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tDespite its simpli
ity, the naive Bayes 
lassi�er has surprised ma
hinelearning resear
hers by exhibiting good performan
e on a variety of learningproblems. En
ouraged by these results, resear
hers have looked to over
omenaive Bayes' primary weakness|attribute independen
e|and improve theperforman
e of the algorithm. This paper presents a lo
ally weighted versionof naive Bayes that relaxes the independen
e assumption by learning lo
almodels at predi
tion time. Experimental results show that lo
ally weightednaive Bayes rarely degrades a

ura
y 
ompared to standard naive Bayes and,in many 
ases, improves a

ura
y dramati
ally. The main advantage of thismethod 
ompared to other te
hniques for enhan
ing naive Bayes is its 
on-
eptual and 
omputational simpli
ity.1 Introdu
tionIn prin
iple, Bayes' theorem enables optimal predi
tion of the 
lass label for a newinstan
e given a ve
tor of attribute values. Unfortunately, straightforward appli
a-tion of Bayes' theorem for ma
hine learning is impra
ti
al be
ause inevitably there isinsuÆ
ient training data to obtain an a

urate estimate of the full joint probabilitydistribution. Some independen
e assumptions have to be made to make inferen
efeasible. The naive Bayes approa
h takes this to the extreme by assuming that theattributes are statisti
ally independent given the value of the 
lass attribute. Al-though this assumption never holds in pra
ti
e, naive Bayes performs surprisinglywell in many 
lassi�
ation problems. Furthermore, it is 
omputationally eÆ
ient|training is linear in both the number of instan
es and attributes|and simple toimplement.Interest in the naive Bayes learning algorithm within ma
hine learning 
ir
les
an be attributed to Clark and Niblett's paper on the CN2 rule learner (Clark &Niblett, 1989). In this paper they in
luded a simple Bayesian 
lassi�er (naive Bayes)as a \straw man" in their experimental evaluation and noted its good performan
e
ompared to more sophisti
ated learners. Although it has been explained how naiveBayes 
an work well in some 
ases where the attribute independen
e assumption isviolated (Domingos & Pazzani, 1997) the fa
t remains that probability estimationis less a

urate and performan
e degrades when attribute independen
e does nothold.Various te
hniques have been developed to improve the performan
e of naiveBayes|many of them aimed at redu
ing the `naivete' of the algorithm|while stillretaining the desirable aspe
ts of simpli
ity and 
omputational eÆ
ien
y. Zheng1



and Webb (Zheng & Webb, 2000) provide an ex
ellent overview of work in thisarea. Most existing te
hniques involve restri
ted sub-
lasses of Bayesian networks,
ombine attribute sele
tion with naive Bayes, or in
orporate naive Bayes modelsinto another type of 
lassi�er (su
h as a de
ision tree).This paper presents a lazy approa
h to learning naive Bayes models. Like all lazylearning methods our approa
h simply stores the training data and defers the e�ortinvolved in learning until 
lassi�
ation time. When 
alled upon to 
lassify a newinstan
e, we 
onstru
t a new naive Bayes model using a weighted set of traininginstan
es in the lo
ale of the test instan
e. Lo
al learning helps to mitigate thee�e
ts of attribute dependen
ies that may exist in the data as a whole and we expe
tthis method to do well if there are no strong dependen
ies within the neighbourhoodof the test instan
e. Be
ause naive Bayes requires relatively little data for training,the neighbourhood 
an be kept small, thereby redu
ing the 
han
e of en
ounteringstrong dependen
ies. In our implementation the size of the neighbourhood is 
hosenin a data-dependent fashion based on the distan
e of the k-th nearest-neighbour tothe test instan
e. Our experimental results show that lo
ally weighted naive Bayesis relatively insensitive to the 
hoi
e of k. This makes it a very attra
tive alternativeto the k-nearest neighbour algorithm, whi
h requires �ne-tuning of k to a
hieve goodresults. Our results also show that lo
ally weighted naive Bayes almost uniformlyimproves on standard naive Bayes.This paper is stru
tured as follows. In Se
tion 2 we present our approa
h forenhan
ing naive Bayes by using lo
ally weighted learning. Se
tion 3 
ontains exper-imental results for two arti�
ial domains and a 
olle
tion of ben
hmark datasets,demonstrating that the predi
tive a

ura
y of naive Bayes 
an be improved by learn-ing lo
ally weighted models at predi
tion time. Se
tion 4 dis
usses related work onenhan
ing the performan
e of naive Bayes. Se
tion 5 summarizes the 
ontributionsmade in this paper.2 Lo
ally weighted learning with naive BayesOur method for enhan
ing naive Bayes borrows from a te
hnique originally pro-posed for estimating non-linear regression models (Cleveland, 1979), where a linearregression model is �t to the data based on a weighting fun
tion 
entered on theinstan
e for whi
h a predi
tion is to be generated. The resulting estimator is non-linear be
ause the weighting fun
tion 
hanges with every instan
e to be pro
essed.In this paper we explore lo
ally weighted learning for 
lassi�
ation, whi
h appearsto have re
eived little attention in the ma
hine learning literature (Atkeson et al.,1997). Loader (1999) and Hastie et al. (2001) dis
uss so-
alled \lo
al likelihood"methods from a statisti
al perspe
tive, in
luding lo
ally weighted linear logisti
 re-gression and lo
ally weighted density estimation. Naive Bayes is an example ofusing density estimation for 
lassi�
ation. Compared to logisti
 regression it hasthe advantage that it is linear in the number of attributes, making it mu
h more
omputationally eÆ
ient in learning problems with many attributes.We use naive Bayes in exa
tly the same way as linear regression is used inlo
ally weighted linear regression: a lo
al naive Bayes model is �t to a subset ofthe data that is in the neighbourhood of the instan
e whose 
lass value is to bepredi
ted (we will 
all this instan
e the \test instan
e"). The training instan
es inthis neighbourhood are weighted, with less weight being assigned to instan
es thatare further from the test instan
e. A 
lassi�
ation is then obtained from the naiveBayes model taking the attribute values of the test instan
e as input.The subsets of data used to train ea
h lo
ally weighted naive Bayes model are de-termined by a nearest neighbours algorithm. A user-spe
i�ed parameter k 
ontrolshow many instan
es are used. This is implemented by using a weighting fun
tion2



with 
ompa
t support, setting its width (or \bandwidth") to the distan
e of thekth nearest neighbour.Let di be the Eu
lidean distan
e to the ith nearest neighbour xi. We assumethat all attributes have been normalized to lie between zero and one before thedistan
e is 
omputed, and that nominal attributes have been binarized. Let f be aweighting fun
tion with f(y) = 0 for all y � 1. We then set the weight wi of ea
hinstan
e xi to wi = f(di=dk) (1)This means that instan
e xk re
eives weight zero, all instan
es that are further awayfrom the test instan
e also re
eive weight zero, and an instan
e identi
al to the testinstan
e re
eives weight one.Any monotoni
ally de
reasing fun
tion with the above property is a 
andidateweighting fun
tion. In our experiments we used a linear weighting fun
tion flinearde�ned as flinear(y) = 1� y for y 2 [0; 1℄ (2)In other words, we let the weight de
rease linearly with the distan
e.Higher values for k result in models that vary less in response to 
u
tuations inthe data, while lower values for k enable models to 
onform 
loser to the data. Toosmall a value for k may result in models that �t noise in the data. Our experimentsshow that the method is not parti
ularly sensitive to the 
hoi
e of k as long as it isnot too small.There is one 
aveat. In order to avoid the zero-frequen
y problem our imple-mentation of naive Bayes uses the Lapla
e estimator to estimate the 
onditionalprobabilities for nominal attributes and this intera
ts with the weighting s
heme.We found empiri
ally that it is opportune to s
ale the weights so that the totalweight of the instan
es used to generate the naive Bayes model is approximatelyk. Assume that there are r training instan
es xi with di � dk. Then the res
aledweights w0i are 
omputed as follows:w0i = wi � rPnq=0 wq ; (3)where n is the total number of training instan
es.Naive Bayes 
omputes the posterior probability of 
lass 
l for a test instan
ewith attribute values a1; a2; :::; am as follows:p(
lja1; a2; :::; am) = p(
l)Qmj=1 p(aj j
l)Poq=1 hp(
q)Qmj=1 p(aj j
q)i ; (4)where o is the total number of 
lasses.The individual probabilities on the right-hand side of this equation are estimatedbased on the weighted data. The prior probability for 
lass 
l be
omesp(
l) = 1 +Pni=0 I(
i = 
l)w0io+Pni=0 w0i ; (5)where 
i is the 
lass value of the training instan
e with index i, and the indi
atorfun
tion I(x = y) is one if x = y and zero otherwise.Assuming attribute j is nominal, the 
onditional probability of aj (the value ofthis attribute in the test instan
e) is given byp(aj j
l) = 1 +Pni=0 I(aj = aij)I(
i = 
l)w0inj +Pni=0 I(aj = aij)w0i ; (6)3



’largeSphere’
’smallSphere’

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 -1
-0.8

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8

1

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Figure 1: The two spheres dataset.where nj is the number of values for attribute j, and aij is the value of attribute jin instan
e i.If the data 
ontains a numeri
 attribute, we either dis
retize it using Fayyadand Irani's MDL-based dis
retization s
heme (Fayyad & Irani, 1993), and treat theresult as a nominal attribute, or we make the normality assumption, estimatingthe mean and the varian
e based on the weighted data. We will present empiri
alresults for both approa
hes.3 Experimental resultsWe �rst present some illustrative results on two arti�
ial problems before dis
ussingthe performan
e of our method on standard ben
hmark datasets.3.1 Evaluation on arti�
ial dataIn this se
tion we 
ompare the behaviour of lo
ally weighted naive Bayes to thatof the k-nearest neighbour algorithm on two arti�
ially generated datasets. Inparti
ular, we are interested in how sensitive the two te
hniques are to the size ofthe neighbourhood, that is, the 
hoi
e of k. We also dis
uss results for standardnaive Bayes, using the normality assumption to �t the numeri
 attributes.Figure 1 shows the �rst arti�
ial dataset. This problem involves predi
tingwhi
h of two spheres an instan
e is 
ontained within. The spheres are arranged sothat the �rst sphere (radius 0.5) is 
ompletely 
ontained within the larger (hollow)se
ond sphere (radius 1.0). Instan
es are des
ribed in terms of their 
oordinates inthree dimensional spa
e. The dataset 
ontains 500 randomly drawn instan
es fromea
h of the two spheres (
lasses).Figure 2 plots the performan
e of lo
ally weighted naive Bayes (LWNB), k-nearest neighbours (KNN) and k-nearest neighbours with distan
e weighting (KN-NDW) on the two spheres data for in
reasing values of k. Ea
h point on the graphrepresents the a

ura
y of a s
heme averaged over the folds of a single run of 10-fold
ross validation. From Figure 2 it 
an be seen that the performan
e of k-nearestneighbour su�ers with in
reasing k as more instan
es within an expanding bandaround the boundary between the spheres get mis
lassi�ed. Lo
ally weighted naiveBayes, on the other hand, initially improves performan
e up to k = 40 and thenslightly de
reases as k in
reases further. The data is well suited to naive Bayes4
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he
kers board dataset.be
ause the normal distributions pla
ed over the dimensions within ea
h sphereare suÆ
iently di�erent. Standard naive Bayes a
hieves an a

ura
y of 97.9% onthe two spheres data. When k is set to in
lude all the training instan
es lo
allyweighted naive Bayes gets 95.9% 
orre
t.Figure 3 shows the se
ond arti�
ial dataset. This problem involves predi
tingwhether an instan
e belongs to a bla
k or white square on a 
he
kers board given itsx and y 
oordinates. 1000 instan
es were generated by randomly sampling valuesbetween 0 and 1 for x and y. Ea
h square on the 
he
kers board has a width andheight of 0.125.Figure 4 plots the performan
e of lo
ally weighted naive Bayes, k-nearest neigh-bours, and k-nearest neighbours with distan
e weighting on the 
he
kers board datafor in
reasing values of k. The strong intera
tion between the two attributes in thisdata makes it impossible for standard naive Bayes to learn the target 
on
ept.From Figure 4 it 
an be seen that lo
ally weighted naive Bayes begins with verygood performan
e at k <= 5 and then gra
efully degrades to standard naive Bayes'performan
e of 50% 
orre
t by k = 150. In 
omparison, k-nearest neighbours' per-forman
e is far less predi
table with respe
t to the value of k|it exhibits very good5
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Figure 4: Performan
e of k-nearest neighbours (KNN), k-nearest neighbours withdistan
e weighting (KNNDW) and lo
ally weighted naive Bayes (LWNB) on the
he
kers board data.performan
e at k <= 5, qui
kly degrades to a minimum of 28% 
orre
t at k = 60,improves to 60% 
orre
t at k = 150 and then starts to de
rease again.3.2 Evaluation on UCI datasetsThis se
tion evaluates the performan
e of lo
ally weighted naive Bayes (LWNB)on a 
olle
tion of 37 ben
hmark datasets from the UCI repository (Blake & Merz,1998). The properties of these datasets are shown in Table 1.We ran two experiments. The �rst 
ompares lo
ally weighted naive Bayes withk = 50 to standard naive Bayes (NB) and to k-nearest neighbours with and withoutdistan
e weighting (KNNDW, KNN) using k = 5; 10. In this experiment normaldistributions were used by NB and LWNB for numeri
 attributes. The se
ondexperiment 
ompares lo
ally weighted naive Bayes to standard naive Bayes, a lazyBayesian rule learner (LBR) (Zheng & Webb, 2000) and averaged one-dependen
eestimators (AODE) (Webb, 2003). In this 
ase, sin
e LBR and AODE 
an onlyhandle nominal attributes, we dis
retized all numeri
 attributes using the methodof Fayyad and Irani (Fayyad & Irani, 1993).All a

ura
y estimates were obtained by averaging the results from 10 separateruns of strati�ed 10-fold 
ross-validation. In other words, ea
h s
heme was applied100 times to generate an estimate for a parti
ular dataset. In the 
ase wheredis
retization is applied as a pre-pro
essing step, the intervals are �rst estimatedfrom the training folds and then applied to test folds. Throughout, we speak of tworesults for a dataset as being \signi�
antly di�erent" if the di�eren
e is statisti
allysigni�
ant at the 5% level a

ording to the 
orre
ted resampled t-test (Nadeau &Bengio, 1999), ea
h pair of data points 
onsisting of the estimates obtained in one ofthe 100 folds for the two learning s
hemes being 
ompared. We also show standarddeviations for the 100 results.Table 2 shows the results for the �rst experiment. Compared to standard naiveBayes, lo
ally weighted naive Bayes is signi�
antly more a

urate on 17 datasetsand only signi�
antly less a

urate on three datasets. In many 
ases our methodimproves the performan
e of naive Bayes 
onsiderably. For example, on the voweldata a

ura
y in
reases from 63% to 95.6%. Similar levels of improvement 
an beseen on glass, autos, pendigits, sonar, vehi
le and segment. Compared to k-nearestneighbours, lo
ally weighted naive Bayes is signi�
antly more a

urate on 14 and6



Table 1: Datasets used for the experimentsDataset Inst. % Msng Num. Nom. Classanneal 898 0.0 6 32 5arrhythmia 452 0.3 206 73 13audiology 226 2.0 0 69 24australian 690 0.6 6 9 2autos 205 1.1 15 10 6bal-s
ale 625 0.0 4 0 3breast-
 286 0.3 0 9 2breast-w 699 0.3 9 0 2diabetes 768 0.0 8 0 2e
oli 336 0.0 7 0 8german 1000 0.0 7 13 2glass 214 0.0 9 0 6heart-
 303 0.2 6 7 2heart-h 294 20.4 6 7 2heart-stat 270 0.0 13 0 2hepatitis 155 5.6 6 13 2horse-
oli
 368 23.8 7 15 2hypothyroid 3772 6.0 23 6 4ionosphere 351 0.0 34 0 2iris 150 0.0 4 0 3kr-vs-kp 3196 0.0 0 36 2labor 57 3.9 8 8 2lymph 148 0.0 3 15 4mushroom 8124 1.4 0 22 2optdigits 5620 0.0 64 0 10pendigits 10992 0.0 16 0 10prim-tumor 339 3.9 0 17 21segment 2310 0.0 19 0 7si
k 3772 6.0 23 6 2sonar 208 0.0 60 0 2soybean 683 9.8 0 35 19spli
e 3190 0.0 0 61 3vehi
le 846 0.0 18 0 4vote 435 5.6 0 16 2vowel 990 0.0 10 3 11waveform 5000 0.0 40 0 3zoo 101 0.0 1 15 719 datasets for k = 5 and k = 10 respe
tively. When distan
e weighting is usedwith k-nearest neighbours, our method is signi�
antly more a

urate on 13 and17 datasets for k = 5 and k = 10 respe
tively. Lo
ally weighted naive Bayes issigni�
antly less a

urate than k-nearest neighbours on diabetes and australian.Table 3 shows the results for the se
ond experiment. This experiment 
omparesdis
retized lo
ally weighted naive Bayes to dis
retized naive Bayes, lazy Bayesianrules and averaged one-dependen
e estimators. When 
ompared to naive Bayes, ourmethod is signi�
antly more a

urate on 13 datasets and signi�
antly less a

urateon three. Similar to the situation in the �rst experiment, many of the improvementsover naive Bayes are quite 
onsiderable. When 
ompared to lazy Bayesian rules,our method is signi�
antly better on six datasets and signi�
antly worse on four.Note that three of the results for lazy Bayesian rules are missing be
ause of thismethod's 
omputational 
omplexity. Against averaged one-dependen
e estimators,the result is seven signi�
ant wins in favour of our method versus �ve signi�
ant7



Table 2: Experimental results for lo
ally weighted naive Bayes (LWNB) versusnaive Bayes (NB) and k-nearest neighbours with and without distan
e weighting(KNNDW, KNN)Data Set LWNB NB KNN KNN KNNDW KNNDWk = 50 k = 5 k = 10 k = 5 k = 10anneal 98.32�1.2 86.59�3.3 � 97.27�1.7 96.09�1.7 � 97.32�1.6 96.28�1.7 �arrhythmia 62.63�3.7 62.4 �7 59.23�3.5 � 58.07�2.4 � 59.22�3.8 � 59.45�2.8 �audiology 78.89�6.7 72.64�6.1 � 62.31�8.7 � 55.42�7.8 � 64.53�8.2 � 58.42�7.2 �australian 83.06�4.6 77.86�4.2 � 86.14�3.9 86.14�4.3 86.14�3.9 86.75�4.1 Æautos 77.45�9.6 57.41�10.8� 62.56�10.4� 59.64�11.2� 68.39�10.5� 61.83�11.3�bal-s
ale 89.89�1.8 90.53�1.7 87.97�2.6 � 90.26�1.9 87.98�2.6 � 90.27�1.9breast-
 72.79�7.0 72.7 �7.7 74 �4.6 73.44�4.4 74.49�4.8 74.32�4.8breast-w 96.28�2.2 96.07�2.2 96.91�2.1 96.62�2.1 97.01�2.0 96.81�2.1diabetes 70.63�4.8 75.75�5.3 Æ 73.86�4.6 Æ 72.94�4.3 73.86�4.6 Æ 73.75�4.5 Æe
oli 84.31�5.9 85.5 �5.5 86.1 �5.6 86.2 �5.9 86.58�5.6 87.35�5.9german 75.06�3.3 75.16�3.5 73.17�3.5 73.93�2.6 73.17�3.5 74.45�3.2glass 72.35�8.3 49.45�9.5 � 66.04�7.7 63.26�8.5 � 68.74�8.1 65.08�9.0 �heart-
 81.42�6.1 83.34�7.2 82.13�6.2 82.31�6.6 82.13�6.2 82.19�6.1heart-h 82.33�6.7 83.95�6.3 82.32�6.3 82.63�6.6 82.32�6.3 82.12�6.6heart-stat 79.3 �6.9 83.59�6 79.89�6.9 81.3 �6.4 79.89�6.9 80.7 �7.0hepatitis 86.08�7.0 83.81�9.7 84.21�8.2 83.57�8.2 84.21�8.2 83.78�7.9horse-
oli
 82.45�5.5 78.7 �6.2 81.71�5.3 82.33�5.4 81.73�5.3 81.95�5.3hypothyroid 96.39�0.9 95.3 �0.7 � 93.1 �0.7 � 93.07�0.6 � 93.17�0.8 � 93.18�0.7 �ionosphere 83.3 �4.7 82.17�6.1 85.1 �4.7 84.87�4.9 85.1 �4.7 84.27�4.9iris 95.6 �4.7 95.53�5 95.73�4.6 95.73�4.6 95.73�4.6 95.27�4.8kr-vs-kp 97.78�0.8 87.79�1.9 � 96.16�1.0 � 95.04�1.3 � 96.41�1.0 � 95.54�1.2 �labor 93.5 �9.6 93.57�10.3 84.43�14.3 87.83�13.3 84.77�14.2 88.77�13.2lymph 83.89�9.7 83.13�8.9 84.18�8.1 81.19�9.0 84.98�7.9 82.6 �9.0mushroom 100 �0.0 95.76�0.7 � 100 �0.0 99.92�0.1 � 100 �0.0 99.94�0.1optdigits 98.56�0.5 91.39�1.0 � 98.72�0.5 98.53�0.5 98.73�0.5 98.69�0.5pendigits 99.38�0.2 85.76�0.9 � 99.26�0.3 99.01�0.3 � 99.27�0.2 99.1 �0.3 �prim-tumor 44.63�6.1 49.71�6.5 Æ 47.32�6.6 46.96�6.4 46.43�6.8 46.7 �6.4segment 96.61�1.2 80.16�2.1 � 95.25�1.4 � 94.55�1.5 � 95.5 �1.3 � 94.96�1.5 �si
k 96.82�0.7 92.75�1.4 � 95.46�1.4 � 95.38�1.2 � 95.45�1.4 � 95.57�1.3 �sonar 88 �5.9 67.71�8.7 � 82.28�9.1 75.25�9.9 � 82.28�9.1 75.89�8.9 �soybean 93.44�2.6 92.94�2.9 90.12�3.4 � 87.2 �3.4 � 90.28�3.3 � 88.07�3.2 �spli
e 94.29�1.3 95.41�1.2 Æ 79.86�1.9 � 83.48�1.8 � 82.15�1.7 � 85.1 �1.7 �vehi
le 75.09�4.1 44.68�4.6 � 70.17�4.5 � 69.9 �3.8 � 71.49�4.1 � 70.17�3.9 �vote 95.38�2.8 90.02�3.9 � 93.17�3.7 � 92.94�3.6 � 93.08�3.8 � 92.92�3.7 �vowel 95.59�2.4 62.9 �4.4 � 93.39�2.9 � 58.96�5.1 � 93.86�2.8 72.56�5.8 �waveform 81.88�1.8 80.01�1.4 � 79.29�1.8 � 80.46�1.8 � 79.33�1.8 � 81.12�2.0zoo 97.21�4.5 94.97�5.9 95.05�6.7 88.71�6.3 � 95.05�6.7 89.9 �6.7 �Æ, � statisti
ally signi�
ant improvement or degradation over LWNBlosses.4 Related workThere is of 
ourse a lot of prior work that has tried to improve the performan
e ofnaive Bayes. Usually these approa
hes address the main weakness in naive Bayes|the independen
e assumption|either expli
itly by dire
tly estimating dependen-
ies, or impli
itly by in
reasing the number of parameters that are estimated. Bothapproa
hes allow for a tighter �t of the training data.Typi
ally the independen
e assumption is relaxed in a way that still keeps8



Table 3: Experimental results for dis
retized lo
ally weighted naive Bayes (LWNBD)versus dis
retized naive Bayes (NBD), lazy Bayesian rules (LBR) and averaged one-dependen
e estimators (AODE)Data Set LWNBD NBD LBR AODEk = 50anneal 99.2 �0.9 95.9 �2.2 � 98.01�1.5 � 97.75�1.5 �arrhythmia 69.36�4.2 72.04�5.5 | 72.5 �5.4 Æaudiology 78.89�6.7 72.64�6.1 � 72.2 �6.3 � 72.28�6.2 �australian 85.06�3.7 86.22�3.8 86.1 �3.9 86.75�3.8autos 84.59�8.0 65.17�10.9� 73.8 �10.4� 74.27�11.5�bal-s
ale 69.4 �4.6 71.56�4.8 Æ 72.17�4.6 Æ 69.96�4.6breast-
 72.79�7.0 72.7 �7.7 72.35�7.8 72.57�7.2breast-w 96.77�2.0 97.2 �1.7 97.21�1.7 97 �1.9diabetes 74.44�4.6 75.26�4.8 75.38�4.7 75.7 �4.7e
oli 81.28�5.2 81.99�4.9 81.66�4.8 82.23�4.6german 72.96�3.5 75.04�3.6 74.9 �3.5 75.87�3.6 Æglass 74.5 �9.7 71.79�8.9 72.22�8.8 74.39�8.3heart-
 81.12�6.4 83.47�6.9 83.54�6.9 82.84�6.7heart-h 82.81�6.6 84.2 �6.3 84.54�6.3 84.1 �6.3heart-stat 83.63�6.1 82.56�6.1 82.59�6.1 82.7 �6.6hepatitis 84.82�7.9 84.28�10.3 84.91�9.7 85.22�9.2horse-
oli
 82.61�5.5 79.54�5.8 82.33�5.8 82.99�5.6hypothyroid 98.56�0.5 98.19�0.7 99.12�0.5 Æ 98.56�0.6ionosphere 92.42�4.3 89.29�5.0 � 90 �4.8 91.06�4.7iris 93.33�6.1 93.33�5.8 93.2 �5.9 93.07�5.8kr-vs-kp 97.78�0.8 87.79�1.9 � 96.79�1.1 � 91.01�1.7 �labor 89.63�12.6 88.57�13.2 87.5 �13.9 88.8 �14lymph 86.86�8.0 85.1 �8.3 85.45�8.5 86.73�7.9mushroom 100 �0.0 95.76�0.7 � 99.96�0.1 99.97�0.1optdigits 97.36�0.7 92.17�1.0 � | 96.91�0.8 �pendigits 98.25�0.4 87.72�1.0 � 96.18�0.6 � 97.77�0.4 �prim-tumor 44.63�6.1 49.71�6.5 Æ 48.85�7.3 49.68�6.8 Æsegment 95.77�1.3 91.16�1.7 � | 95.09�1.3si
k 97.47�0.7 97.12�0.8 97.66�0.8 97.36�0.8sonar 76.06�9.6 76.23�9.5 76.04�9.7 76.56�9.5soybean 93.44�2.6 92.94�2.9 93.41�2.7 93.41�2.8spli
e 94.29�1.3 95.41�1.2 Æ 95.8 �1.1 Æ 96.07�1.0 Ævehi
le 71.43�4.0 61.21�3.4 � 69.53�3.9 70.43�3.6vote 95.38�2.8 90.02�3.9 � 94.11�3.3 94.34�3.4vowel 87.14�3.4 58.56�5.3 � 74.67�3.8 � 76.87�4.7 �waveform 82 �1.7 79.97�1.4 � 83.42�1.6 Æ 85 �1.5 Æzoo 96.25�5.6 93.21�7.3 93.21�7.3 94.66�6.4Æ, � statisti
ally signi�
ant improvement or degradation over LWNBDthe 
omputational advantages of pure naive Bayes. Two su
h methods are tree-augmented naive Bayes (Friedman et al., 1997) and AODE (Webb, 2003). Bothallow to 
apture some attribute dependen
ies while still being 
omputationally ef-�
ient.Some alternative approa
hes try to transform the original problem to a formthat allows for the 
orre
t treatment of some of the dependen
ies. Both semi-naiveBayes (Kononenko, 1991) and the Cartesian produ
t method (Pazzani, 1996) aresu
h transformation-based attempts for 
apturing pairwise dependen
ies.Methods that impli
itly in
rease the number of parameters estimated in
ludeNBTrees (Kohavi, 1996) and Lazy Bayesian Rules (Zheng & Webb, 2000). Both9



approa
hes fuse a standard rule-based learner with lo
al naive Bayes models. Thelatter is similar to our approa
h in the sense that it is also a lazy te
hnique, albeitwith mu
h higher 
omputational requirements. Another te
hnique is re
ursive naiveBayes (Langley, 1993), whi
h builds up a hierar
hy of naive Bayes models trying toa

ommodate 
on
epts that need more 
ompli
ated de
ision surfa
es.5 Con
lusionsThis paper has fo
used on an investigation of a lo
ally-weighted version of thestandard naive Bayes model similar in spirit to lo
ally-weighted regression. Em-piri
ally, lo
ally-weighted naive Bayes outperforms both standard naive Bayes aswell as nearest-neighbor methods on most datasets used in this investigation. Ad-ditionally, the new method seems to exhibit rather robust behaviour in respe
t toits most important parameter, the neighbourhood size.Considering the 
omputational 
omplexity, lo
ally weighted naive Bayes' run-time is obviously dominated by the distan
e 
omputation. Assuming a naive im-plementation of nearest neighbour this operation is linear in the number of train-ing examples for ea
h test instan
e. Improvements 
an be made by using moresophisti
ated data stru
tures like KD-trees. As long as the size of the sele
tedneighbourhood is either 
onstant or at least a sublinear fun
tion of the training setsize, naive Bayes 
ould be repla
ed by a more 
omplex learning method. Providedthis more 
omplex method s
ales linearly with the number of attributes this wouldnot in
rease the overall 
omputational 
omplexity of the full learning pro
ess. Ex-ploring general lo
ally-weighted 
lassi�
ation will be one dire
tion for future work.Other dire
tions in
lude exploring di�erent weighting kernels and the|preferablyadaptive|-setting of their respe
tive parameters. Appli
ation-wise we plan to em-ploy lo
ally-weighted naive Bayes in text 
lassi�
ation, an area where both standardnaive Bayes and nearest-neighbor methods are quite 
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