
A Simulation Study of the
Model Evaluation Criterion MMRE

Tron Foss, Erik Stensrud, Member, IEEE,

Barbara Kitchenham, Member, IEEE Computer Society, and Ingunn Myrtveit

Abstract—The Mean Magnitude of Relative Error, MMRE, is probably the most widely used evaluation criterion for assessing the

performance of competing software prediction models. One purpose ofMMRE is to assist us to select the best model. In this paper, we

have performed a simulation study demonstrating thatMMRE does not always select the best model. Our findings cast some doubt on

the conclusions of any study of competing software prediction models that used MMRE as a basis of model comparison. We therefore

recommend not using MMRE to evaluate and compare prediction models. At present, we do not have any universal replacement for

MMRE. Meanwhile, we therefore recommend using a combination of theoretical justification of the models that are proposed together

with other metrics proposed in this paper.

Index Terms—Mean magnitude of relative error, software metrics, simulation, regression analysis, prediction models, software cost

estimation, software engineering, empirical software engineering, prediction accuracy.
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1 INTRODUCTION

SOFTWARE cost estimates and defect rate estimates are
important deliverables of software projects. As a

consequence, researchers have proposed and evaluated a
plethora of prediction systems. There are a number of
empirical studies including studies on generic model-based
methods [12], [14], [18], [28], [30], [36] as well as on specific
model-based methods. The latter methods include CART
(Classification and Regression Trees) [4], [5], [7], [33], [48],
[46], OSR (Optimized Set Reduction) [2], [3], [29], Stepwise
ANOVA (Analysis of Variance) [33], OLS (Ordinary Least
Squares) regression (more than 30 studies, see [10] for an
account), Robust regression [23], [24], [26], [38], [42], [43],
Composite Estimation models (like COBRA) [4], Analogy-
based models [19], [27], [39], [40], [47], [49], [52], [46] and,
finally, artificial neural network-based models [45], [48].
(We have adopted the classification scheme proposed in the
Encyclopedia of Software Engineering [10] except possibly for
neural networks.)

The most widely used evaluation criterion to assess the
performance of software prediction models is the mean
magnitude of relative error, MMRE [10]. This is usually
computed following standard evaluation processes such as
cross-validation [6]. Conte et al. [13] consider MMRE �
0:25 as acceptable for effort prediction models.

MMRE is used for many purposes. One important use of
MMRE is to select the best model among two or more

competing prediction models, e.g., compare an estimation-
by-analogy model with a linear regression model. The
model obtaining the lowest MMRE is deemed “best.”
Examples of such studies include [40] and [47].

In this paper, performing a simulation study, we
investigate whether MMRE is a reliable selection criterion
or not. The findings suggest that MMRE is an unreliable
selection criterion; in many cases, MMRE will select the
worst candidate out of two competing models; in particular,
MMRE will tend to prefer a model that underestimates to a
model that estimates the expected value; in fact, MMRE
may be lower (i.e., “better”) for a bad model than for a
good model even when the good model happens to be the
true model. Miyazaki et al. [38] have pointed out that
“MMRE underestimates,” but neither they nor anybody
else have seriously questioned the far reaching implications
of this fact.

The consequences of our findings cast doubts on the
results of all studies that have relied on MMRE to compare
the accuracy of predictive cost models. Furthermore, this
remains a problem because MMRE is still considered the de
facto standard [10].

As an aside, we are not aware of MMRE being used to
evaluate prediction models (like regression analysis, esti-
mation by analogy, etc.) in disciplines other than computer
science and software engineering. We are, however, aware
of its use in time series analysis. See, for example,
Makridakis et al. [35].

The paper is organized as follows: Section 2 illustrates
the potential problem with MMRE. Section 3 presents and
discusses alternative evaluation metrics that we investigate
in this study together with MMRE. Section 4 presents
related work. The main objective of this section is to
position our study relative to other related studies and,
specifically, point out that no other studies have done the
investigation that this paper undertakes. Section 5 describes
the simulation method, the simulation model, and the
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“good” and “bad” models that we use as competing
models. The section also highlights some of the advantages
of simulation versus using real data sets. Whereas Section 5
describes how the simulation model is created, Section 6
describes how the simulation model is used in this study to
evaluate the metrics that are in scope. Section 7 presents the
results followed up by a discussion in Section 8. Section 9
concludes and, in Section 10, we briefly outline some
possible directions for future work.

2 ILLUSTRATING THE PROBLEM

To illustrate the problem of MMRE, let us consider two
predictionmodelsA andB, respectively. IfMMRE ofmodelB
is significantly lower than MMRE of model A, one would
conclude that model B is better than model A (B is “more
accurate” than A in current software engineering terminol-
ogy). MRE is the basic metric in MMRE and is defined in (1)
as follows [13] (where y ¼ actual, ŷy ¼ prediction):

MRE ¼ y� ŷyj j
y

: ð1Þ

To be able to draw the correct conclusion with regard to
whether model A or model B is best, it is crucial that the
model evaluation metric selects the model that is closest to the
true model most of the time. (The true, or population, model is
the model we would obtain if our data set comprised all the
relevant past and future data points, e.g., the population of
all past and future software projects that are similar to the
project to be predicted). This seems like a reasonable,
common sense requirement of an evaluation criterion.
Otherwise, the evaluation criterion may lead you to
wrongly choose model B when model A ought to have
been chosen.

Consider the two models A and B in Fig. 1. Model A is
fitted to the data by OLS log-linear regression. (The data is
the Finnish data set, see [32] for details on the data). Next,
assume that model B is fitted by some other method (Say,

the novel method “SuperX” which we have recently
developed and which we believe holds great promise.)
We observe that model B has the same slope as A but a
different intercept than A. (Model B Constant = 0.7, Model
A Constant = 1.7, see Table 1 and Table 2, respectively).
Thus, the intercept of model B is underestimated (compared
with A).

By visual examination, A seems to represent the central
tendency of the data reasonably well, at least far better than
model B. Since A has been fitted using OLS, the estimates
from A equal the expected value (or mean). Also, model A is
a good regression model in terms of the commonly used
criteria SE (standard error) and R2 (See Table 3). Both
coefficients of model A are significant (p < 0:10).

Nevertheless, in terms of MMRE, model B is preferred to
model A (Table 3). (MRE may be calculated using the
formula derived in Appendix A.) As a consequence, we
would be misled by MMRE to identify model B as better (or
more “accurate”) than model A. This is a serious flaw of the
evaluation criterion MMRE when it is used to select
between competing prediction systems. As an evaluation
criterion, it therefore clearly does not comply with common
sense (nor with statistical science) with regard to identifying
which model is the better one.

In this study, we perform a simulation study to
demonstrate the extent of the MMRE problem. We also
take the opportunity to propose and evaluate other good-
ness of fit statistics.

3 ALTERNATIVE EVALUATION METRICS

In this section, we present other potential evaluation
metrics that we evaluate in this study. Another measure
akin to MRE, the magnitude of error relative to the estimate,
MER, has been proposed by Kitchenham et al. [31].
Intuitively, it seems preferable to MRE since it measures
the error relative to the estimate. MER is a measure of the
dispersion of the variable y=ŷy if the mean of y=ŷy is
approximately 1. They further pointed out that researchers
should look at the full distribution of the variable and not
just the dispersion. MER is defined as

MER ¼ jy� ŷyj
ŷy

: ð2Þ
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Fig. 1. Two regression models A and B.

TABLE 1
Model A (Fitted by OLS Regression)

TABLE 2
Model B

TABLE 3
MMRE, SE, and R2 of Models A and B
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We use the notation MMRE to denote the mean MER.
Another, and simple, measure of residual error is the
standard deviation, SD. It is computed as follows:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yi � ŷiyið Þ2

n� 1

s
: ð3Þ

We also propose and evaluate two other measures. They
are the relative standard deviation RSD and the logarithmic
standard deviation LSD. RSD is defined as follows:

RSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP yi�ŷiyi
xi

� �2

n� 1

vuut
: ð4Þ

The variable x is function points, FP, in our case. The
rationale behind RSD is to measure the dispersion relative
to the x value (e.g., FP ) rather than relative to the y value
(effort) to avoid one of the problems with MMRE. One of
MMRE’s problems is that small actuals (small ys) will have
a (too) large influence on the mean MRE since a number
divided by a small number tends to be a large number.
Contrary to MRE, which is almost uncorrelated with size
[50], SD is positively correlated with size because software
project data sets are often heteroscedastic. As opposed to
SD, RSD is almost uncorrelated with size.

We observe that RSD is limited to models with a single
predictor variable. In many software studies, this is,
however, not a serious limitation since it is common to
create prediction models based on FP and effort. More
important, we can provide a rationale for choosing this
metric as well as an interpretation of its meaning. As for the
rationale, let us assume that we have the following model:

y ¼ �þ �xþ x"; ð5Þ

where " is normally distributed: Eð"Þ ¼ 0 and varð"Þ ¼ �2.
This model will generate data where the variance increases
with x. Dividing (5) by x gives:

y

x
¼ � � 1

x
þ � þ ": ð6Þ

The error term in this regression model (6), ", is normal:
Eð"Þ ¼ 0 and varð"Þ ¼ �2. OLS will, therefore, be an efficient
estimating method. Let �̂� and �̂� be estimates of � and �. Our
prognosis (sample prediction model) for effort is then:

ŷy ¼ �̂�þ �̂�x: ð7Þ

But, then:

ŷy

x
¼ �̂�

1

x
þ �̂�: ð8Þ

y
x �

ŷy
x is, therefore, an estimate, e, of the error term ". Since

we also have that

e ¼ y

x
� ŷy

x
¼ y� ŷy

x
: ð9Þ

RSD is, therefore, an estimate of the standard deviation
of the error term " in the regression equation. Thus, RSD is a
relevant measure of how good the prediction model is. It
remains to give RSD an interpretation making sense since x

and y are measured in different units (hours vs. FP).We can
interpret y=x as the effort per FP, that is to say, the
productivity. If � is close to zero or if the project is large (in
terms of x), we observe that y=x will approximate �.

We note that RSD is based on an additive model and
many software effort estimation models use an exponential
model. Thus, RSD may be less effective as a goodness of fit
statistic for an exponential model if the exponent is
significantly different from one. (However, these two
models are very close to each other, see Section 5.2. The
exponent is 0.943 and, thus, very close to 1, see Table 6.
Therefore, RSD is an appropriate measure in this single-
predictor case.)

LSD is defined as follows:

LSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ei � � s2

2

� �� �2
n� 1

s
: ð10Þ

The term s2 is an estimator of the variance of the residual
ei, where ei is given by

ei ¼ ln yi � ln ŷyi: ð11Þ

The rationale behind LSD is as follows: Data sets with a
large heteroscedasticity like the DMR data set (Table 4) will
be very influenced by the large projects. Thus, the usual SD
is more sensitive to large projects than to small projects and
it may therefore not be a stable, reliable measure for such
data sets. On the other hand, LSD lends itself well to data
sets that comply with a log-linear model because the
residual error is independent of size (i.e., homoscedastic)
on the log scale. In fact, we use a log-linear transformation
for our simulation (see Section 5.2), so LSD should
theoretically be more reliable than SD in this case. (The
reason for the �s2=2 term will become clearer in Section 5.2.
See also Appendix B.) To summarize, LSD is useful for
comparing multiplicative models but it may be inappropri-
ate for comparing additive models.

Finally, we evaluate the mean of the balanced relative
error BRE and the inverted balanced relative error IBRE

proposed by Miyazaki et al. [38]:

BRE ¼ ŷy� yð Þ
y

; ŷy� y � 0; ð12Þ

BRE ¼ ŷy� yð Þ
ŷy

; ŷy� y < 0; ð13Þ

IBRE ¼ ŷy� yð Þ
y

; ŷy� y < 0; ð14Þ

IBRE ¼ ŷy� yð Þ
ŷy

; ŷy� y � 0: ð15Þ

The mean of the absolute values of BRE and IBRE are
termed MBRE and MIBRE, respectively.

FOSS ET AL.: A SIMULATION STUDY OF THE MODEL EVALUATION CRITERION MMRE 987

TABLE 4
Descriptive Statistics for DMR Data Set

Authorized licensed use limited to: West Virginia University. Downloaded on April 20,2010 at 20:49:06 UTC from IEEE Xplore.  Restrictions apply. 



4 RELATED WORK

There are two categories of work that may be considered
related to this study: studies on evaluation metrics as well as
simulation studies. Evaluation of the evaluation metrics
themselves seems to have received little attention since
Conte et al. [13] publicized MMRE and other measures. The
only related work we are aware of is Miyazaki et al. [38],
Kitchenham et al. [31], Foss et al. [20], and Stensrud et al. [50].

Miyazaki et al. identified that MMRE is lower for models
that underestimate and suggested other summary statistics
they believed would be better behaved but they did not
investigate the implications of MMRE bias, nor the proper-
ties of their proposed replacement metrics.

Kitchenham et al. take a different approach. They attempt
to understand what MMRE (and other measures) really
measure. They note thatMMRE is a measure of the variance
of the variable y=ŷy and that PRED (20) is related to kurtosis.
They advise against using a single summary statistic to
assess goodness of fit and suggest looking at box plots both
of the y=ŷy variables and of the simple residual y� ŷy.

Stensrud et al. found that MRE and size are virtually
uncorrelated, which is a positive asset of MRE. None of the
previous studies have investigated the reliability of MMRE
when used as a criterion to select between competing
prediction systems.

Regarding simulation studies in software engineering,

several papers have recently used simulation in software

engineering: Rosenberg [44], El-Emam [22], Briand and

Pfahl [9], Angelis and Stamelos [1], Strike et al. [51],

Shepperd and Kadoda [46], and Pickard et al. [43]. There-

fore, simulation is becoming an accepted research method

in software engineering.

Pickard et al. note that simulation is useful both to check

whether or not empirically observed relationships result

from data analysis procedures rather than genuine relation-

ships and to assess the implications of proposed statistical

analysis methods particularly when there are likely to be

interactions between the analysis technique and the data

set. In our case, we are concerned with assessing the

implication of a summary statistic, i.e., confirming that

MMRE exhibits an undesirable property rather than

investigating the data set conditions that affect the

property. Since we need only to demonstrate that the

undesirable property exists, we have used the same

technique as El Emam, and Briand and Pfahl, and based

our simulation on a single real data set. This contrasts with

the approach taken by Pickard et al. and Shepperd and

Kadoda who investigated a variety of analysis techniques

on artificial data sets constructed to exhibit a variety of

different conditions because they were interested in the

interaction between the data set properties and the analysis

method results.

5 SIMULATION METHOD

Since the 1950s, various computer simulation techniques
have become increasingly important research tools across a
wide range of sciences. Software packages based on these
techniques are also widely used in more applied fields such

as engineering, finance, or environmental management,
often in connection with computerized databases and

electronic gathering devices.
There are several advantages of simulation compared

with using real data. One advantage is that we can create
a large number of samples rather than having to use only

one, single sample. Thus, we obtain the distributions for

statistical parameters that are estimated (the estimators).
Using a single sample of real data, we can obtain the

distribution only when it can be calculated analytically. In

cases where we cannot calculate the distribution analyti-
cally, we would obtain one single value for the estimator,

not its distribution. In such cases, simulation adds value.

Clearly, we obtain more information and can draw more
reliable conclusions based on a distribution than based on

a single value.
Another advantage of simulation is that we know the

true answer. For example, we may study missing data
techniques by removing data from a complete (simulated)

data set in a controlled manner and study the effects of the

missing data techniques by comparing results with the true,
complete data set. Strike et al. [51] have used this approach.

Still another advantage with simulation is that it enables

the studying of phenomena that are too complex to describe

and solve analytically, e.g., the behavior of oil reservoirs.
In this study, we use simulation (combined with

regression models) to investigate MMRE and alternative
evaluation metrics. Using simulation, we demonstrate that,

in many cases, MMRE fails to select the best prediction

model among competing models. The simulation study
therefore is a more conclusive demonstration of the

conjecture stated in Sections 1 and 2 and illustrated in Fig. 1.

5.1 Data “Template”

It is important that a simulation method for generating data

generates data that are as close as possible to actual, and
representative, software data sets. In this study, we have

primarily used the Desharnais (DMR) data set as a model

for our simulation model. The Desharnais data set exhibits
properties that we consider representative of other data sets

of software projects with respect to (non)linearity and

heteroscedasticity. Four more software data sets, presented
in [50], have similar properties with DMR in this respect. In

addition, it is a reasonably large sample. (It contains
81 projects, see Table 4). For more details on DMR, see

[15]. The DMR data come from a single company but have

used three different language types. (For some kinds of
analysis, it may therefore require partitioning based on the

language type. For this analysis, it is, however, unnecessary

to partition the data into more homogeneous subsets since it
is only used as model for generating a simulation model).

The projects span from 1,116 to 23,940 workhours.
Overall, we believe that a simulation model approximat-

ing the DMR data set should be close to reality and
representative of software cost estimation data sets. (We

make, however, no claim that defect estimation data sets

have similar characteristics to cost estimation data sets, so
our results cannot be assumed to apply to defect estimation

models.)
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5.2 Model Specification

It is common, and a reasonable starting point, to assume a

linear model of the following form: (Recent research using

genetic algorithms as a flexible method of model fitting did

not find any significant deviations from a linear model [16].)

eff ¼ �þ � � FP þ u: ð16Þ

If we apply (16) to the DMR data set [15], we obtain the

following OLS linear regression model (Table 5):

eff ¼ �40þ 17:6 � FP: ð17Þ

On closer inspection of the DMR data set in Fig. 2, we

observe that it seems reasonably linear but exhibits a

pronounced heteroscedasticity (increasing variance). OLS

regression analysis assumes that the data are homoscedastic

(equal variance). Model (2) is therefore not sufficiently

correct. Therefore, we need to transform the data in an

attempt to make them better comply with the assumptions

of the OLS method, in particular, the homoscedasticity

assumption. There exist several alternatives for transform-

ing the data.
One alternative is to perform a log-linear regression

where we assume that the relationship between effort and

FP is of the form

eff ¼ e�ðFP Þ� � I; ð18Þ

where I is lognormal with mean equal to 1. Thus, I ¼ eu

with u normally distributed. It has been proved that if

V arðuÞ ¼ �2 and EðuÞ ¼ � �2

2 , then EðIÞ ¼ EðeuÞ ¼ 1 ([17,

vol. 5, p. 134]).
Stating (18) in the form

eff ¼ e� � ðFP Þ� � eu ð19Þ

and taking the logarithm of (19), we obtain

lnðeffÞ ¼ �þ � lnðFP Þ þ u: ð20Þ

A plot of the transformed data when applying (20) is

presented in Fig. 3. Inspecting the plot, the data exhibit a

reasonable homoscedasticity and linearity.
Applying model (20) to the DMR data set, we get the

following OLS regression model (21) or (22) or in table form

in Table 6:

lnðeffÞ ¼ 3:03þ 0:943 � lnðFP Þ; SD ¼ 0:6000: ð21Þ

Backtransforming (21), we get

eff ¼ e3:03 � ðFP Þ0:943 ¼ 20:6972 � ðFP Þ0:943: ð22Þ

Comparing (16) with (18), we can state that in (16), we
believe in a linear relationship between effort and FP

whereas in (18), we believe in an exponential relationship
between these two variables. We observe, however, that
model (22) fitted to the DMR data set is not particularly
exponential since the exponent is close to 1 (0.943 and with
a standard error of 0.11, see Table 6). From this, we cannot
draw any conclusions regarding returns to scale, i.e.,
whether to assume increasing, decreasing, like COCOMO
(Constructive Cost Model) [12], or constant returns to scale.
See [41] for an account of returns to scale. However, none of
the two models reject the assumption of constant returns to
scale. Therefore, a linear model seems to be a good first
order approximation of reality.

Given that the data seem reasonably linear, we could
have used (16) except for the fact that the data are
heteroscedastic. Therefore, it is interesting to investigate a
third model that is linear rather than log-linear but corrects
the heteroscedasticity of (16).

eff ¼ �þ � � ðFP Þ þ ðFP Þu: ð23Þ

In model (23), we assume a linear relationship between
FPand effort as we do in (16), but unlike (16), we transform
the data in an attempt to obtain a more constant variance.
Equation (23) may be restated as
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TABLE 6
The Log-Linear Model (21), (22)

TABLE 5
The Linear Model (17)

Fig. 2. DMR data set: FP versus Effort.

Fig. 3. DMR data set: ln(FP) versus ln(Effort).
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eff

ðFP Þ ¼ � � 1

ðFP Þ þ � þ u: ð24Þ

Thus, in (24), eff
ðFP Þ is the dependent variable and 1

ðFP Þ is

the independent variable. The OLS regression model

applying (24) on the DMR data is

eff

ðFP Þ ¼ 16:9þ 127 � 1

ðFP Þ : ð25Þ

The standard deviation of the residual in (25) is 8.4.

Model (25) may alternatively be stated as

eff ¼ 127þ 16:9 � ðFP Þ: ð26Þ

A plot of model (25) is provided in Fig. 4. In (25), the

residual u seems less heteroscedastic than the residual of

(16). Unfortunately, it is not perfectly homoscedastic either.

This is observed by comparing the plots of Fig. 2 and Fig. 4.

Compared with the log-linear model (18), model (25) seems

no better. In addition, comparing Table 6 and Table 7, we

observe that the intercept of the log-linear model (18) has a

higher t-value than the intercept of model (25), and that the

slope coefficients have similar t-values. Overall, the log-

linear model seems the best choice.

In the simulation study that follows, we have therefore

opted for model (18), the log-linear model. The log-linear

model also has an additional benefit compared with the two

other models in that it corrects heteroscedasticity as well as

forces the line through the origin. (That is, when zero FP is

delivered, zero effort is expended.)
We find it useful to have performed and reported this

explorative exercise because, unfortunately, there is no

strong theory to guide us in software engineering. We have

therefore chosen (18) based on empirical evidence of the

DMR data set. This empirical evidence weakly suggests a

multiplicative model rather than an additive model.

5.3 Simulation Model and Procedure

Let us assume that we have estimated the regression

parameters based on a large sample (or alternatively,

suppose that we happen to know the population) and that

we therefore know the true (or population) regression

model. Assume that the true model is exponential of the

form (18) and with coefficients and standard deviation �

identical to model (20):

lnðeffÞ ¼ 3:03þ 0:943 � lnðFP Þ þ u; � ¼ 0:600: ð27Þ

Model (27), i.e., the regression model including the error

term u and the standard deviation �, is our simulation

model describing the population. The parameters describ-

ing the population should describe aspects of the popula-

tion that are relevant to the simulation study. For this study,

it is relevant to include a model for the variance of the

population. The error term u accounts for the stochastics

(e.g., variables not captured in our model). Some projects

use more effort, and some less effort, than the expected

effort based on FP counts. u is normal with mean equal to

��2=2 and variance equal to �2 ([17, vol. 5, p. 134]). This

simulation model generates data sets with characteristics

similar to the DMR data set (and presumably similar to

other software project data sets).
If the population is given by model (27), we may

simulate sampling from this population. Let us assume

that we have conducted 30 projects of different size, say,

FPi ¼ 50 � i, i ¼ 1; 2; . . . ; 30. Then, the smallest project will

have FP1 ¼ 50 and the largest in the sample will have

FP30 ¼ 1; 500. (This is close to the span of the DMR data set,

see Table 4. Only, we draw 30 rather than 81 observations.

This is because many software data sets have around

30 observations.) For each project i, we draw a random

number ui from a normal distribution with mean equal to

�0:18 (��2=2) and standard deviation �2 equal to �0:600.

(This is standard functionality in statistical packages, e.g.,

Minitab [37]: Menu tree: Calc.random.normal). Thus, we

loop from i ¼ 1; 2; . . . ; 30 and generate FPi each time using

the formula FPi ¼ 50 � i. Next, we compute the effort effi
using (27) with FPi as input as well as input of an ui value.

This procedure gives us a data set of 30 observations with

characteristics similar to the DMR data set. In this way, we

may create as many samples of 30 observations as we wish.

For the simulation study, we created 1,000 samples of

30 observations each. We observe that the simulation

procedure is a reverse procedure of the ordinary regression

analysis procedure. (In regression analysis, we start with

the observations and estimate the regression model whereas

in this simulation we start with a know population

regression model and create a number of observations).

5.4 Simulating Competing Models

Let us assume that we have created a variety of prediction

models based on a variety of procedures and based on

samples drawn from the population described by the

simulation model (27). (These procedures could have been

classification and regression trees, estimation by analogy,

neural nets, or some novel method X.) For simplicity,

assume that we have created four different multiplicative

models based on different samples and different methods

X1, X2, X3, and X4 as follows:
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Model (25), (26)
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eff ¼ e2:50 � ðFP Þ0:943; ð28Þ
eff ¼ e3:03 � ðFP Þ0:920; ð29Þ
eff ¼ e3:50 � ðFP Þ0:943; ð30Þ
eff ¼ e3:03 � ðFP Þ0:970: ð31Þ

We observe that (28) has a smaller intercept than the true
model (22) but equal �. That is, model (28) underestimates.
We should therefore expect it to be considered as superior
to the true model terms of MMRE since MMRE favors
models that underestimate. Model (29) has intercept equal
to the true model whereas the slope is smaller than the
slope of the true model. Thus, model (29) also under-
estimates, so we should expect MMRE to identify this
model as superior to the true model. Although model (29)’s
underestimates are more pronounced for larger size values,
it never produces as extreme underestimates as model (28),
over the range of size values used in our simulation. Thus,
model (28) is an example of a severely underestimating
model, and model (29) is an example of moderately
underestimating model.

Model (30) has a greater intercept than the true model
and equal slope. We should therefore expect this model to
be identified as inferior to the true model in terms of
MMRE. Model (31) has a greater slope than the true model
and equal intercept. Thus, model (31) overestimates, and we
expect MMRE to identify this model as inferior to the true
model. Although model (31)’s overestimates are more
pronounced for large size values, it never produces as
extreme overestimates as model (30), over the size range
used in our simulation. Thus, model (30) is an example of a
severely overestimating model, and model (31) is an
example of moderately overestimating model.

6 RESEARCH PROCEDURE

The research procedure consisted of creating 1,000 samples
based on the simulation model (11). Thereafter, we
computed MMRE, MdMRE (median MRE), MMER, SD,
RSD, LSD, MBRE, and MIBRE values for the five models
(true (27), (28), (29), (30), and (31)) on all the 1,000 samples.
We compared models pairwise with the true model. For
each pairwise comparison, we counted the number of times
each model obtained the best MMRE, MdMRE, MMER, SD,
RSD, LSD, MBRE, and MIBRE values, respectively. For
example, suppose we compare the true model and model
(28) on 1,000 samples by computing MMRE for each model

on each sample. Suppose the results are that (28) obtains the
lowest (best) MMRE on 900 of the samples and the true
model obtains the lowest MMRE on the remaining
100 samples. Then, we report 900 for model (28) and 100
for the true model. This should be interpreted as follows:
When MMRE is used to select between competing predic-
tion systems, the estimated probability that we select (28) is
0.9 whereas the estimated probability of selecting the true
model is 0.1.

MRE may be computed using the formula (A8) in
Appendix A, or it may be computed directly using the
multiplicative form of the function. Similar formulas may
be used to compute the other measures (not reported).

7 RESULTS

The results for the comparison are presented in Tables 8, 9,
10, and 11. We have reported the number of times each
model obtains the best score (i.e., lowest MMRE, etc.). We
reiterate that a sensible evaluation criterion ought to have a
high probability of identifying the true model as best.

Focussing on MMRE in the four tables, we observe that
MMRE identifies models that underestimate as superior to
the true model and identifies models that overestimate as
inferior to the true model.MdMRE exhibits a similar pattern
to MMRE but the effect is less severe and appears to be
influenced by the strength of the overestimate, i.e., it is
more likely to select the correct model if the underestimate
is severe. MMRE identifies the true model as best in three
out of four cases. It is therefore not sufficiently consistent in
identifying the true model as best. SD identifies the true
model as best in all cases and is therefore consistent. RSD
also identifies the true model as better than the four other
models and is therefore consistent, too. Compared with SD,
RSD also identifies the true model as best with a higher
probability than SD. LSD, too, consistently identifies the
true model as best with a reasonably high probability
(> 0:7). MBRE and MIBRE perform similarly to MMER.
They both identify the true model as best in three out of
four cases.

MMER does not perform particularly well in this study.
In theory, however, MMER might perform better for data
sets exhibiting a more pronounced heteroscedasticity than
the DMR data. Like SD, and unlikeMMRE, it favors models
with a good fit to the data, and unlike MMRE, it is not
sensitive to small actuals. Therefore, given the choice
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TABLE 8
Results of True Model versus Model (28)

TABLE 9
Results of True Model versus Model (29)
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between MMRE and MMER, we argue that MMER is to be
preferred.

Among all the measures evaluated in this study, MMRE
is probably the worst choice. It clearly favors models that
underestimate, and it is extremely sensitive to small actuals.

As an aside, we also observe that MMRE does not take
the number of observations, N, into account. Common sense
dictates that we generally should have more confidence in a
model based on 100 observations than a model based on
two observations. The latter model would likely obtain a
better MMRE but would, nevertheless, inspire less con-
fidence, in general.

To conclude, MMRE, MdMRE, MMER, MBRE, and
MIBRE are substantially more unreliable as evaluation
criteria than SD, RSD, and LSD. All of the latter three
criteria are consistent, and RSD and LSD seem slightly
better than SD. It seems that a good selection criterion ought
to prefer the true model, the truth, most of the time.
(Ideally, it ought to prefer the truth all of the time, but this
is, of course, infeasible for evaluation criteria based on
statistical methods.)

8 THREATS TO THE STUDY VALIDITY

The major threat to the validity of our study is the validity
of the simulation exercise. In this section, we discuss some
of the several critical decisions we made when undertaking
our study.

In the simulation study, we generated 1,000 samples.
This is common in simulation studies. Each sample
contained 30 observations. This is a sample size that
reasonably well reflects average software project data sets.
See, e.g., [50] for a presentation of five different data sets.

We performed significance tests of the difference in
MMRE values for each pairwise comparison (not reported).
Testing for statistical significance is, however, not so
meaningful because this is a simulation study where we
have fitted the four “bad” models as badly as possible in
order to obtain as significant results as possible. Therefore,
we may obtain as significant results as we wish. This
situation is different from a situation where we want to
compare two given fitting methods (for example OLS
regression versus estimation by analogy). In the latter
study, it is important to test for significance.

We also compared two models at a time. In most
software engineering (SE) studies, a new, proposed model
is compared against a baseline model like OLS regression.

Therefore, our pairwise comparisons reflect the majority of

SE studies. There are, however, cases where more than two

models are compared simultaneously. This would require a

different set-up of the simulation study.
Last, but not least, the simulation model was based on

one data set. However, we selected a data set exhibiting

many typical characteristics of cost estimation data sets, in

particular, the presence of heteroscedasticity. This property

is relevant in the context of evaluating a relative error

measure like MRE since MRE is intended to correct for

heteroscedasticity. Thus, we believe a simulation model

based on our single data set is sufficient to confirm the

existence of any problems with MRE unless one can argue

that this particular data set is atypical among cost

estimation data sets.

9 CONCLUSION

MMRE has for many years been, and still is, the de facto

criterion to select between competing prediction models in

software engineering. It is therefore important that we can

rely on MMRE in selecting the best model among two or

more choices. This study suggests that we cannot rely on

MMRE for this purpose. The conclusions that we can draw

from the empirical results of this study are the following:

1. MMRE is an unreliable criterion when used to select
between competing prediction models. There is a
high probability thatMMREwill prefer a model with
a bad fit to a model with a good fit to the data. In
particular, there is a high probability thatMMREwill
select a model that provides an estimate below the
mean (i.e., “underestimates”) to a model that predicts
the mean. Given that we prefer information on a
precisely defined statistic as the mean to some
nondefined, optimistic prediction somewhere be-
tween themean and zero effort,MMRE is inadequate.

2. LSD is appropriate to evaluate multiplicative mod-
els. Given that other software engineering data sets
exhibit characteristics similar to the DMR data set,
multiplicative models fit well with reality.

3. RSD is also appropriate to evaluate models that fit
with data similar to the DMR data, that is to say,
data that are fairly linear as well as heteroscedastic.
However, RSD is limited to data with a single
predictor variable.
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Results of True Model versus Model (30)

TABLE 11
Results of True Model versus Model (31)
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4. SD is appropriate to evaluate linear, additive
models, i.e., where the data are homoscedastic.

5. SD, RSD, and LSD are the only criteria that select the
true model with a probability p > 0:5. The other
metrics, MMER, MBRE, and MIBRE, do not. As for
MMER versus MMRE, from a theoretical perspec-
tive, we would prefer MMER to MMRE because
MER, unlike MRE, measures the inaccuracy relative
to the estimate.

6. All the metrics investigated, including SD, RSD, and
LSD, suffer from either a flaw or a limitation and are
therefore not universal solutions to the problem of
selecting between competing models of different
types, e.g., comparing a linear model with a non-
linear arbitrary function approximator like estima-
tion-by-analogy. As for RSD, it is limited to
univariate data. SD requires homoscedastic data to
be meaningful, and LSD requires data that are
homoscedastic on the log-log scale to be meaningful.

10 ALTERNATIVES FOR EVALUATING

PREDICTION MODELS

Our results have shown that MMRE is not suitable for
comparing software effort prediction models and that the
other statistics proposed in this study either are unsuitable
or suffer from a limitation, so the question remains as to
how we should compare such models. Although research-
ers in the past have sometimes reported several measures,
typically MMRE, MdMRE, and PRED(k), we do not believe
that reporting several measures that are all based on MRE
would improve matters.

Actually, this study suggests that it probably is futile to
search for the Holy Grail: a single, simple-to-use, universal
goodness-of-fit kind of metric, which can be applied with
ease to compare a linear regression model with a nonlinear,
arbitrary function approximator (for example, an estima-
tion-by-analogy model). Given that we are right in this
assumption, what alternatives can we envisage? In the
following, we speculate on some alternatives.

One alternative is to apply established evaluation
procedures from statistics. Empirical software engineering
is a multidisciplinary field with links to software engineer-
ing as well as to statistics. The latter discipline is older and
presumably more mature with respect to data analysis than
empirical software engineering, and it would therefore not
come as any surprise if this discipline already has adequate
solutions to our problems. It therefore would seem wise to
investigate what is the state-of-the-art in statistics before
trying to (re-)invent statistical analysis methods that are
proprietary to empirical software engineering.

Statistical science has developed a number of concepts
and methods to evaluate prediction models and to select the
best among two competing models. For example, to
evaluate which fitting method is the better to fit linear
models to a sample of observations, the concept of best
linear unbiased estimator (BLUE) has been developed in
statistics [25]. Using the BLUE criterion, we can decide
whether the ordinary least squares (OLS) method or the
least absolute deviation (LAD) method is the most efficient
fitting method for a particular data set [21]. (Efficient is a

reserved word in statistics meaning best unbiased. That is, an
efficient method provides estimators, i.e., estimates of the
coefficients, with smaller variance than any competing
method (therefore, best) and a point estimate equal to the
mean (therefore, unbiased). In short, an efficient method
results in a model closer to the truth than any competitor
fitting method. See, e.g., [25, Appendix A.7] for a definition
of the term efficiency.) According to statistics, it is the
characteristics of the data set that decides which fitting
method is efficient. For example, given that the OLS
assumptions are fulfilled, the OLS method will be efficient.
On the other hand, if the kurtosis is high, LAD may be more
efficient than OLS. Thus, it seems we ought to have theories
as well as data to defend our use of a particular type of
fitting method (e.g., OLS or LAD).

We do not know whether statistics offers a solution for

selecting between different types of arbitrary function

approximators, and we do not know if there exists a

solution for selecting between a linear OLS model and an

arbitrary function approximator. If statistical science does

not have a solution for such comparisons, we ought to ask

ourselves why.
In addition, we should investigate the statistical proper-

ties of other prediction models, such as arbitrary function
approximators, in more detail, particularly with respect to
obtaining prediction intervals with quantified probabilities
and well-defined properties of the point estimates. For
example, the point estimate from an OLS model is unbiased,
i.e., it is a well-defined statistic.

APPENDIX A

CALCULATION OF MRE IN

LOG-LINEAR REGRESSION MODELS

This appendix shows how the formula for calculating MRE
is derived when one applies a log-linear regression model
to predict effort. Let y be the actual and ŷy be the prediction.
Further, let the log-linear population model be

ln y ¼ ln �þ � ln X þ ln u: ðA1Þ

Then, the sample model is

ln ŷy ¼ �þ n ln X: ðA2Þ

The residual is given by

residual ¼ ln y� ln ŷy; ðA3Þ

which is equal to

residual ¼ ln
y

ŷy

� �
: ðA4Þ

This may be transformed to

e�residual ¼ ŷy

y
: ðA5Þ

Thus,

1� e�residual ¼ y� ŷy

y
: ðA6Þ
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By definition, MRE is

MRE ¼ y� ŷy

y

����
����: ðA7Þ

From (A6) and (A7), we may restate MRE as

MRE ¼ 1� e�residual
�� ��: ðA8Þ

APPENDIX B

THE ISSUE OF ��2=2

In Sections 5.2 and 5.3, we state that the error term of the

exponential model (18), u, is normal with mean equal to

��2=2 and equal variance �2. Therefore, when we apply

OLS to the log-transformed regression equation

ln y ¼ �þ �xþ u; ðA9Þ

we obtain the estimator of �, �̂��, where

E �̂��ð Þ ¼ �� �2

2

� �
: ðA10Þ

Thus, �̂�� is not an unbiased estimator of �. We would have

to add s2

2 to obtain an unbiased estimator, �̂�, for � (s2 is an

estimator for �2) with �̂�, thus, given as

�̂�þ �̂�� þ �2

2
: ðA11Þ

To obtain unbiased predictions, we ought to use the

unbiased estimator �̂�. However, we have not used the

models to make any predictions in this paper. On the

contrary, we have used the true multiplicative model (18)

solely to generate data samples.
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