; Koch, 2004; Wheeler, 2005; Gonzalez-Barahona
et al., 2004), and for the most part applied only very basic models like original COCOMO
(Boehm, 1981) without further discussion or analysis.

The results offered by performing an effort estimation have several uses, with one of
them, ex-post estimation, being in addition to the normal uses of effort estimation results in
commercial development. While in commercial organizations normally data on the effort of
finished projects exist, this is not the case in open source projects. Normally, not even the
project leaders or members of the inner circle know this data. Therefore this effort having
been expended for finished or at least far progressed projects has to be estimated. Naturally,
some of the problems inherent in ex-ante effort estimation do not apply in this case, but some
problems persevere. While in commercial contexts the main use of effort estimates is in
planning and continuous management, ex-post estimation does not offer any immediate
benefits. In an assessment of the open source development model, these results are
nevertheless paramount. While there are many discussions and claims about this development
model (Bollinger et al., 1999; McConnell, 1999; Vixie, 1999), the question of efficiency can
not be answered without assessing the inputs, i.e. effort, going into the development. Any
discussion of issues like quality (Dinh-Trong & Bieman, 2005; Koru & Tian, 2004; Stamelos
et al., 2002; Zhao & Elbaum, 2000), or development speed seems incomplete without relation
to costs. Therefore estimating the effort having been expended in open source projects is an
important, if not the most important activity in comparing this development model to others,
helping to decide whether this model should be pursued, abandoned or combined with
traditional approaches into hybrid-models (Sharma et al., 2002).

While this ex-post estimation seemingly has great merits, more traditional applications in
the line of planning and control exist in open source software projects as well, which also
have stakeholders who could be interested in such results at early stages or during a project.
These include the community itself, especially, dependent on the organizational form, the
owner/maintainer, inner circle or committee (Fielding, 1999; Raymond, 1999), which need to
monitor progress and plan for release dates, and programmers considering whether to join or
to remain in a project. Maybe these persons have only a limited time slot available, but want

to remain in the project until a certain progress has been achieved. Further possible interested
parties are current or prospective users, who need the functionality at a given date or with a
given maturity level, especially corporations which are intending to pursue a business models
based on this software, need it for their operations or plan to incorporate it in their products or
Services.

The work described in this paper tries to evaluate and establish effort modeling for open
source software development projects. To this end, a two-step approach will be used in the
analysis: First, a case study of a large and successful project, GNOME, will be analyzed in-
depth to generate research hypotheses, then similar data from SourceForge.net, an ecology of
both small and large, successful and failed projects will be used to test these hyptheses on a
larger data base. Prior to this analysis, the method used for retrieval of data on the projects,
and the data sets together with general results will be described in the following section.

2 Method and data set

2.1 Software repository mining

Software development repositories contain a plethora of information on the underlying
software and the associated development processes (Cook et al., 1998; Atkins et al., 1999).
Studying software systems and development processes using these sources of data offers
several advantages (Cook et al., 1998): This approach is very cost-effective, as no additional
instrumentation is necessary, and it does not influence the software process under
consideration. In addition, longitudinal data is available, allowing for analyses considering the
whole project history (Kemerer & Slaughter, 1999).

Depending on the tools used in a project, possible repositories available for analysis
include source code versioning systems, bug reporting systems, or mailing lists. Many of
these have already been used as information sources for closed source software development
projects. For example, Cook et al. (1998) present a case study to illustrate their proposed
methodology of analyzing in-place software processes. They describe an update process for
large telecommunications software, analyzing several instances of this process using event
data from customer request database, source code control, modification request tracking
database and inspection information database. Atkins et al. (1999) use data from a version
control system in order to quantify the impact of a software tool, a version-sensitive editor, on
developer effort. Kemerer and Slaughter (1999) employed data from change logs in their
study on software evolution. Dutoit and Bruegge (1998) retrieved a set of communication
metrics from electronic bulletin boards in addition to product metrics to analyze differences in
software processes due to changes in the applied development methodology.

In open source software development projects, repositories in several forms are also in
use, in fact form the most important communication and coordination channels, as the
participants in any project are not collocated. Therefore only a small amount of information
can not be captured by repository analyses because it is transmitted inter-personally. As a side
effect, the repositories in use must be available openly and publicly, in order to enable as
many persons as possible to access them and to participate in the project. In addition, also the
general stance towards openness and free information within this community enhances this
trend. As both necessarily due to lack of resources and because of ideological reasons only
open source software itself is adopted for operating the necessary repositories, the variety
over several projects is not enormous, thus allowing for construction of automated retrieval
and analysis tools which can be re-used for several projects. For example, a tool for
automated retrieval and analysis of data from a version-control system, CVS, termed
CVSAnalY has been developed (Robles et al., 2004b), as has been the GlueTheos approach
(Robles et al., 2004a), a modular system automating the retrieval and analysis processes from
several kinds of repositories including source code control or mailing list.

Given this situation, repository data have already been used in research on open source
software development. This includes in-depth analyses of small numbers of successful
projects (Gallivan, 2001) like Apache and Mozilla (Mockus et al., 2000, 2002), GNOME
(Koch & Schneider, 2002), FreeBSD (Dinh-Trong & Bieman, 2005) or Linux distributions
(Gonzalez-Barahona et al., 2004) using mostly information provided by version-control-
systems, but sometimes in combination with other repository data like from mailing list
archives. Large-scale quantitative investigations spanning several projects going into software
development issues are not yet as common, and have mostly been limited to using aggregated
data provided by software project repositories (Crowston & Scozzi, 2002; Hunt & Johnson,
2002; Krishnamurthy, 2002), meta-information included in Linux Software Map entries
(Dempsey et al., 2002), or data retrieved directly from the source code itself (Ghosh &
Prakash, 2000).

In this paper, we will follow this approach of using publicly available data from software
repositories to study the open source development process, focusing on estimation of the
expended effort and programmer participation. Using a two-step approach, first a detailed
case study on one project, GNOME, will be undertaken, then a large data set retrieved from a
project hosting site, SourceForge.net, will be used to validate the results. Next, we will
describe the data collection method and general results for both data sets.

2.2 The GNOME Project

For this case study research into open source software development, data from existing
and publicly available repositories was retrieved for a single project. The project considered is
GNOME, the GNU Network Object Model Environment, an open source software project
building a desktop environment for users and an application framework for software
developers. This vendor neutral project includes a set of standard desktop tools and
applications, e.g. the well-known GNU Image Manipulation Program (GIMP), and uses the
Common Object Request Broker Architecture (CORBA).

The main data source was the source code control system, in the case of the GNOME
project the most widely used one in the open source community (Fogel, 1999), CVS
(Concurrent Versions System), whose aim is to coordinate a number of participants working
together on source code, trying to maximize efficiency by allowing for concurrent work on
checked out copies and providing for later merges if conflicts occur. The underlying database
stores each change to the code committed by a participant, thereby allowing reconstruction of
prior states and comparisons between versions of source code files. In addition, meta-data on
the work of the programmers within the project by submitting (checking in”, committing”)
files are stored. Especially the changes in the lines-of-code, associated programmer name, file
identification, date and further information are saved with each commit. Access is
accomplished via a client which requires a password authentification. In order to access CVS-
archives in a more convenient way the Mozilla project developed Bonsai which allows
connections using a web-based interface (Fielding, 1999).

Repositories storing all e-mails sent to the different project discussion lists were
identified as an additional source of information especially on communication and
coordination besides the CVS-repository.

As all data retrieved needed to be managed, storage in a database was chosen. Therefore,
a data model of an open source software project was developed to include all publicly
available data: There exist coders (or programmers) that actually do work on the project by
submitting (checking in”) files. On the other hand, there are posters that participate in
discussions pertaining to the software. One real-world person can fulfill both roles, but the
possibility exists for people to only post messages in discussion lists or programmers who do
not participate in discussions. A file, as identified by a filename and a directory path can be
checked in to the CVS-system by a programmer. The CVS-repository then records this
checkin with the changes in the lines-of-code and further information. The definition of this

often disputed metric (Humphrey, 1995; Park, 1992) is taken from the CVS-repository and
therefore includes all types of lines-of-code, e.g. also commentaries (Fogel, 1999). In
addition, any line-of-code changed is counted as one line-of-code added and one line-of-code
deleted. A posting is a message to a discussion list pertaining to the GNOME project.

As a first step, the web interface of the CVS-repository as offered by Bonsai was used to
retrieve the necessary data concerning checkins. This data included for every checkin
programmer, file, date, LOC added and deleted, revision number and some comment. This
was done using a Perl-script which generated successive queries simulating a browser-based
input form. Each query spanned an interval of one day in the history of the CVS archive,
starting with the earliest entries at the start of the project. The requests were distributed over a
four day period in order not to overload the server. The result of each individual query was a
HTML page which was subsequently parsed extracting the necessary attributes conforming to
the data model. This information was then stored in a database. The necessary queries were
then performed and the output analyzed using a statistical package. Of course, the data
concerning programmers was strictly anonymized.

Also retrieved by a Perl-script were the postings to the relevant discussion lists including
the sender, subject, time and complete text. For the analysis of the posting behavior of the
programmers, the short name each programmer uses for checkins had to be matched to the
full name or e-mail address used for postings. For 175 persons this has been possible using
several regular expressions with human check-up.

In the GNOME project, 301 programmers were identified, who differ significantly in
their effort for this project, with a majority contributing only a quite small amount to the total
work done, a result also found in other studies (Dempsey et al., 2002; Dinh-Trong & Bieman,
2005; Mockus et al., 2002; Ghosh & Prakash, 2000; Gonzalez-Barahona & Robles-Martinez,
2003; Hertel et al., 2003). For example, Mockus et al. (2002) have shown that the top 15 of
nearly 400 programmers in the Apache project added 88 per cent of the total lines-of-code. A
similar distribution was found in a community of Linux kernel developers by Hertel et al.
(2003). Also the results of the Orbiten Free Software survey (Ghosh & Prakash, 2000) are
similar, the first decile of programmers was responsible for 72 per cent, the second for 9 per
cent of the total code. In contrast, the top 15 programmers for the GNOME project were
responsible for 48 per cent, while the top 52 persons were necessary to reach 80 per cent. This
is similar to the results of Dinh-Trong & Bieman (2005) for the FreeBSD project, who found
that fewer than 50 top developers contribute 80 percent. In the GNOME project, a clustering
of the programmers based on lines-of-code added hinted at the existence of a smaller group of
11 programmers within this larger group, which were still more active, a number still
allowing for easy communication and cooperation. 1 881 different posters have been
identified, with the mean number of messages for identified programmers significantly higher
than for all posters, and more productive programmers also more active participants in the
discussions. This community structure with a small inner circle, one order larger number of
programmers and still one order larger number of total participants has been found to be very
similar to the results of Mockus et al. (2000, 2002) and Dinh-Trong & Bieman (2005).

The total size of the GNOME project in lines-of-code has experienced a steady increase
up to the size of 1 800 000 LOC at the end of the observed time period, with 1 230 000 LOC
being the size at the time it became operational (first major release in March 1999). During
this time, the number of active programmers has seen a staggering rise between November
1997 and the end of 1998. A programmer is defined as active in a given month if he
performed at least one checkin during this month. During the year 1999 this number has been
roughly constant at around 130 persons. A correlation of 0.932 was found between total of
lines-of-code added and number of active programmers each month, which confirms the
usability of this number for effort estimation. Another interesting finding is that productivity
(defined as the mean number of lines-of-code per programmer) is strongly positive correlated
with number of active programmers in each month, thus violating Brooks’ argument of

increasing communication costs, which is one reason for the famous Brooks’ Law (Brooks,
1995). Further results of the analysis, e.g., concerning participants, postings, cooperation on
file level and progression over time can be found in Koch and Schneider (2002).

2.3 SourceForge.net: A Project Ecology

For further analysis, validation and calibration of effort and programmer participation
models, a large data set covering a diverse population of large, small, successful und failed
projects was necessary. SourceForge.net, the well-known and largest software development
and hosting site, was chosen as the source of data. A variety of services is offered to hosted
projects, including tools for managing support, mailing lists and discussion forums, web
server space, shell services and compile farm, and source code control. While
SourceForge.net publishes several statistics, e.g. on activity in their hosted projects, this
information was not detailed enough for the proposed analysis. For example, Crowston and
Scozzi used the available data for validating a theory for competency rallying, which suggests
factors important for the success of a project (Crowston & Scozzi, 2002). Hunt and Johnson
have analyzed the number of downloads of projects occurring (Hunt & Johnson, 2002), and
Krishnamurthy used the available data of the 100 most active mature projects for an analysis
(Krishnamurthy, 2002).

The data collection method utilized was similar to the case study for the GNOME project,
with several exceptions. In this case, data from the web pages and especially the source code
control system, again in the form of CVS, of the projects hosted was retrieved.

The retrieval process started differently than for the case study, as information on the
project population available was necessary. Therefore the first step included inspecting the
SourceForge.net homepage for the published number of currently hosted projects (at the
relevant date 23,000). All of these were selected as candidates for analysis. As not all projects
are both still hosted and have the CVS service enabled, the CVS information web page of
each project hosted at SourceForge.net was queried for the information necessary for the data
retrieval, i.e. project and server name. This resulted in 21,355 candidate projects with enabled
CVS service. In addition, the development status indicator for each project assigned by the
project’s administrator was retrieved from its respective web page. This indicator assigned by
the project administrator aims at reflecting the phase of a project in the development lifecycle.

Using the CVS web interface page provided for each project with enabled CVS service,
8,791 projects were identified which actively use this service. Together with the CVS server
name information, this information was used to retrieve the necessary data from the CVS
servers. This process was mostly managed by Perl scripts for web page querying and
generating a shell script for CVS server access, in each case allowing for ample sleeping
periods so as not to delay services for other users. In contrast to the GNOME case study, CVS
was accessed directly. The output of each step was again parsed by Perl scripts for the
relevant data, which was stored in a database. Analyses were performed by queries to this
database and subsequent processing with a statistics package. The following analyses are
based on the 8,621 projects for which all relevant information could be retrieved. Projects
which do not have CVS enabled, which are no longer hosted or which never have actively
used the CVS repository are not included, as there are several possible explanations for this,
not necessarily project failure.

In the project population, a total of 7,734,082 commits have been made, with 663,801,121
LOCs having been added and 87,405,383 having been deleted. The projects consist of
2,474,175 single files, and an overall number of 12,395 distinct programmers have
contributed with at least one commit.

The distribution of both the assets available, i.e. the programmers, and the resulting
outcome, i.e. commits, lines-of-code and project status within the project ecology is very
skewed (see Table 1).

TABLE 1.

Descriptive statistics for project variables from SourceForge.net data set (n=8,621)

Min. Max. Mean Std. Deviation | Median

Number of programmers 1 88 1.86 2.61 1
Commits 1 133,759 897.12 3,840.90 192

LOC added 0| 12,951,218 | 76,998.16 458,975.28 10,801

LOC deleted 0 3,846,863 | 10,138.66 73,493.03 373

Files 1 42,674 285.46 1,317.74 69

Development Status 0 6 2.67 1.77 3

The vast majority of projects have only a very small number of programmers (67.5 per
cent have only 1 programmer), only 1.3 per cent have more than 10 programmers. This
number of programmers can be shown to follow a power law (or Pareto or Zipf) distribution
(Koch, 2004), like Hunt and Johnson (2002) have also found for the number of downloads of
projects. These numbers also correspond to the findings of Krishnamurthy (2002), who
showed that most of the projects had only a small number of participants (median of 4). Only
19 per cent had more than 10, 22 per cent only 1 developer. While this percentage is much
smaller than found here, this is not surprising as Krishnamurthy only used the 100 most active
projects.

Regarding the output of the projects, a similar situation can be seen, the vast majority of
projects achieves only a small number of commits and is of small size, leading to the
assumption that input and output of projects a correlated, i.e. that projects with a small
number of programmers only achieve small numbers of commits and lines-of-code. This
intuitive relationship can be ascertained. For example, the total number of programmers of a
project correlates positively at significance 1 percent with coefficients 0.472 with number of
commits and 0.408 with total lines-of-code added (Koch, 2004). For starting time of a project,
significant negative correlations with both input and outputs can be found (Koch, 2004).

The software evolution (Belady & Lehman, 1976; Lehman & Ramil, 2001) of open
source projects has been shown by Godfrey and Tu (2000), who have analyzed the Linux
operating system kernel and found a super-linear growth rate, to contradict the laws of
software evolution. These entail a continual need for adaptation of a system, followed by
increased complexity and therefore, by applying constant incremental effort, a decline in the
average incremental growth. Paulson et al. (2004) have used a linear approximation, and have
on the other hand not found any differences in growth behaviour between open and closed-
source software projects. For the SourceForge.net project ecology, while 61 per cent of the
projects can be shown to exhibit a decreasing growth rate, the rest show super-linear growth
(Koch, 2005). Small (but significant) relationships with size and number of programmers can
be found, indicating that larger projects with a higher number of participants might be more
often able to sustain super-linear growth (Koch, 2005).

Regarding the situation within projects, most prior studies as cited (Dempsey et al., 2002;
Dinh-Trong & Bieman, 2005; Mockus et al., 2002; Ghosh & Prakash, 2000; Hertel et al.,
2003) have found a distinctly skewed distribution of effort between the participants. Similar
results can also be found at the project ecology under consideration. The top decile is
responsible for 79 per cent of the total SourceForge.net code base, the second decile for
additional 11 per cent. Using a simple measure for the inequality of work distribution within
the development team (Koch, 2004; Robles et al., 2004b), rather small, but positive
correlations with total number of commits and sum of lines-of-code added show up. There is
no correlation with the age of the project. Of course, the direction of the relationship is not
ascertained, so the results do not necessarily indicate that more activity in projects is caused
by a more unequal distribution of contributions, as the other way would also give a possible
explanation, i.e. as the project grows, the inequality grows as a result.

The next possible influence on productivity in a project is the number of active
programmers, following the reasoning of Brooks (1995). Therefore, the number of active
programmers and the achieved progress in each project was analyzed on a monthly basis.
Although the number of active programmers has a significant and positive relationship with
the output, the coefficient is much smaller than previously found for the GNOME project. A
correlation of 0.932 between active programmers and number of lines-of-code added showed
up, while in the project ecology considered here coefficients are only 0.072 for lines-of-code
added and with 0.194 slightly higher for number of commits. The communication burden as
argumented by Brooks itself is next to non-existent, as the correlation between the number of
active programmers and the mean output in a period is (although negative) only -0.013 with
both measures (significant at 5 per cent). Additional and more detailed analyses of this data
set can be found in Koch (2004).

3 Effort modeling and Programmer participation

3.1 Effort estimation for open source projects

A general discussion of the applicability of current effort estimation models hints at the
existence of several problems. These show up in addition to the problems inherent in effort
estimation, e.g., difficulty to predict complexity, that plague commercial software
development project estimation as well. The first problem might be posed by the
voluntariness of people’s participation. On the one hand, sufficient staffing to ensure progress
could be unavailable, on the other hand, the turnover of personnel could be faster than in
commercial projects. This would limit learning effects and thus decrease overall productivity
(Brooks, 1995). Contrary to this, empirical data have shown that productivity is not
necessarily declining due to people joining the programming team. In addition, Gonzalez-
Barahona & Robles-Martinez (2003) have shown that the core team in open source projects,
while not constant over time, is not changing at a rapid pace. Therefore new entrants can
slowly be trained to assume more and more responsibility. This learning process is governed
in each project by certain rituals, which can be very elaborate like for example in the Debian
project (Coleman & Hill, 2004), or more informal. These joining scripts” (von Krogh et al.,
2003) need to be followed by possible entrants. Due to the fact that most parts of these scripts
are to be performed by the applicant, e.g., by writing software to demonstrate his or her
technical prowess, the overall productivity is not decreased. Nevertheless, modeling the
participation of developers in open source projects forms a necessary basis for effort models,
and therefore is explored in this analysis.

As an additional problem for performing effort estimation, Vixie (1999) mentions the
lack of a formal design and requirements definition. Naturally, the amount of information
necessary depends on two distinct factors: Whether an ex-ante or ex-post estimation is to be
done, and which effort estimation approach is chosen. Therefore this point will be discussed
in the context of each approach considered.

In addition, there are problems associated with some special effort estimation models,
which pose restrictions or assumptions that might inherently be violated by the open source
model. Such problems might limit the applicability of these models in the context of open
source projects. One example is the original COCOMO 81 (Boehm, 1981), which assumes a
good management by both software producer and client, development following a waterfall-
model and permanence of the requirements during the whole process. If the main ideas of
open source software development are analyzed, the first assumption still holds. As there is
no distinction between producer and client in open source projects, instead the whole team is
(at least in theory) composed of developer-turned users, no conflicts of interest are possible.
The other two assumptions on the other hand are inherently violated: The requirements are
neither written down (Vixie, 1999) nor constant over time, and the software development

follows are more spiral type of approach, having been termed micro-spirals (Bollinger et al.,
1999). These theoretical points alone make COCOMO 81, although one of the most widely
known and used models in commercial environments, problematic to use for open source
projects. Nevertheless, due to its simplicity, it is still nearly the only model currently
employed for a rough estimate of development effort. Wheeler (2005) uses COCOMO 81 on
Red Hat Linux 7.1 as a representative GNU/Linux distribution, resulting in an development
effort of nearly 8,000 person-years priced at over $1 billion. Gonzalez-Barahona et al. (2004)
use the same model on several releases of both Red Hat Linux and Debian, resulting in up to
26,835 person-years valued at $3,625 million for Debian 3.0. COCOMO Il (Boehm et al.,
2000) on the other hand does not formulate these restricting assumptions but tries to account
for a more modern, prototype-oriented type of development. It also incorporates the function
point sizing method (Albrecht & Gaffney, 1983). Function points can also be directly used for
deriving an effort estimation, if a relationship to effort is either taken from literature, or is
calibrated using an existing data set. In this case, the method also does not contain any
assumption concerning the process model, but especially aims at being technology-
independent and taking the user’s viewpoint. The most basic model was formulated by
Norden (1960), termed the Rayleigh-Norden model, and it forms the basis for most of the
other approaches, including COCOMO (Boehm, 1981) or Putnam’s model (Putnam, 1978). In
its very general approach, it also does not pose any explicit restrictions on any development
model used. Therefore, pending further analysis, all of these models do seem to be applicable
to open source software development estimation on a general level.

3.2 Hypotheses generation: The GNOME Project case study

The first approach to modeling the effort for the GNOME project uses data on project
participation, not on the resulting product. It is therefore based on a metric for the input to the
development process, not the output, like for example lines-of-code. The approach uses the
general work of Norden (1960) and its extension by Putnam (1978). Norden models any
development project as a series of problem-solving efforts by the manpower involved to reach
a set of objectives constituting technological progress. The number of problems is assumed to
be unknown but finite. Each solving of a problem removes one element from the list of
unsolved problems. The occurrence of such an event is random and independent, it is assumed
to follow a Poisson distribution. The number of people usefully employed at any given time is
assumed to be approximately proportional to the number of problems ready for solution at
that time, represented by the difference between total effort K and cumulated effort to this
date C(t) in person-years. This results in the following differential equation, which can be
solved to arrive at the cost function C(t):

dC()/dt = p(t) [K - C(O)]. Q)

Therefore, the manpower usefully employed towards the end of a project becomes smaller
as the problem space is exhausted. The learning rate of the team is modeled as a linear
function of time in years since project start p(t)=2at which governs the application of effort.
Therefore the cumulative manpower effort is null at the start of project and grows
monotonically towards the total effort. Following, the manpower function at a given time
represents a Rayleigh-type curve governed by a parameter a which plays an important role in
the determination of the peak manpower. This manpower function m(t) can be derived by
differentiating C(t) relative to t:

mt) =2Katexp (-atd). (2)

By deriving the manpower function relative to the time and finding the zero value, the
relationship between time of peak manning and this parameter can be found. Furthermore, the
value of the peak manning can be obtained by substituting this term in the manpower
function. Using this relationship, the total manpower required can be determined once peak
manning has been reached. As the manpower distribution for the GNOME project, depicting
the number of active programmers in each month, can be retrieved from the data (see Fig. 1)
and seems to follow a Rayleigh-type curve at least until a certain point, this information can
be used for estimating the effort. The peak manning of active programmers seems to have
been reached between November 1998 and September 1999. Therefore the time elapsed
between the beginning of the project (using January 1997) and the peak manning is set to 2.25
years, taking the middle of this range. The peak manning is set to 131.8 persons, again using
the mean staffing during this interval. As the Rayleigh-Norden model assumes full-time
employees, this number needs to be adapted, or else the results would also be scaled to open
source developer-years. For this conversion, some value for the time actually invested in the
project is necessary. The study of Hertel et al. (2003) reports a number of 18.4 hours per week
spent on development, which is based on the answers of 69 active Linux kernel developers to
a questionnaire. As the other results of this study show at several points similar characteristics
to the data retrieved from the GNOME project, for example regarding the distribution of
effort within the community, this number is applied here. This results in a peak manning of
60.6 persons. Using these values in the model results in a total effort of 224.8 person-years.
The projected manpower function derived is also shown in Fig. 1 (depicted as VAR1). As the
manpower distribution retrieved from the data shows a small level of activity until October
1997, a second model was computed using this point as start of the project. The time of peak
manning then becomes 1.42 years and the total effort is estimated as 141.9 person-years. The
resulting manpower function is again shown in Fig. 1 (as VAR2).

Full-time i
equivalent
programmers g |

A0 4

a0 4

20 4

FULL_PRO

10 4 hASE T

WARZ

R Y
Tim:%m@éﬁ%%%%%%

Fig. 1. Manpower function from data (FULL_PRO) and projected (VAR1 and VAR?2).

As Putnam (1978) has shown, the time of peak manning is close to the time the software
becomes operational, i.e. is released, while effort thereafter is expended for modification and
maintenance. The first major release of GNOME has been in March 1999, which coincides
with the peak manning empirically determined. The cumulative effort expended until this date
is estimated as 88.4 person-years by the first model, as 55.8 by the second model computed.
The results of the effort estimation for the total project presented above therefore include
modification and maintenance. One problem resulting from using this model might be that as
the requirements are not fixed in open source projects over time, but are expanded according

to the requests of programmers and users, leading to further releases incorporating not only
bug fixes, but also new functionality. Therefore the estimation presented might not give a
complete forecast, as it assumes a decrease in the manpower function after the release date,
which indeed can not yet be seen in the data. While Norden postulates a finite and fixed
number of problems, additional requests will lead to the generation of new problems to be
worked on. Therefore, in addition to the Poisson process governing resolution of problems,
another stochastic process might be necessary to model this fact. While this effect might be
small to negligible until time of operation, it might be the driving factor later on. Additional
problems in using the Norden-Rayleigh model are the definition of the start of the project, and
the linear learning rate assumed (which can only be safely assumed if there is no major
turnover in participants without overlapping between groups to allow for knowledge transfer).
Besides this, the fact that the Rayleigh-curve proposed for commercial projects decades
before closely fits the curve for a contemporary open source project (at least until time of
operation) is astonishing and hints at the fact that a self-regulating community follows the
theory for efficient manpower application as well (or maybe even better) than commercial
management. In addition, this model constitutes the foundation of several other estimation
methods including COCOMO, which therefore might also be applicable in this context. These
results lead to the formulation of the first hypothesis:

Hypothesis H1: The manpower distribution in open source projects until time of
operation is not different from commercial projects. Therefore the
Norden-Rayleigh approach can be used to model the manpower
function. To cover complete open source projects, the addition of new
functional requests needs to be incorporated.

For contrast, a second approach to estimating the effort for the GNOME project will be
explored, this time based on output metrics of the software produced. The first model of this
category to be applied is the original COCOMO (Boehm, 1981). While severe problems with
using this model due to violated assumptions have already been discussed, it is still employed
for comparison to other models and with existing studies (Gonzalez-Barahona et al., 2004;
Wheeler, 2005). Analogous to these studies, basic COCOMO is employed using organic
development mode. As COCOMO does not consider extensions, the size in lines-of-code of
the GNOME project at first major release, 1,230,000 lines-of-code, is used, resulting in 351
person-years of effort. In semi-detached development mode, this number would increase to
722 person-years, in embedded mode to 1,531 person-years. Based on the theoretical
discussion as presented above, COCOMO Il (Boehm et al., 2000) seems to be more suitable
in the context of open source software development. Again using the size of the GNOME
project at time of operation, COCOMO Il is first applied with nominal values for all
parameters, resulting in 612.5 person-years. Using realistic parameters, e.g. high
precedentedness, extra high development flexibility, low architecture/risk resolution, extra
high team cohesion and low process maturity, results in a significantly lower estimation of
296.8 person-years. A similar approach to COCOMO, due to also being based on an output
metric, is the function point method (Albrecht & Gaffney, 1983). This method in general
offers several advantages, most importantly the possibility to quantify the function points
relatively early in the development based on analysis and design, technology-independence as
the user-viewpoint is considered, and no assumptions concerning the underlying software
process. For an ex-post estimation, the first advantage is naturally irrelevant, but also an ex-
ante estimation might face some problems due to missing documentation of requirements in
open source software development. Independence of implementation language and
technology used seems to be of high importance, as function points offer a possibility for
comparison of productivity and efficiency based on software functionality produced. For
estimating the effort for the GNOME project, it is difficult, especially for an outsider, to

correctly quantify the function points, even after delivery. This would necessitate intimate
knowledge of the software, and access respectively existence of relevant documentation of
analysis and design. Another possibility to arrive at the number of function points is using the
opposite way to converting a function point count to lines-of-code (Albrecht & Gaffney,
1983; Boehm et al., 2000). For this conversion, literature yields mean numbers of lines-of-
code necessary to implement a single function point in a given programming language. In
GNOME, the most employed language is C, followed by Perl and C++. Therefore an overall
conversion factor is estimated by using the factors from Boehm et al. (2000) for these
languages with a weight of 0.7, 0.2 and 0.1, respectively, resulting in 100.5 lines-of-code per
function point. The size of GNOME at the time of operation thus corresponds to
approximately 12,200 function points. In order to arrive at an effort estimation based on the
function point count, either this measure is converted to lines-of-code and an estimation
model like COCOMO is employed, or a relationship between function points and effort
derived from finished projects is used. As the first approach has already been employed
above, the second is taken at this stage. Using the equation provided by Albrecht and Gaffney
(1983) results in an effort of 353.8 person-years. Different equations are provided by Kemerer
(1987) resulting in 336.3 person-years, and by Matson et al. (1994) with their linear model
resulting in 101.9 and their logarithmic model in 82.3 person-years. It is interesting that the
newer models result in significantly lower effort estimates. This might be caused by the larger
database containing larger projects employed by Matson et al. (1994), and also the date of
their study which allows for newer practices to be included in their results. This might allow
for stronger similarities to open source development processes.

As can be seen from the estimates given above, severe differences show up between
different estimation models, especially between those based on output metrics and the
Norden-Rayleigh model based on programmer participation. Therefore, a comparison
between COCOMO in both versions and the Norden-Rayleigh model, as the first is based on
the latter, seems of special interest. This relationship allows for a mathematical comparison of
both approaches. Londeix (1987) has detailed how an estimation in COCOMO can be
transferred to the model by Putnam (1978), i.e. how the Rayleigh-curve corresponding to a
given COCOMO estimation can be determined. In this case the other direction is employed to
try to find a parameter set in COCOMO corresponding to the Rayleigh-curve derived from
programmer participation. This is impossible for basic COCOMO, as even organic
development mode results in a much larger value. Intermediate COCOMO offers both the
development mode and the values of a number of cost drivers as parameters, so clearly no
single solution can be found. But nevertheless, even if organic mode is assumed, the influence
of the cost drivers would have to be more favorable than possible in the model given the
parameter space. Therefore the development of GNOME can not be modeled using original
COCOMO, which leads to the conclusion that from this model’s viewpoint the development
is more efficient than even theoretically possible. Far more output, i.e. lines-of-code, is
produced than assumed given the programmer effort put into the project. Therefore the
successor COCOMO |1 (Boehm et al., 2000) seems to be a better choice, as it allows for both
increasing and decreasing economies of scale, a prototype-oriented software process and
flexibility in the requirements. When possible parameters are explored based on the Norden-
Rayleigh estimation, the result is that once again this project is seen as very efficient as the
both cost drivers and scale factors replacing the modes of development in COCOMO II have
to be rated rather favorably to obtain the estimated effort from the Rayleigh-curve, but this
time the resulting combinations are within the specified range. If realistic values for the scale
factors are used, the resulting necessary value for the effect of the cost drivers is still within
possible range.

In comparing the Norden-Rayleigh results to estimates derived using function point
equations, the results from function point are higher than those from programmer
participation in all cases, although the difference is less poignant when using newer models.

In general, results from applying result-based estimation models relying on product
metrics are considerably higher than those derived from programmer participation. Whether
this is a general trend or only applies to the case study is to be tested, using hypothesis H2.

Hypothesis H2: Effort estimates for open source projects based on programmer
participation are lower than those based on output (product) metrics.

This difference might be caused by several reasons: The open source development model
might constitute a more efficient way of producing software, mostly due to self-selection
outperforming management intervention. Participants might be able to more accurately
determine whether or not they are able to productively work on the project overall, or on
which tasks. In addition, overhead costs are very much reduced in this model of software
development. The second explanation would be that the difference between programmer
participation-based and product-based estimates is caused by non-programmer participation,
I.e. people participating by discussing on mailing lists, reporting bugs, maintaining web sites
or similar. If the Norden-Rayleigh and COCOMO 81 estimates are compared, COCOMO 81
results are more than eightfold those from programmer participation. If it were assumed that
this difference would only come from the effort invisibly expended by these participants, their
effort would be enormous. It would account for about 88 per cent of the effort, translating to
about 7 persons assisting each programmer. As has been shown, the number of participants
other than programmers is about one order of magnitude larger than the number of
programmers (Dinh-Trong & Bieman, 2005; Mockus et al., 2000, 2002; Koch & Schneider,
2002), but their expended effort was implicitly assumed to be much smaller. Decades ago,
Mills (1971) has proposed the ‘chief programmer team organization’ (Baker, 1972), also
termed ‘surgical team’ by Brooks (1995), in which system development is divided into tasks
each handled by a chief programmer who is responsible for the most part of the actual design
and coding, supported by a larger number of other specialists like a documentation writer or a
tester. Brooks (1995) mentions a team size of ten persons, but most of these would not be
working on the team full-time. Therefore a possible explanation for the differences in effort
estimates could be seen in the effort expended by these team members.

3.3 Evaluating the hypotheses using SourceForge.net data

For testing hypothesis H1, i.e. whether the Norden-Rayleigh approach can be used to
model the manpower function of open source projects and whether it needs to be amended for
the addition of new requests, several approaches are computed and compared. The first one is
the standard Norden-Rayleigh approach, deriving the necessary parameters from time of peak
manning and number of active programmers. As an in-depth analysis including consideration
of release dates analogous to the case study is impossible for more than 8,000 projects, the
point in time of peak manning and the respective number of active programmers are retrieved
for each project. From this, the Rayleigh-curve is constructed automatically. As a second
approach, the necessary parameters are not computed using the equations given by Norden,
but are derived from non-linear regression.

As a third group of models, the Norden-Rayleigh manpower function is adapted to reflect
the introduction of additional requests during the life cycle, which will lead to the generation
of new problems to be worked on, thus necessitating more manpower than the model accounts
for. For including this effect, the general ideas of Norden are applied: During each time
interval, besides the problems left from the fixed starting set to be worked on by the
manpower, additional problems have been introduced to be worked on. Therefore an additive
term is introduced. In the first line of thought, the number of additional problems introduced
is proportional to the number of problems in the starting set. Similar to Norden, it is assumed
that team learning contributes to the capability to solve, and also uncover problems.

Therefore, the same linear learning rate p(t)=2at is applied to the number of additional
problems. This gives the first new differential equation

dC(t)/dt = p(t) [K-C()] + p(t) K (3)
and a resulting manpower function:

mt)=2Katexp(-at’) +2Kat. (4)

As a further approach, a different linear learning rate q(t)=2bt is assumed for the
introduction of new problems, thus introducing an additional parameter b:

dC(t)/dt = p(t) [K- C()] + q(t) K (5)

mit)=2Katexp(-at) +2Kbt. (6)

As both of these approaches would eventually lead to unlimited projects, as the linear
term would be increasing without boundary, we also compute a model using a quadratic
learning rate r(t)=bt’+ct:

dC(v)/dt = p(t) [K - C(] + r(t) K (7

mit)=2Katexp (-at’) + Kbt?+Kct. (8)

In the second line of thought, the number of problems introduced is not assumed to be
proportional to the number of problems in the starting set, but to the number of problems
already solved, i.e. the cumulated effort C(t) already applied. Again, it is assumed that team
learning contributes to the capability to solve, and also uncover problems. Analogous to
above, either the same learning rate p(t), resulting in:

dC(t)/dt = p(t) [K - C()] + p(t) C(t) 9)
Ct)=aKt (10)
m(t) = C’(t) =2 K at (11)

or a different linear learning rate q(t), resulting in:

dC(t)/dt = p(t) [K - C(t)] + q(t) C(t) (12)
C(t) =- [aK (-1 +exp[(-a+b) *])] / (a-b) (13)
mt)=C’'(t) =-[2Kat(-a+ b)exp[(-a+b)t*]] / (a-b) (14)

are applied. Using a quadratic learning rate r(t) as above does not yield any usable
solutions to the differential equation and is therefore discarded. For all of these models, the

manpower function, i.e. equations (4), (6), (8), (11) and (14) are fitted to the data using non-
linear regression to determine the necessary parameters.

For comparison to these Norden-Rayleigh-based manpower functions, both a standard
linear and a quadratic model are computed as well. This results in an overall number of 9
different models for the manpower function. For all models, squared residuals, chi-squared
test-statistic and R-squared values have been computed to compare their goodness of fit (see
Table 2).

TABLE 2.

Results from manpower function estimation for SourceForge.net projects
N Min. Max. Mean Median
Norden-Rayleigh | Squared residuals | 8620 .00 | 19574.93 8.00 24
(equation-based) Chi-squared | 8620 00| 15+295| 2.9+291 44
R-squared | 2243 -37.08 1.00 -1.37 -.84
Norden-Rayleigh | Squared residuals | 2243 .00 1599.02 8.76 1.88
(regression) Chi-squared | 2243 00| 65+269| 2.9+266 2.06
R-squared | 2243 -15.25 1.00 -14 A2
Norden-Rayleigh mod. | Squared residuals 944 .00| 8.4+307| 8.9+304 9.63
equation (4) Chisquared | 944 | -15+154| 74541 -16+151| 18.18
R-squared 943 -9+307 91| -9.6+304 -1.21
Norden-Rayleigh mod. | Squared residuals 943 20| 2.3+307 | 2.4+304 3.92
equation (6) Chi-squared | 943 | -6.8+153| 188.86| -7.2+150 3.64
R-squared 943 | -2.1+306 97| -2.2+303 16
Norden-Rayleigh mod. | Squared residuals 648 .00| 25+307| 3.8+304 4.35
equation (8) Chi-squared | 648 | -7+153| 383.72| -11+151| 3.46
R-squared 648 | -2.3+306 1.00 | -3.5+303 27
Norden-Rayleigh mod. | Squared residuals | 1743 .00 1595.89 20.14 6.40
equation (11) Chi-squared | 1743 00| 336235 3437| 1391
R-squared | 1743 -16.94 1.00 -1.95 -1.63
Norden-Rayleigh mod. | Squared residuals 754 .00| 5365.17 25.82 7.29
equation (14) Chi-squared | 754 00| 6.7+50| 89+47| 10.04
R-squared 754 -11.22 1.00 -.54 -.34
Linear model | Squared residuals | 2243 .00 1619.79 6.76 1.07
Chi-squared | 2243 -47.51 113.09 2.26 .75
R-squared | 2243 .00 1.00 35 .22
Quadratic model | Squared residuals | 2243 .00 1002.32 5.18 12
Chi-squared | 2243 -3.6+15 191.73 -1.6+12 .54
R-squared | 2243 .00 1.00 .5608 .52

All of these different quality indices have been used for comparing the models.

A

Wilcoxon signed-rank test has been employed, due to the fact that all variables are not
normally distributed (which can be verified using a Kolmogorov-Smirnov test, significance in
all cases lower than 1 per cent). All models have been tested against each other, first for the
complete data set, then for two validation subsets. As a first subset, only those 1,636 projects
with status of production/stable and mature are used, to counter any effects of different

progression in the lifecycle. As a second subset for validation, only the 43 largest projects,
defined as having at least five developers and 500,000 lines-of-code, have been selected. The
results are very consistent and do not depend on the quality index used. Also the changes
between different test sets are very small. Overall, in the full data set, both the simple
quadratic and the modified Norden-Rayleigh-function using a different, quadratic learning
rate as given by equation (8) significantly outperform all other models (applying Bonferroni
correction for 36 independent tests which reduces the maximum accepted p-value to .000278
at the .01 level). The difference between these two is not statistically significant. This is
followed by the simple linear model, again not statistically significantly distinguishable from
the modified Norden-Rayleigh-function using a different, linear learning rate as given by
equation (6). Afterwards, the standard Norden-Rayleigh model with regression-derived
parameters, the modified model based on cumulative effort given by equation (14), the
modified model with same learning rate as given by equation (4), the standard Norden-
Rayleigh with parameters derived from using Norden’s equations and the model described by
equation (11). In using the first subset, i.e. only mature projects, the worst performing three
models can no longer be statistically significantly distinguished. In the second subset, when
only the largest projects are considered, also the top four models are no longer different. From
these results, the following conclusion can be generalized: Norden-Rayleigh-based
approaches, while they can not be dismissed, are not able to significantly outperform other,
simple models for arriving at a manpower function for open source projects. Therefore
hypothesis H1 is, with limitations, confirmed. When considering Norden-Rayleigh-based
approaches, the standard models without incorporating the addition of new features during the
life cycle perform badly over complete project lifespans. For incorporating this effect, a
different proportionality factor, i.e. learning rate, has to be assumed. Models using the same
learning rate perform very badly. As a further conclusion, the features added seem to depend
on the starting problem set more than on the cumulative effort expended until the respective
time, as those class of models consequently outperforms the latter one. In general, a quadratic
function seems to be better suited to modeling both the manpower function, and also the
addition of new problems. Only in the dataset containing the largest projects is this difference
no longer statistically significant.

Next, hypothesis H2 concerning the difference between programmer-participation and
output (product) metric based estimation results will be explored. For arriving at estimates for
the project population using the Norden-Rayleigh model, the same approaches as detailed for
testing hypothesis H1 are used. First, the necessary parameters are extracted from point in
time of peak manning and the respective number of active programmers automatically using
the equations by Norden, and for a second approach non-linear regression is used to estimate
these parameters. As the total effort to be expended is also used as parameter in the modified
Norden-Rayleigh models as described above, these parameter values derived from regression
are also used. The resulting effort data are scaled to open source programmer-years, so again
using the mean number of working hours of open source programmers, these measures are
converted. For equation-based estimation, the mean effort for a single project is 0.69 and
median 0.19 person-years. All results for these approaches are given in Table 3 and give an
estimation of the total effort expended during the project lifecycle.

As an additional data point, effort expended in the projects until the end of inspection was
calculated from the available data. This was performed by cumulating the number of active
programmers per month from project start until last data point. Again, the result is converted
from open source programmer-years into full-time employee equivalents. Naturally, results
are lower overall than those reached by Norden-Rayleigh estimations, which include effort to
be expended in the future (see also Table 3).

For comparison, product-based estimates are computed using several COCOMO and
function point equations analogous to the case study (all results can be found in Table 3).
Using COCOMO 81 basic model and organic development mode for each project, the mean

for each project is about 18.6 person-years (with median 2.02). Results for COCOMO I,
using in a first approach nominal values for all parameters, and in a second attempt realistic
parameters identical to the case study results in a mean effort of 31.84 (median 2.76)
respectively 15.67 (median 1.69) person-years. For function point estimation, the same
conversion factor as applied in the case study has been used, again due to the difficulty of
inspecting more than 8,000 projects. Resulting size in function points of the projects
considered therefore ranged up to 130,000 function points, with mean 665 and median 90
function points. Results for effort estimation are generally lower than COCOMO estimates in
all variants, but contain negative values due to projects with small size using the equations
provided by Albrecht & Gaffney (1983) and Kemerer (1987). Both approaches therefore need
to be discarded, at least for estimations using the complete project space. Results for these
estimations can also be found in Table 3. It should be noted that these estimations use the size
of the software systems at the time of data retrieval, therefore reflect the effort estimated to be
necessary to produce this final product and do not incorporate any effort to be expended in the
future for additional releases.

TABLE 3.
Results from effort estimation for SourceForge.net projects
N Min. Max. Mean Std. Median Sum

Deviation over all

projects

Norden-Rayleigh | 8,620 0.06 200 0.69 3.72 0.19 5,965
(equation-based)

Norden-Rayleigh | 2,192 0.10 | 11,337.49 29.07 299.47 0.74| 63,711
(regression)

Norden-Rayleigh mod. 944 -2,996.65 1,001.53 | -117,62 210.23 0.11 -

equation (4) 111,037

Norden-Rayleigh mod. 944 -508.47 | 59,692.56 396,11 | 2,422.63 0.46 | 373,925
equation (6)

Norden-Rayleigh mod. 649 | -295,987.41 | 14,288.15 | -2,197.98 | 21,352.57 0.35 -

equation (8) 1,426,49

1

Norden-Rayleigh mod. | 1,743 -14.01 25.77 3.06 4.47 3.07 5,341
equation (11)

Norden-Rayleigh mod. 755 -23.44 35.00 1.44 3.31 0.66 1,089
equation (14)

Active programmer | 8,620 0.10 55 0.56 1.39 0.12 2,229
effort years

cocoMo 81| 8,621 0.00 4,159 18.56 133.66 2.02 | 160,020

COCOMO 11| 8,621 0.00 8,156 31.84 254.73 2.76 | 135,112
(nominal parameters)

COCOMO 11| 8,621 0.00 3,539 15.67 113.55 1.69 | 274,482
(realistic parameters)

Function Point | 8,621 -7.34 3,808 12.36 126.51 -4.67 | 106,528
(Albrecht & Gaffney)

Function Point | 8,621 -10.17 3,650 8.73 121.35 -7.61| 75,249
(Kemerer)

Function Point | 8,621 0.32 1,069 5.84 35.42 1.07 | 50,316
(Matson et al., linear)

Function Point | 8,559 0.00 869 4.52 28.93 0.62| 38,695
(Matson et al., log.)

For testing hypothesis H2, a Wilcoxon signed-rank test is employed, due to the fact that
all variables are not normally distributed (which can be verified using a Kolmogorov-Smirnov
test, significance in all cases lower than 1 per cent, again applying Bonferroni correction for
the number of independent tests). Estimates derived from Norden-Rayleigh modeling are
tested against each other method. Results clearly support hypothesis H2, the differences are in

all cases significant (with significance below 1 per cent for all comparisons). This holds true
also for Norden-Rayleigh estimates derived from non-linear regression, or from modified
models. In comparison to the estimates for effort expended until now, Norden-Rayleigh
results are significantly higher (with significance below 1 per cent), which is not surprising
due to different time frame. Naturally, product-based estimates are significantly higher than
this effort as well, although in this case size and effort consider the same time interval.

For validation of these results, again the same two subsets of the projects are selected and
tested separately. First, only the projects with status of production/stable and mature are used,
to counter any effects of different progression in the lifecycle. As has been detailed before,
Norden-Raleigh estimation gives the total effort needed to finish the software, including
maintenance and enhancements, given that the peak manning seen as yet is the peak manning
for the whole project, and also the time of first operation. COCOMO estimation on the other
hand uses the size of the software at time of operation as input, and returns effort until this
point in time. Therefore the results from Norden-Rayleigh should in general be larger than
COCOMO results, but as current size is used as input for the latter, some degree of
enhancements will also already be included in this estimation. Both will underestimate the
effort for projects not progressed very far yet, COCOMO because it does not assume any
further increase in lines-of-code, Norden-Rayleigh because the peak manning would not have
been reached. Results from using these 1,636 projects does not change results from
comparing effort estimates, so hypothesis H2 is still supported. As a second subset for
validation, only the 43 largest projects, defined as above, are selected. Within this group, all
estimation methods give positive results throughout, therefore are included into the test
statistics. Again, a Wilcoxon signed-rank test is employed to test for differences between
Norden-Rayleigh estimates derived from all techniques and each other estimates. Also in this
validation sample, results are consistent, Norden-Rayleigh equation-based estimates are, with
the exception of one project in comparison to COCOMO Il with realistic parameters and
function point estimation using equations from Matson et al. (1994), lower. Norden-Rayleigh
regression and modified equation results are also significantly lower, with a few more
exceptions. Significance levels of the tests remain below 1 per cent in all cases. Therefore
hypothesis H2 is supported also in all validation subsets.

4 Conclusions

This paper has taken up the subject of effort and programmer participation modeling for
open source software development projects, which has to this date not been extensively
covered, leading to the application of only moderately advanced techniques from the toolset
offered by software engineering research. We have tried to motivate establishing effort
estimation for open source projects from two major ideas: One application is ex-post
estimation of finished or active projects, in order to be able to accurately assess the efficiency
of this new development model, while also results from traditional, ex-ante estimation would
lend important information to diverse stakeholders in and around open source projects, e.g.
companies intending to pursue a related business model or planning to incorporate it in their
products or services.

For our research, the method applied relies on the analysis of software development
repositories, which offers several advantages in studying software processes. Especially in
open source software development projects, repositories in several forms form the most
important communication and coordination channels and are available openly and publicly.
Already several studies have shown that these sources can give important information about
the underlying development processes. In this paper, we have followed this approach,
focusing on estimation of the expended effort. First a detailed case study on one project,
GNOME, has been undertaken based on mailing list and source code repository data, then

Sourceforge.net, a project hosting and community site, was used to gather a large sample of
diverse projects for validation.

Analysis of the case study has led to the formulation of two hypothesis: First, the number
of active programmers has been found to closely follow the Norden-Rayleigh model (Norden,
1960). Therefore hypothesis H1 concluded that the manpower distribution in open source
software development projects is not different from commercial projects and therefore can be
modeled using the Norden-Rayleigh approach. One major difference to traditional software
engineering processes is that the requirements are not fixed in open source projects over time,
but are expanded according to the requests of programmers and users. It was assumed that
this generation of new problems might be an important extension to the standard model.
Applying several estimation models to the case study, significant differences between result-
based estimation models relying on product metrics and those derived from programmer
participation showed up. This led to formulation of hypothesis H2, saying that effort estimates
for open source projects based on programmer participation are lower than those based on
output (product) metrics. Possible reasons for this effect include the open source model being
more efficient in using self-selection for task management, or an extremely high amount of
non-programmer participation, which would lead to see these projects as ‘chief programmer
teams’ (Mills, 1971; Baker, 1972) or ‘surgical teams’ (Brooks, 1995).

In testing both hypotheses, the full sample of about 8,000 projects from Sourceforge.net
was used, with two subsets for additional validation of results. Hypothesis H1 was partly
supported by computing and comparing nine different manpower functions, as Norden-
Rayleigh-based approaches, while they can not be dismissed, are not able to significantly
outperform other, simple models for open source projects. When considering Norden-
Rayleigh-based approaches, the standard models without incorporating the addition of new
features during the life cycle perform badly. This confirmed the notion described above. For
incorporating this effect, a different proportionality factor, i.e. learning rate, has to be
assumed, as models using the same learning rate perform very badly. As a further conclusion,
the features added seem to depend on the starting problem set more than on the cumulative
effort expended until the respective time.

Regarding hypothesis H2, this was unconditionally supported. Estimates derived from
programmer-participation based methods show significantly less effort than those based on
output metrics like lines-of-code or function points.

Overall, this paper demonstrated several points: Effort modeling has to be seen as an
important topic also in the context of open source software development, and needs to be
explored further. Data retrieved from software repositories offers several advantages and can
form the base for this research, as this paper has demonstrated. While some similarities to
traditional projects regarding the manpower distribution can be found, the addition of new
features based on user requests during the life cycle features much more prominently and
necessitates incorporation into newly developed models. Results from effort estimation show
that programmer-participation based methods show significantly less effort than those based
on output metrics. This leads to the conclusion that either the open source model is really a
more efficient way of producing software, or that an extremely high effort is contributed by
non-programmers.

Note

Please note that all data like effort estimates for the projects are available from the author,
and are not reproduced in the paper due to the large size of the data set which encompasses
nearly 9,000 projects.

References

Albrecht, A.J. & Gaffney, J.E. (1983). Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation. IEEE Transactions on
Software Engineering, 9(6), 639-648.

Atkins, D., Ball, T., Graves, T. & Mockus, A. (1999). Using Version Control Data to
Evaluate the Impact of Software Tools. Proc. 21* International Conference on Software
Engineering, pp. 324-333.

Baker, F.T. (1972). Chief Programmer Team Management of Production Programming. IBM
Systems Journal, 11(1), 56-73.

Belady, L.A. & Lehman, M.M. (1976). A model of large program development. IBM Systems
Journal, 15(3), 225-252.

Boehm, B.W. (1981). Software Engineering Economics, Englewood Cliffs, N.J.: Prentice-
Hall.

Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,
Reifer, D.J. & Steece, B. (2000). Software Cost Estimation with COCOMO I, Upper
Saddle River, N.J.: Prentice Hall.

Bollinger, T., Nelson, R., Self, K.M. & Turnbull, S.J. (1999). Open-source methods: Peering
through the clutter. IEEE Software, 16(4), 8-11.

Brooks jr., F.P. (1995). The Mythical Man-Month: Essays on Software Engineering,
Anniversary ed., Reading, Mass.: Addison-Wesley.

Coleman, E.G. & Hill, B. (2004). The social production of ethics in Debian and free software
communities: Anthropological lessons for vocational ethic. In: Koch, S. (ed.), Free/Open
Source Software Development, pp. 273-295, Hershey, Pa.: Idea Group Publishing.

Cook, J.E., Votta, L.G. & Wolf, A.L. (1998). Cost-effective analysis of in-place software
processes. IEEE Transactions on Software Engineering, 24(8), 650-663.

Crowston, K. & Scozzi, B. (2002). Open source software projects as virtual organizations:
Competency rallying for software development. IEE Proceedings - Software Engineering,
149(1), 3-17.

Dempsey, B.J., Weiss, D., Jones, P. & Greenberg, J. (2002). Who is an open source software
developer?” Communications of the ACM, 45(2), 67-72.

Dinh-Trong, T.T. & Bieman, J.M. (2005). The FreeBSD Project: A Replication Case Study of
Open Source Development. IEEE Transactions on Software Engineering, 31(6), 481-494.

Dutoit, A.H. & Bruegge, B. (1998). Communication Metrics for Software Development.
IEEE Transactions on Software Engineering, 24(8), 615-628.

Feller, J. & Fitzgerald, B. (2002). Understanding Open Source Software Development,
London: Addison-Wesley.

Fielding, R.T. (1999). Shared Leadership in the Apache Project. Communications of the
ACM, 42(4), 42-43.

Fogel, K. (1999). Open Source Development with CVS, Scottsdale, Arizona: CoriolisOpen
Press.

Gallivan, M.J. (2001). Striking a balance between trust and control in a virtual organization:
A content analysis of open source software case studies. Information Systems Journal,
11(4), 277-304.

Ghosh, R. & Prakash, V.V. (2000). The Orbiten Free Software Survey. First Monday, 5(7).

Godfrey, M.\W. & Tu, Q. (2000). Evolution in Open Source software: A case study.
Proceedings. International Conference on Software Maintenance, pp. 131-142.

Gonzalez-Barahona, J.M., Robles, G., Ortuno Perez, M., Rodero-Merino, L., Centeno-
Gonzalez, J., Matellan-Olivera, V., Castro-Barbero, E. & de-las Heras-Quiros, P. (2004).
Analyzing the anatomy of GNU/Linux distributions: methodology and case studies (Red
Hat and Debian). In: Koch, S. (ed.), Free/Open Source Software Development, pp. 27-58,
Hershey, Pa.: Idea Group Publishing.

Gonzéalez-Barahona, J.M. & Robles-Martinez, G. (2003). Unmounting the ‘code gods’
assumption. Proceedings Workshop at XP2003 Conference : Making Free/Open-Source
Software Work Better.

Hertel, G., Niedner, S. & Hermann, S. (2003). Motivation of software developers in open
source projects: An internet-based survey of contributors to the Linux kernel. Research
Policy, 32(7), 1159-1177.

Humphrey, W.S. (1995). A Discipline for Software Engineering, Reading, Massachusetts:
Addison-Wesley.

Hunt, F. & Johnson, P. (2002). On the pareto distribution of sourceforge projects.
Proceedings Open Source Software Development Workshop, pp. 122-129.

Kemerer, C.F. (1987). An Empirical Validation of Software Cost Estimation Models.
Communications of the ACM, 30(5), 416-429.

Kemerer, C.F. & Slaughter, S. (1999). An Empirical Approach to Studying Software
Evolution. IEEE Transactions on Software Engineering, 25(4), 493-5009.

Koch, S. & Schneider, G. (2002). Effort, Cooperation and Coordination in an Open Source
Software Project: Gnome. Information Systems Journal, 12(1), 27-422002.

Koch, S. (2004). Profiling an open source project ecology and its programmers. Electronic
Markets, 14(2), 77-882004.

Koch, S. (2005). Evolution of Open Source Software Systems - A Large-Scale Investigation.
Proceedings of the 1st International Conference on Open Source Systems (OSS 2005), pp.
148-153, Genova, Italy.

Koru, A.G. & Tian, J. (2004). Defect Handling in Medium and Large Open Source Projects.
IEEE Software, 21(4), 54-61.

Krishnamurthy, S. (2002). Cave or community? an empirical investigation of 100 mature
open source projects. First Monday, 7(6).

Lehman, M.M. & Ramil, J.F. (2001). Rules and Tools for Software Evolution Planning and
Management. Annals of Software Engineering, 11, 15-44.

Londeix, B. (1987). Cost Estimation for Software Development, Wokingham, UK: Addison-
Wesley.

Matson, J.E., Barrett, B.E. & Mellichamp, J.M. (1994). Software Development Cost
Estimation Using Function Points. IEEE Transactions on Software Engineering, 20(4),
275-287.

McConnell, S. (1999). Open-source methodology: Ready for prime time? IEEE Software,
16(4), 6-8.

Mills, H.D. (1971). Chief Programmer Teams: Principles and Procedures. Report FSC 71-
5108, IBM Federal Systems Division, Gaithersburg, Maryland.

Mockus, A., Fielding, R. & Herbsleb, J. (2000). A Case Study of Open Source Software
Development: The Apache Server. Proceedings 22" International Conference on Software
Engineering, pp. 263-272.

Mockus, A., Fielding, R. & Herbsleb, J. (2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3), 309-346.

Norden, P.V. (1960). On the anatomy of development projects. IRE Transactions on
Engineering Management, 7(1), 34-42.

Park, R.E. (1992). Software size measurement: A framework for counting source statements.
Technical Report CMU/SEI-92-TR-20, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, Pennsylvania.

Paulson, J.W., Succi, G. & Eberlein, A. (2004). An empirical study of open-source and
closed-source software products. IEEE Transactions on Software Engineering, 30(4), 246-
256.

Perens, B. (1999). The Open Source Definition. In DiBona, C. et al. (eds.), Open Sources:
Voices from the Open Source Revolution, Cambridge, Mass.: O’Reilly & Associates.

Putnam, L.H. (1978). A general empirical solution to the macro software sizing and
estimating problem. IEEE Transactions on Software Engineering, 4(4), 345-361.

Raymond, E.S. (1999). The Cathedral and the Bazaar, Cambridge, Mass.: O’Reilly &
Associates.

Robles, G., Gonzélez-Barahona, J.M. & Ghosh, R.A. (2004a). GlueTheos: Automating the
Retrieval and Analysis of Data from Publicly Available Repositories. Proceedings Mining
Software Repositories Workshop, 26" International Conference on Software Engineering.

Robles, G., Koch, S. & Gonzalez-Barahona, J.M. (2004b). Remote analysis and measurement
of libre software systems by means of the CVSAnalY tool. Proceedings 2™ ICSE
Workshop on Remote Analysis and Measurement of Software Systems, 26™ International
Conference on Software Engineering.

Sharma, S., Sugumaran, V. & Rajagopalan, B. (2002). A framework for creating hybrid-OSS
communities. Information Systems Journal, 12(1), 7-252002.

Stallman, R.M. (2002). Free Software, Free Society: Selected Essays of Richard M. Stallman,
Boston, Mass.: GNU Press.

Stamelos, I., Angelis, L., Oikonomu, A. & Bleris, G.L. (2002). Code quality analysis in Open-
Source software development. Information Systems Journal, 12(1), 43-60.

Vixie, P. (1999). Software Engineering. In DiBona, C. et al. (eds.), Open Sources: Voices
from the Open Source Revolution, Cambridge, Mass.: O’Reilly & Associates.

von Krogh, G., Spaeth, S. & Lakhani, K.R. (2003). Community, joining and specialization in
open source software innovation: A case study. Research Policy, 32(7), 1217-1241.

Weinberg, G.M. (1998). The Psychology of Computer Programming, Silver Anniversary
Edition, New York: Dorset House Publishing.

Wheeler, D.A. (2005). More Than a Gigabuck: Estimating GNU/Linux's Size - Version 1.07
(updated 2002). Retrieved October 11, 2005, from
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html

Zhao, L. & Elbaum, S. (2000). A survey on quality related activities in open source. Software
Engineering Notes, 25(3), 54-57.

