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Abstract—
Background: It is assumed that all instances of the software effort estimation (SEE) datasets are useful in an analogy-based estimation
(ABE) context. Hence, all instances are labeled. Also SEE datasets favor certain algorithms. In [1] CART and ABE have been identified
as the best performing algorithms.
Motivation: Labeling all projects is a costly and time-consuming activity. If datasets have suitable structure/topology, active learning can
guide learners to reduce the labeling cost and time.
Aim: We aim to understand the topology of the effort datasets and define an active learning scheme to guide labeling of instances.
Method: We define popularity-based E(k) matrices that identify the order of instances to be labeled. We augment a standard ABE
method (passiveNN) with this guiding system (activeNN). Then we compare the performance of activeNN to that of passiveNN and
CART.
Results: There is no-point in labeling all the instances in a dataset. ActiveNN can attain results comparable to passiveNN and CART
with orders of magnitude less labels.
Conclusion: Actual topology of the instance space is different than the expected: Some instances are popular than the others. This
knowledge is successfully exploited to build an active-learning based guiding system in effort estimation for the first time.

Index Terms—Software Cost Estimation, Analogy, k -NN

F

1 INTRODUCTION

Software effort estimation (SEE) experiments that use all
the instances of a dataset assume that all instances are
useful for estimation. We would like to call that approach
“assumption-all”, which states that:

“All instances are useful in estimation.”
Another possible assumption is that some of the in-

stances are redundant or even disruptive (noise). Sim-
ilarly, some others are more popular, i.e. used more
frequently during estimation. We would like to call that
popularity based approach as “assumption-pop”. It states
that:

“Only popular instances are useful.”
Data collection is a difficult process and in software

engineering (SE) domain data it is not easy to access
high-quality data. The so called “data-drought” is in
fact quite commonly recognized by researchers [2]. The
first author has the experience that more than half the
effort of building an effort estimation model is related
with data collection [2]. The second author also ac-
knowledges that fact: After two years of effort only 7
projects could be added to the NASA-wide software
cost metrics project [3]. Even Boehm shares the same
experience, after more than 20 years there are less than
200 projects in COCOMO datasets [4]. After years of
research on data collection [5], software-metrics expert
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Norman Fenton also agrees by saying: “...much of the
current software metrics research is inherently irrelevant
to industrial mix... any software metrics program that
depends on some extensive metrics collection is doomed
to failure [6].”

Relation between data-draught and the SEE data as-
sumptions (assumption-all and assumption-pop) is that
data-draught favors assumption-pop, which ensures less
data collection. However, utilization of assumption-pop
requires clever guidance systems that understand the
underlying structure of the data so as to guide a learner
towards popular instances.

The proposed guidance system in this paper is a
product of the active learning paradigm. Active learning
is an answer to data-draught. It is based on the moti-
vation that collecting labeled data is expensive [7]–[9].
Data collection activities can be immensely reduced, if
labeling efforts are concentrated on certain instances that
the learner considers most useful for estimation . Unlike
passive supervised learning that assumes the learning
problem is defined by an unknown function producing
the training examples; active learning suggests labeling
only the instances that are useful for the learning process
[7].

In this study we investigate SEE data assumptions
in the context of analogy-based estimation (ABE) by
utilizing an active learning-based guidance system. This
investigation gives critical information regarding the
topology/structure of SEE datasets. It is shown that
effort datasets behave in accordance with assumption-pop:
Using popular instances attains as good performance as
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(a) Expected

(b) Actual

Fig. 1: Expected and actual topologies for the purpose
of demonstration. Assumption-all assumes that all in-
stances are used in estimation, hence topology would
look like a). Assumption-pop states that only the popular
instances (filled squares) are used for estimation.

using all instances. Furthermore, this structural informa-
tion is used to guide a nearest-neighbor based (only use
the closest neighbor for estimation) ABE. It is shown that
with as few as 17.3% of the entire training set (desharnais
dataset of Figure 13), it is possible to attain the same
performance values.

Figure 1 illustrates the implicit topologies suggested
by assumption-all and assumption-pop in the context of
nearest-neighbor based ABE. In Figure 1 a hypothetical
dataset of 3 dimensions (with values between 0 and
1) is depicted. Assumption-all favors a topology as in
Figure 1a, i.e. it states that all instances are useful for
estimation (see cluster where all instances are closest
neighbor of some other instance). On the other hand
assumption-pop states that some of the instances are more
“popular” (squares) than the others and a majority of
the instances are redundant (plusses) for estimation in a
closest-neighbor setting. Note that Figure 1 only demon-
strates a concept, actual SEE datasets have much higher
dimensions.

1.1 Research Questions

The research questions that guided our study are as
follows:

• RQ1: Which dataset assumptions are supported by
SEE datasets and what is the implication of these
assumptions on the dataset topology?

• RQ2: How does the dataset topology affect the data
collection/labeling effort?

• RQ3: What is the performance of active learning-
based ABE methods to other algorithms?

1.2 Contributions

The contributions of this study are:
• An investigation of software effort dataset charac-

teristics
• The first application of active learning on software

effort estimation
• An active-learning guidance system based on

dataset characteristics
– Reduction in data collection effort

2 MOTIVATION

The intuition of this work came from a quirk during
the experiments of another study in our laboratory. We
were interested in the effect of injecting noise to the
datasets in the context of ABE. To our surprise, when
a portion of the labels were shuffled (after shuffling
instances become noise), the ABE performances before
and after noise injection were statistically the same. This
was a hint that the datasets had a different topology than
predicted by assumption-all.

The initial experiments of this paper questioned the
differences between the expected and the actual topol-
ogy of the instance space. Our expectation was that
the whole instance space was useful, i.e. topology is
governed by assumption-all. However, when we gener-
ated the so called E(k) matrices (see §4 for details),
we were surprised to see that the median of useful
instances during estimation in a closest-neighbor setting
had a median value of 25%. In other words, the effort
values of more than half the instances in the datasets
were redundant. The exact percentage of instance that
are closest-neighbor to any other instance are given in
Figure 2. We used that information to build an active-
learning based guidance system for ABE.

Hassan et al. envision the active learning solutions
on data collection as a future direction in SE [9]. The
experience of various researchers (including the authors
of this paper) [2]–[6] concerning data-drought also points
in that direction. In other words a solution to aid the ex-
pensive data collection activities is urgent. This urgency
is even more serious for SEE as collection/labeling of
new instances (software projects) can mean many years.
This paper is an answer to that urgent problem and is
the first application of active learning in SEE.
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Dataset Percentage
kemerer 67%
desharnaisL2 64%
desharnaisL3 60%
cocomo81s 55%
cocomo81o 50%
nasa93 center 1 50%
cocomo81e 36%
telecom 33%
sdr 25%
desharnais 25%
nasa93 22%
desharnaisL1 17%
nasa93 center 2 16%
cocomo81 16%
finnish 16%
nasa93 center 5 15%
maxwell 15%
miyazaki94 13%

Fig. 2: Ratio of the instances used for prediction in a
closest-neighbor setting to the dataset size. Note that the
median percentage value is 25%, meaning that only a
limited amount of instances are the closest neighbor of
other instances and are useful in estimation.

3 BACKGROUND

3.1 Software Effort Estimation
Software effort estimation (SEE) can be defined as the
process/activity of estimating the total effort necessary
to complete a software project [10]. Various different
methods used for effort estimation are grouped under
two main categories:

• algorithmic methods
• non-algorithmic methods
Algorithmic methods require labeled historical data so

as to learn a model. Their estimations are generated
by passing new projects through the learned model.
There is a very high number of proposed models in
SEE. Figure 3 of [1] shows that for analogy-based
effort estimation alone, likely combinations are more
than 6000. Furthermore model building comprise an
important portion of SEE research. The biggest research
topic in SEE since 1980s is the introduction and compar-
ison of new methods [11]. Some examples to algorithmic
methods are: various kinds of regression (simple, partial
least square, stepwise, regression trees), neural networks
and instance-based algorithms, just to name a few. The
common property of all these algorithmic methods is
that they all require labeled data. Therefore, the experi-
ments of this study, which show considerable reductions
in labelling effort concern an important portion of SEE
literature.

Non-algorithmic methods makes use of experienced hu-
man experts. Non-algorithmic methods, a.k.a. expert-
based estimation, is defined to be a human intensive ap-
proach that is most commonly adopted in practice [12].
On one hand, these methods are flexible and intuitive as
they can be applied in a variety of circumstances where
other estimating techniques do not work. For example,
when there is no historical data or the requirements of
a project are unavailable at the initial stages, a rough
estimate in a very short period of time can be provided

by expert estimates. On the other hand -regardless of
the efforts to establish guidelines for expert-based meth-
ods [12]- there are still many ad-hoc methods used in
practice.

3.2 Active Learning

Active learning is based on the assumption that some
instances are more informative than the others when
building a learner [7], [8]. Its motivation comes from the
fact that labeling all the instances is very costly and it can
be significantly reduced by active learning heuristics [8].

Active learning differs from passive supervised learn-
ing. The heuristics assume that learner has some control
over the training examples [13]. Through so called ex-
perts (human or algorithmic), learner can choose which
instances are to be labeled.

In machine learning literature there is a significant
amount of active learning studies. Dasgupta et al. ask for
generalizability guarantees in active learning [14]. They
use a greedy active learning heuristic and show that it
can attain the same performance as good as any other
heuristic in terms of reducing the number of required
labels [14]. In [7], Kaariainen et al. investigate the noise
injection effect on the active learning performance in
terms of classification performance. Balcan et al. show
in [15] that -given the samples are i.i.d.- active learning
can attain the same performance as a supervised learner
with exponentially less samples. In [16], Wallace et al.
use active learning for a deployed practical application.
They propose a citation screening model based on active
learning augmented with a priori expert knowledge.

In software engineering, the practical applications of
active learning can be seen in software testing [17], [18].
In [17] active learning is used to augment learners for
automatic classification of program behavior. Bowring
et al. show that learners augmented with active learning
yield significant reduction in data labeling effort and
they can generate comparable results to those of su-
pervised learning. Xie et al. use human inspection as
an active learning strategy for effective test generation
and specification inference [18]. In their experiments,
the amount of selected tests for the human inspection
were feasible, i.e. labeling required much less effort than
screening all the tests. Hassan et al. points out active
learning as part of the future of software engineering
data mining [9]. However, to the best of our knowledge
this promising direction for data analysis has not been
exploited in software effort domain. Hence, this paper is
the first step in that direction.

4 METHODOLOGY

4.1 Algorithms

The algorithms used in this study are the combination
of a pre-processor and a learner. The pre-processors are
logging (log) and normalization (norm). With the norm
preprocessor, numeric values are normalized to a 0-1
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interval using Equation 1. Normalization means that no
variable has a greater influence than any other.

normalizedV alue =
(actualV alue−min(allV alues))

(max(allV alues)−min(allV alues))
(1)

With the log preprocessor, all numerics are replaced with
their natural logarithm value. This logging procedure
minimizes the effects of the occasional very large nu-
meric values.

The learners are:
• An instance-based learner: ABE0-xNN and
• An iterative dichotomizer : Classification And

Regression Trees (CART).
ABE0 is our name for a very basic type of ABE that we
derived from various ABE studies [19]–[21]. In ABE0-
xNN, features are firstly normalized to 0-1 interval, then
the distance between test and train instances is mea-
sured according to Euclidean distance function, x nearest
neighbors are chosen from the training set and finally for
finding estimated value (a.k.a adaptation procedure) the
median of x nearest neighbors is calculated. We adopted
a single x value in this study:

ABE0-1NN: Only the closest analogy is used.
Since the median of a single value is itself,
the estimated value in ABE0-1NN is the actual
effort value of the closest analogy.

The two pre-processors and the learners are combined
to form two different learners:

• log&ABE0-1NN
• norm&CART

The reason for the selection of these particular algo-
rithms is a prior work of the authors [1], where 90
algorithms are evaluated on the datasets of this study.
As a result of this extensive study, norm&CART as well
as log&ABE0-1NN turned out to be superior to other
algorithms.

There are two different versions of log&ABE0-1NN: the
one working on the so called “active-pool” ( the pool
that contains only the instances labeled by the active
learning-based guiding system) and the one working on
a training set with all instances labeled. For convenience
we will name the former as “activeNN” and the latter
as “passiveNN”. Since we have only one CART based
algorithm (norm&CART) the learner name (CART) and
the algorithm name (norm&CART) will be used inter-
changeably from now on.

4.2 Building a Guidance System

Generate distance-matrices: For a dataset D of size N ,
the associated distance-matrix (DM ) is an N ×N matrix
that keeps the distances between every possible instance-
tuple. For example, a cell located at ith row and jth

column (DM(i, j)) keeps the distance between ith and
jth instances of the dataset D. By its definition, matrix
DM has certain properties:

• Symmetric: Since the distance between the instances
i and j is equal to the distance between the instances
j and i.

• Zero Diagonals: As cells on the diagonal (DM(i, i))
represent the distances of the instances to them-
selves, diagonal entries are zero.

Generate E(k) matrices: “Everyones k-th nearest matrix”
(E(k)) can be defined as the static analysis of the instance
space. E(k)[i,j] is true if “j” appears in the k nearest neigh-
bors of “i” and false otherwise. The trivial case where i=j
is ignored, i.e. an instance’s nearest neighbor does not
include itself. In this study the nearest-neighbor based
ABE is consdiered: E(1) describes just the single nearest-
neighbor. The “popularity” of instance “x” is defined to
be

∑n
j=1 E(1)[x, j], i.e. how often is “x” someone else’s

nearest-neighbor?
Calculate popularity index based on E(1) and determine

the sort order for labeling: Popularity index of an instance
is the sum of its occurrences as the nearest-neighbor to
another instance. We have observed that the popular
instances with E(1)[x, j] = 1 have a median percentage
of 25% among all datasets, meaning that more than
half the data is unpopular with E(1)[x, j] = 0. Our
speculation based on that fact is that popularity offers
an active learning scheme:

• Sort training instances descending by their popular-
ity index

• Label instances following that sort order
• Place labelled instances in the active-pool to be used

for estimation
• Compare results of different size active-pools with

one another as well as with passive-ABE0-1NN and
CART.

Find Stopping Point and Halt: The idea behind an
active learning-based the guidance system is to provide
a clever ordering for the labeling of instances. Thereby,
the amount of instances to be labeled will be reduced. In
our implementation, after a certain amount of instances
are labeled and added to the active pool, the guiding
system halts. The stopping point is determined by a set
of rules:

• If there is no estimation accuracy improvement in
the active-pool for n consecutive times.

– In our experiments n = 3 yielded the best
results.

• If the ∆ between the best and the worst MRE of the
last n instances in the active-pool is infinitesimal

– In our experiments n = 3 and ∆ < 0.1 yielded
the best results.

4.2.1 Toy Example

Here we provide a toy example to illustrate the step-by-
step execution of the active learning guidance system.
Assume that the training set of the toy example consists
of 3 instances/projects: P1, P2 and P3. Also assume that
these projects have 1 dependent and one independent
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variable. In that case our toy dataset would look like
Figure 3.

Project KLOC Effort
P1 20 3
P2 10 4
P3 40 7

Fig. 3: The projects of the toy example. Our hypothetical
dataset consists of 3 projects described 1 independent
variable (KLOC) and 1 dependent variable (effort in
man-months).

Since our data has only 1 independent variable, we
can visualize it on a linear scale as in Figure 4.

Fig. 4: Visualization of projects on a linear scale, where
the axis shows KLOC values.

The first step of the guidance system is to build the
distance matrix from our training set. Since projects are
described by a single attribute (KLOC), the Euclidean
distance between two projects will be the difference
between the normalized KLOC values. The resulting
distance-matrix is given in Figure 5.

P1 P2 P3

P1 0 0.34 0.66
P2 0.34 0 1
P3 0.66 1 0

Fig. 5: The distance matrix of the projects P1, P2 and P3.

Creating the E(k) matrix based on the distance matrix
is the second step. As we are creating the E(k) matrix
we traverse the distance matrix row-by-row and label
the instances depending on their distance order: closest
neighbor is labeled 1, the second closest neighbor is
labeled 2 and so on. Note that diagonal entries with
the distance values of 0 are ignored, as they represent
the distance of the instance to itself, not to a neighbor.
After this traversal, the resulting E(k) matrix is given in
Figure 6.

P1 P2 P3

P1 na 1 2
P2 1 na 2
P3 1 2 na

Fig. 6: The E(k) matrix resulting from the distance
matrix of Figure 5. The cells with a value of na mean
that ordering for that cell is not-applicable.

Calculating the popularity index based on E(1) and deter-
mining the labeling order is the final step of the guidance
system. E(1) is a special case of E(k), where cells with
k = 1 are marked with 1’s and the others are marked
with 0’s. The popularity index associated with each
instance is calculated by summing the values in every

column, i.e. the sum of the 1st column is the popularity
index of the 1st instance, the sum of the 2nd column is the
popularity index of the 2nd instance and so on. The E(1)
matrix and the popularity indices of our toy example is
given in Figure 7.

P1 P2 P3

P1 0 1 0
P2 1 0 0

+ P3 1 0 0
Popularity : 2 1 0

Fig. 7: The E(1) matrix and the popularity indices of the
toy example. Note that popularity index is the sum of
the columns of the E(1) matrix.

According to Figure 7 the labeling order of the in-
stances will be: P1, P2 and then P3. In other words, in
the first round we will ask our hypothetical expert to
label P1 and place that label in the active pool. In that
round, since active-pool contains only 1 labeled-instance it
will be the closest neighbor of every test instance and the
estimates for all the test instances will be the same (the
label of P1). In the second round, P2 will be labeled by
the expert and placed into the active-pool. This time test
instances will have 2 alternatives to choose their closest-
neighbor from, hence the estimates will be either the
label of P1 or the label of P2. Finally expert will label P3

and place it into the active-pool. The change of the active
pool is shown in Figure 8. Note that the transition from
Roundi to Roundi+1 in an actual setting is governed by
the stopping rules. Therefore, in an actual setting -unlike
the toy example- the expert labels only a small portion
of the unlabeled instances.

Fig. 8: The change of active pool for the toy example.
Note that in an actual setting transition between Roundi
to Roundi+1 is governed by the stopping rules.

4.3 Experiments
Run CART and passiveNN on entire training set: The
algorithms are run on the entire training set and their
estimations are stored. As for the sampling method
10Way cross-validation is used. 10Way works in the
following manner:

• Randomize the order of instances in the dataset
• Divide dataset into 10 bins
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Dataset Used by
telecom [22], [23]
kemerer [22]–[24]
cocomo81o [25]–[27] ,
desharnaisL1 [27] ,
cocomo81s [25]–[27] ,
desharnaisL3 [27] ,
albrecht [20], [22]–[24], [28], [29]
cocomo81e [25], [27], [30]
nasa93 center 5 [25]–[27]
desharnaisL2 [27]
desharnais [10], [20]–[23], [27], [28], [31]–[33]
maxwell [28], [34]
sdr [35], [36]
nasa93 center 1 [25]–[27]
miyazaki94 [37]
nasa93 center 2 [25]–[27]
finnish [23], [38]
cocomo81 [4], [25]–[27],
nasa93 [25]–[27]

Fig. 9: A sample of effort estimation papers that use the
data sets explored in this paper.

• Choose 1 bin at a time as the test set and use the
remaining bins as the training set

• Repeat above procedure 10 times
Run activeNN on active-pool: At each iteration active-

pool is populated with training instances on the order
of their popularity. The assumption with the active-pool
approach is that:

• all the training instances outside the active-pool are
considered unlabeled

• activeNN is only allowed to use instances in the
active pool.

Before a training instance is allowed to join the active
pool, a hypothetical-expert labels that instance, i.e. the
effort value is revealed to the algorithm. At first active-
pool only contains 1 instance: the most popular instance,
so the estimates based on a single-instance active pool
are all the same. As the population of the active-pool
increases, activeNN has more labeled training instances
to estimate from.

Compare algorithms: Once the execution of the algo-
rithms is over, the performance of activeNN, passiveNN
and CART are compared under different performance
measures. Note that activeNN with different active-pool
sizes have different estimates for the test instances. The
activeNN estimates used for comparison are the ones
generated by the active-pool at the stopping point.

4.4 Performance Measures
Performance measures comment on the success of a
prediction. For example, the absolute residual (AR) is
the difference between the predicted and the actual:

ARi = xi − x̂i (2)

(where xi, x̂i are the actual and predicted value for test
instance i).

The Magnitude of Relative Error measure a.k.a. MRE
is a very widely used evaluation criterion for selecting
the best effort estimator from a number of competing
software prediction models [23], [39]. MRE measures the

error ratio between the actual effort and the predicted
effort and can be expressed as the following equation:

MREi =
| xi − x̂i |

xi
=
| ARi |

xi
(3)

A related measure is MER (Magnitude of Error Relative
to the estimate [39]):

MERi =
| xi − x̂i |

x̂i
=
| ARi |

x̂i
(4)

The overall average error of MRE can be derived as the
Mean or Median Magnitude of Relative Error measure
(MMRE, or MdMRE respectively), can be calculated as:

MMRE =

∑n
i=1 MREi

n
(5)

MdMRE = median(allMREi) (6)

A common alternative to MMRE is PRED(25), and
defined as the percentage of predictions falling within
25% of the actual values, and can be expressed as:

PRED(25) =
100

N

N∑
i=1

{
1 if MREi ≤ 25

100
0 otherwise (7)

For example, PRED(25)=50% implies that half of the
estimates are failing within 25% of the actual values [23].

There are many other performance measures including
Mean Balanced Relative Error (MBRE) and the Mean
Inverted Balanced Relative Error (MIBRE) studied by
Foss et al. [39]:

MBREi =
x̂i − xi

min(x̂i, xi)
(8)

MIBREi =
x̂i − xi

max(x̂i, xi)
(9)

if Mann-Whitney(Pi, Pj , 95) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if better( median(Pi), median(Pj )) then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 10: Comparing algorithms (i,j) on performance
(Pi,Pj). The “better” predicate changes according to P .
For error measures like MRE, “better” means lower
medians. However, for PRED(25), “better” means higher
medians.

Performance measures should be supplemented with
appropriate statistical checks. Otherwise, they may lead
to biased or even false conclusions [39]. In this study
so called win, tie, loss statistics are used to aid the per-
formance measures with Mann-Whitney Rank-Sum test
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(95% confidence). The pseudo-code of the win, tie, loss
statistics is given in Figure 10: We first check if two dis-
tributions i, j are statistically different (Mann-Whitney
rank-sum test, 95% confidence); otherwise we increment
tiei and tiej . If the distributions are statistically different,
we update wini, winj and lossi, lossj after comparing
the performance measures so as to see which one is
better.

4.5 Datasets
There is at least one study in SEE using one or more
of the 19 datasets used in our study (see Figure 9).
Therefore, the results presented here are based on a large
corpus and concern a number of previously published
SEE studies. The description of 20 datasets used in this
study are provided in Figure 11. These datasets are
available at http://promisedata.org/data.

As described in Figure 11, the datasets were collected
in different parts of the world:

• The desharnais dataset includes Canadian software
projects,

• cocomo81 and nasa93 include projects developed in
the United States,

• sdr, contains projects of various software companies
in Turkey [30].

Note that three of these data sets (nasa93 center 1,
nasa93 center 2, nasa93 center 5) come from different
development centers around the United States. An-
other three of these data sets (cocomo81e, cocomo81o,
cocomo81s) represent different kinds of projects (em-
bedded, organic and semi-detached respectively) devel-
oped by different team sizes and under different con-
straints [4].

Note also in Figure 11, the skewness of the effort
values (up to 6.06): The datasets are extremely hetero-
geneous with as much as 60-fold variation. There is also
some divergence in the features used to describe the
datasets:

• While data sets have some effort values in common
(measured in terms of man-months or man-hours),
no other feature is shared by all data sets.

• The cocomo* and nasa* data sets use the features de-
fined by Boehm [4]; e.g. analyst capability, required
software reliability, memory constraints, and use of
software tools.

• The other data sets use a wide variety of features
including, number of entities in the data model,
number of basic logical transactions, query count
and number of distinct business units serviced.

5 RESULTS

We will interpret our results with regards to two dif-
ferent concerns: Reduction in labeling effort and perfor-
mance. Reduction in labeling effort will question how
much effort we can save via an active learning-based
guidance system. Note that the effort reduction makes

sense only if activeNN has a successful performance.
Therefore, in the performance part we compare activeNN
to passiveNN and CART.

5.1 Labeling Effort Reduction
The reduction in the labeling effort is related to how
many labels activeNN requested from the expert. This
number is given by the so called stopping-point of the
guidance system.

In Figure 12 one plot for each performance-category
is provided (see §5.2 for performance-categories). These
plots show the MdMRE values of the learners used in
this study. The stopping-point is shown with a vertical
line that is parallel to the y-axis. In all cases activeNN
stops before asking all the labels of the training set.

Note that the MdMRE values of CART and passiveNN
are stable (horizontal line), whereas the MdMRE values
activeNN change at every point in x-axis. This is due to
the fact that for activeNN the instance numbers in x-axis
show the size of the active-pool and for different active-
pool sizes activeNN yields different performance values.

Dataset # Instances Perc. Labeled
cocomo81s 11 81.8%
desharnaisL3 10 70%
cocomo81e 28 64.3%
cocomo81o 24 62.5%
desharnaisL1 46 56.5%
nasa93 center 1 12 50%
sdr 24 50%
nasa93 center 2 37 48.6%
kemerer 15 46.7%
telecom 18 38.9%
albrecht 24 33.4%
nasa93 center 5 40 33.4%
desharnaisL2 25 24%
finnish 38 23.7%
miyazaki 48 18.7%
cocomo81 63 17.4%
desharnais 81 17.3%
maxwell 62 12.9%
nasa93 93 8.6%

Fig. 13: The percentage of instances that are labeled at the
stopping point. The median percentage value is 38.8%.
The implication of this table is that it is possible reduce
the effort of labeling activities by orders of magnitude.

Note also that there is an additional 4th line in the
plots of Figure 12: randActiveNN. The purpose of ran-
dActiveNN is to provide a baseline for the activeNN to
make sure that the results of activeNN are premeditated.
randActiveNN works exactly the same as activeNN. The
only the difference is that instead of selecting the closest
instance from the active-pool on the basis of popularity, it
randomly picks an instance from the active-pool. In other
words it violates the core assumption (assumption-pop) of
the guidance system.

We see in Figure 12 that randActiveNN performs much
worse and different than activeNN. This shows that
violation of assumption-pop destroys the benefits of the
guidance system. It also shows that the performance
results of activeNN are far from being coincidental.

Since this result repeats itself for every dataset (ran-
dom behavior of randActiveNN) we suffice to provide
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Historical Effort Data
Dataset Features Size Description Units Min Median Mean Max Skewness
cocomo81 17 63 NASA projects months 6 98 683 11400 4.4

cocomo81e 17 28 Cocomo81 embedded projects months 9 354 1153 11400 3.4
cocomo81o 17 24 Cocomo81 organic projects months 6 46 60 240 1.7
cocomo81s 17 11 Cocomo81 semi-detached projects months 5.9 156 849.65 6400 2.64

nasa93 17 93 NASA projects months 8 252 624 8211 4.2
nasa93 center 1 17 12 Nasa93 projects from center 1 months 24 66 139.92 360 0.86
nasa93 center 2 17 37 Nasa93 projects from center 2 months 8 82 223 1350 2.4
nasa93 center 5 17 40 Nasa93 projects from center 5 months 72 571 1011 8211 3.4

desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0
desharnaisL1 11 46 Projects in Desharnais that are developed with Language1 hours 805 4035.5 5738.9 23940 2.09
desharnaisL2 11 25 Projects in Desharnais that are developed with Language2 hours 1155 3472 5116.7 14973 1.16
desharnaisL3 11 10 Projects in Desharnais that are developed with Language3 hours 546 1123.5 1684.5 5880 1.86

sdr 22 24 Turkish software projects months 2 12 32 342 3.9
albrecht 7 24 Projects from IBM months 1 12 22 105 2.2
finnish 8 38 Software projects developed in Finland hours 460 5430 7678.3 26670 0.95
kemerer 7 15 Large business applications months 23.2 130.3 219.24 1107.3 2.76
maxwell 27 62 Projects from commercial banks in Finland hours 583 5189.5 8223.2 63694 3.26
miyazaki94 8 48 Japanese software projects developed in COBOL months 5.6 38.1 87.47 1586 6.06
telecom 3 18 Maintenance projects for telecom companies months 23.54 222.53 284.33 1115.5 1.78

Total: 699

Fig. 11: The 699 projects used in this study come from 19 datasets. Indentation in column one denotes that indented
dataset is a subset of its non-indented parent.
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Fig. 12: Sample plots for different category of results. The line parallel to y-axis indicates the stopping point.

one plot per category. The summary of all the datasets
is provided in Figure 13. Figure 13 shows the percentage
of labeled instances in comparison to dataset sizes. Note
that the percentage labeled instances can be as low as
8.6% with a median percentage value of 38.8%. The
lowest-percentage dataset that belongs to the category
of Pro-Active is the desharnais dataset with a percentage
value of 17.3%. These results show that activeNN works
with orders of magnitude less labels when compared to
passiveNN. The implication of this finding is quite strik-
ing. It means that we can save an orders of magnitude
effort from dataset labeling activities in an actual setting.

5.2 Performance
Figure 14 shows the comparison of activeNN, passiveNN
and CART subject to 7 different performance measures.
The table summarizes the performance measures in
terms of win− loss values. Figure 14 alone is difficult to
interpret, therefore we use it as the basis to a more struc-
tured analysis: The results of Figure 14 is interpreted in

terms of result categories. Our performance results can
be grouped into 4 categories: Pro-Active, Con-Active, Pro-
CART and Con-CART.

Pro-Active: In this category, the activeNN has compa-
rable or superior performance (in at least 4 out of 7 error
measures) to passiveNN. We are interested in comparable
results as well as the better results, because in both cases
activeNN has a considerable reduction in data labeling
effort.

Pro-CART: For the datasets falling in this category,
CART is dominantly superior to activeNN (better in
terms of 3 or more performance measures).

Con-Active: For the datasets in this category activeNN
is the worst performing algorithm, i.e. it loses to pas-
siveNN AND CART (which means win − loss value of
−2) in 3 or more performance measures.

Con-CART: For the datasets in this category, CART is
the worst performer, i.e. it is worse than passiveNN AND
activeNN (which means win − loss value of −2) in 3 or
more performance measures.
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cocomo81 passive 1 0 1 1 0 0 1
active 1 0 0 0 0 0 -2
cart -2 0 -1 -1 0 0 1

cocomo81e passive 2 2 0 2 2 2 1
active 0 -1 -1 -1 -1 -1 -2
cart -2 -1 1 -1 -1 -1 1

cocomo81o passive -1 -2 -1 -1 -1 -1 -1
active 2 1 2 2 2 2 -1
cart -1 1 -1 -1 -1 -1 2

cocomo81s passive 1 1 2 2 0 2 2
active 1 1 0 0 2 0 0
cart -2 -2 -2 -2 -2 -2 -2

desharnais passive 1 -1 -1 -1 -1 -1 -1
active 1 -1 -1 -1 -1 -1 -1
cart -2 2 2 2 2 2 2

desharnaisL1 passive 0 2 2 2 2 2 2
active 2 -2 -2 -2 -2 -2 -1
cart -2 0 0 0 0 0 -1

desharnaisL2 passive 1 0 -2 -2 0 0 0
active 1 0 1 1 0 0 -1
cart -2 0 1 1 0 0 1

desharnaisL3 passive 1 1 1 1 1 1 -1
active 1 1 1 1 1 1 0
cart -2 -2 -2 -2 -2 -2 1

nasa93 passive 2 0 2 2 2 2 0
active 0 -2 -2 -2 -2 -2 -2
cart -2 2 0 0 0 0 2

nasa93 center 1 passive 1 -1 0 0 -1 -1 -1
active 1 0 -1 -1 -1 -1 -1
cart -2 1 1 1 2 2 2

nasa93 center 2 passive 2 1 1 1 1 1 2
active 0 -1 1 1 -1 1 -2
cart -2 0 -2 -2 0 -2 0

nasa93 center 5 passive 1 0 0 0 1 1 1
active 1 0 -1 -1 -2 -2 -2
cart -2 0 1 1 1 1 1

sdr passive 1 1 1 1 2 2 2
active 1 0 1 1 -1 -1 -1
cart -2 -1 -2 -2 -1 -1 -1

albrecht passive 0 -1 -1 -1 -1 -1 -2
active 0 -1 -1 -1 -1 -1 1
cart 0 2 2 2 2 2 1

finnish passive 2 -1 -2 0 -1 -1 0
active 0 -1 0 -2 -1 -1 -2
cart -2 2 2 2 2 2 2

kemerer passive 0 0 0 0 0 0 -2
active 1 0 0 0 0 0 1
cart -1 0 0 0 0 0 1

maxwell passive 1 0 0 0 0 0 -2
active -2 -2 -2 -2 -2 -2 0
cart 1 2 2 2 2 2 2

miyazaki94 passive 1 -1 0 0 -2 0 -1
active 1 1 -2 -2 0 -2 -1
cart -2 0 2 2 2 2 2

telecom1 passive 1 0 0 0 0 0 -1
active 1 0 0 0 0 0 0
cart -2 0 0 0 0 0 1

Fig. 14: The win− loss values. Those results are used to
form the so called “performance categories”.

The distribution of the datasets to these categories are
given in Figure 15. The win−loss values used to generate
Figure 15 are given in Figure 14.

In Figure 15 12 datasets fall into the category of Pro-
Active and 5 fall into Con-Active. A total of 12 + 5 = 17
datasets are able to differentiate activeNN from passiveNN
as better or worse. Among 17 datasets, for 70% of the
datasets activeNN is a substitute for passiveNN. In other
words, in 70% of the datasets activeNN is comparable
to or better than passiveNN for much less data labeling
effort.

In the category of Con-Active there are 5 datasets. In
other words, only in 5/19 = 26% of the datasets was
activeNN worse than both competitors at the same time.

Upon that information we can say that for the majority
of the datasets assumption-pop works. In other words, for
less labeling effort we can gain the same performance as
assumption-all.

Category Datasets #
Pro-Active cocomo81, cocomo81o, cocomo81s

desharnais, desharnaisL2, desharnaisL3 12
nasa93 center 1 , albrecht, finnish
kemerer , miyazaki94, telecom

Con-Active desharnaisL1, nasa93, nasa93 center 5 5
maxwell, miyazaki94

Pro-CART desharnais, nasa93 center 1, nasa93 center 5
albrecht, finnish, maxwell 7
miyazaki94

Con-CART cocomo81s, desharnaisL3, nasa93 center 2 4
sdr

Fig. 15: The distribution of datasets into result-categories.
Last column shows the number of datasets in each
category. Note that 12 datasets fall into the category of
Pro-Active and 5 fall into Con-Active. Among 12 + 5 = 17
datasets that differentiate activeNN from passiveNN, for
70% of the datasets activeNN is a substitute for pas-
siveNN.

As for the performance of CART in comparison to
activeNN, we look at the category of Pro-CART. There
are 7 datasets in Pro-CART, which shows that for 37%
of the datasets CART is dominantly superior to ac-
tiveNN. This shows that for the majority of the datasets
(100% − 37% = 63%), activeNN is comparable to the
most successful algorithm reported in [1]. Therefore,
an assumption-pop based guidance system does not only
outperform standard passive ABE methods, but also is
comparable to the state-of-the-art learners.

The category of Con-CART shows the failure of CART
and contains only 4 datasets. For only 21% of the datasets
CART performs worse than both ABE methods. The
results of this last category support the findings of [1]
in an ABE context.

6 THREATS TO VALIDITY

Internal validity asks to what extent the cause-effect rela-
tionship between dependent and independent variables
holds [40]. The ideal case to observe that relationship
would be to learn a theory on the available data and
apply the learned theory on completely new and unseen
data. However, considering the data-drought in SEE, the
ideal case is unfeasible. Therefore, the ideal scenario is
simulated by sampling methods to separate the available
data into training and test sets. In this study we used
10Way sampling method to simulate the ideal case.

External validity is the question of how widely the
results can be generalized [41]. So as to observe the
applicability of our results to a wide spectrum of SEE
datasets, we use a total of 19 datasets that have very
different characteristics. Although the analysis on 19
datasets is more extensive than an average SEE study, we
acknowledge that our experiments need to be replicated
on new datasets.

Construct validity (i.e. face validity) asks if we are in
fact measuring what we intend to measure [42]. A bene-
ficial discussion can be found in [43], where Kitchenham
et al. state that different performance measures evaluate
different aspects of the prediction accuracy. So as to
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evaluate our results in terms of different aspects, we use
7 different performance measures. Another point made
by Kitchenham et al. is that sole usage of performance
measures is wrong and they need to be supported with
statistical checks. To address that validity issue we use
win− tie− loss statistics, where we make use of Mann-
Whitney U test at a significance level of 95%.

Another validity issue is the use of experts in active
learning guidance system. The assumption with the
experts is that they are able to provide the labels of the
training set upon a request from the guidance system.
As the labels in the training set is also collected by
the experts this assumption is fairly appropriate. On
the other hand an interesting application would be to
introduce a white-noise on the data labels to introduce
the expert-judgment error. This is currently left as a
future work.

7 CONCLUSIONS

Our conclusions are three-fold following the research
questions that guided this study.

RQ1: Which dataset assumptions are supported by SEE
datasets and what is the implication of these assumptions on
the dataset topology? In this study two different assump-
tions are investigated: assumption-all and assumption-pop.
The former assumes a random topology and states that
any instance may be the closest instance to another
instance; hence, all instances of the training set are
useful. The latter assumes a more structured topology
where popular instances are central and are the closest-
neighbor to multiple other instances; hence a limited
number of labels is sufficient. At the end of our analysis,
we have seen that assumption-all does not hold and SEE
datasets have a topology indicated by assumption-pop.

RQ2: How does the dataset topology affect the data collec-
tion/labeling effort? We have seen the assumptions regard-
ing SEE dataset topology can be successfully used as a
guidance system. Such a guiding removes the need to
label all the instances in a dataset. In fact we observed
that it is possible to reduce the number of instances
to be labeled by orders of magnitude. Therefore, our
conclusion is that immense amount of effort spent in
data collection/labeling can be saved with the proposed
guiding system.

RQ3: What is the performance of active learning-based ABE
methods to other algorithms? Based on the topology fore-
seen by assumption-pop we defined an active learning-
based guidance system to be used with ABE0-1NN.
The combination (activeNN) proved to be comparable to
standard passive-learning based ABE0-1NN (passiveNN)
as well as more complex learners like CART.

8 FUTURE WORK

This initial study uses a single popularity metric: so
called E(k) matrix. A plausible future direction would
be to device new popularity metrics based on the data
topology. Those new popularity metrics may as well

be used to augment the E(k) matrix. For example E(k)
matrices only cares about the popularity index, i.e. two
instances with the same popularity index are treated the
same. However, this index can be augmented with a
total-distance metric meaning that the instance with the
lower total-distance is preferable to the other one.

Another point of future research is the stopping rules:
When should the guidance-system stop asking for new
labels? Currently we make use of multiple rules and
they offer favorable performance values. However, cur-
rent rules are heuristics and can only approximate the
optimum stopping point.

One final and fairly easy-to-do future direction to this
research is to introduce the human-error into the exper-
imentation. Current version of the paper assumes that
experts can reveal the actual effort values in the training
set. However, a company with novice experts may end
up labels that are far from being perfect. Addition of a
white-noise to the actual effort values as the human-error
can simulate such an experimentation.
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