
Loally Weighted Naive BayesEibe Frank, Mark Hall, and Bernhard PfahringerDepartment of Computer SieneUniversity of WaikatoHamilton, New Zealandfeibe, mhall, bernhardg�s.waikato.a.nzApril 4, 2003AbstratDespite its simpliity, the naive Bayes lassi�er has surprised mahinelearning researhers by exhibiting good performane on a variety of learningproblems. Enouraged by these results, researhers have looked to overomenaive Bayes' primary weakness|attribute independene|and improve theperformane of the algorithm. This paper presents a loally weighted versionof naive Bayes that relaxes the independene assumption by learning loalmodels at predition time. Experimental results show that loally weightednaive Bayes rarely degrades auray ompared to standard naive Bayes and,in many ases, improves auray dramatially. The main advantage of thismethod ompared to other tehniques for enhaning naive Bayes is its on-eptual and omputational simpliity.1 IntrodutionIn priniple, Bayes' theorem enables optimal predition of the lass label for a newinstane given a vetor of attribute values. Unfortunately, straightforward applia-tion of Bayes' theorem for mahine learning is impratial beause inevitably there isinsuÆient training data to obtain an aurate estimate of the full joint probabilitydistribution. Some independene assumptions have to be made to make inferenefeasible. The naive Bayes approah takes this to the extreme by assuming that theattributes are statistially independent given the value of the lass attribute. Al-though this assumption never holds in pratie, naive Bayes performs surprisinglywell in many lassi�ation problems. Furthermore, it is omputationally eÆient|training is linear in both the number of instanes and attributes|and simple toimplement.Interest in the naive Bayes learning algorithm within mahine learning irlesan be attributed to Clark and Niblett's paper on the CN2 rule learner (Clark &Niblett, 1989). In this paper they inluded a simple Bayesian lassi�er (naive Bayes)as a \straw man" in their experimental evaluation and noted its good performaneompared to more sophistiated learners. Although it has been explained how naiveBayes an work well in some ases where the attribute independene assumption isviolated (Domingos & Pazzani, 1997) the fat remains that probability estimationis less aurate and performane degrades when attribute independene does nothold.Various tehniques have been developed to improve the performane of naiveBayes|many of them aimed at reduing the `naivete' of the algorithm|while stillretaining the desirable aspets of simpliity and omputational eÆieny. Zheng1



and Webb (Zheng & Webb, 2000) provide an exellent overview of work in thisarea. Most existing tehniques involve restrited sub-lasses of Bayesian networks,ombine attribute seletion with naive Bayes, or inorporate naive Bayes modelsinto another type of lassi�er (suh as a deision tree).This paper presents a lazy approah to learning naive Bayes models. Like all lazylearning methods our approah simply stores the training data and defers the e�ortinvolved in learning until lassi�ation time. When alled upon to lassify a newinstane, we onstrut a new naive Bayes model using a weighted set of traininginstanes in the loale of the test instane. Loal learning helps to mitigate thee�ets of attribute dependenies that may exist in the data as a whole and we expetthis method to do well if there are no strong dependenies within the neighbourhoodof the test instane. Beause naive Bayes requires relatively little data for training,the neighbourhood an be kept small, thereby reduing the hane of enounteringstrong dependenies. In our implementation the size of the neighbourhood is hosenin a data-dependent fashion based on the distane of the k-th nearest-neighbour tothe test instane. Our experimental results show that loally weighted naive Bayesis relatively insensitive to the hoie of k. This makes it a very attrative alternativeto the k-nearest neighbour algorithm, whih requires �ne-tuning of k to ahieve goodresults. Our results also show that loally weighted naive Bayes almost uniformlyimproves on standard naive Bayes.This paper is strutured as follows. In Setion 2 we present our approah forenhaning naive Bayes by using loally weighted learning. Setion 3 ontains exper-imental results for two arti�ial domains and a olletion of benhmark datasets,demonstrating that the preditive auray of naive Bayes an be improved by learn-ing loally weighted models at predition time. Setion 4 disusses related work onenhaning the performane of naive Bayes. Setion 5 summarizes the ontributionsmade in this paper.2 Loally weighted learning with naive BayesOur method for enhaning naive Bayes borrows from a tehnique originally pro-posed for estimating non-linear regression models (Cleveland, 1979), where a linearregression model is �t to the data based on a weighting funtion entered on theinstane for whih a predition is to be generated. The resulting estimator is non-linear beause the weighting funtion hanges with every instane to be proessed.In this paper we explore loally weighted learning for lassi�ation, whih appearsto have reeived little attention in the mahine learning literature (Atkeson et al.,1997). Loader (1999) and Hastie et al. (2001) disuss so-alled \loal likelihood"methods from a statistial perspetive, inluding loally weighted linear logisti re-gression and loally weighted density estimation. Naive Bayes is an example ofusing density estimation for lassi�ation. Compared to logisti regression it hasthe advantage that it is linear in the number of attributes, making it muh moreomputationally eÆient in learning problems with many attributes.We use naive Bayes in exatly the same way as linear regression is used inloally weighted linear regression: a loal naive Bayes model is �t to a subset ofthe data that is in the neighbourhood of the instane whose lass value is to bepredited (we will all this instane the \test instane"). The training instanes inthis neighbourhood are weighted, with less weight being assigned to instanes thatare further from the test instane. A lassi�ation is then obtained from the naiveBayes model taking the attribute values of the test instane as input.The subsets of data used to train eah loally weighted naive Bayes model are de-termined by a nearest neighbours algorithm. A user-spei�ed parameter k ontrolshow many instanes are used. This is implemented by using a weighting funtion2



with ompat support, setting its width (or \bandwidth") to the distane of thekth nearest neighbour.Let di be the Eulidean distane to the ith nearest neighbour xi. We assumethat all attributes have been normalized to lie between zero and one before thedistane is omputed, and that nominal attributes have been binarized. Let f be aweighting funtion with f(y) = 0 for all y � 1. We then set the weight wi of eahinstane xi to wi = f(di=dk) (1)This means that instane xk reeives weight zero, all instanes that are further awayfrom the test instane also reeive weight zero, and an instane idential to the testinstane reeives weight one.Any monotonially dereasing funtion with the above property is a andidateweighting funtion. In our experiments we used a linear weighting funtion flinearde�ned as flinear(y) = 1� y for y 2 [0; 1℄ (2)In other words, we let the weight derease linearly with the distane.Higher values for k result in models that vary less in response to utuations inthe data, while lower values for k enable models to onform loser to the data. Toosmall a value for k may result in models that �t noise in the data. Our experimentsshow that the method is not partiularly sensitive to the hoie of k as long as it isnot too small.There is one aveat. In order to avoid the zero-frequeny problem our imple-mentation of naive Bayes uses the Laplae estimator to estimate the onditionalprobabilities for nominal attributes and this interats with the weighting sheme.We found empirially that it is opportune to sale the weights so that the totalweight of the instanes used to generate the naive Bayes model is approximatelyk. Assume that there are r training instanes xi with di � dk. Then the resaledweights w0i are omputed as follows:w0i = wi � rPnq=0 wq ; (3)where n is the total number of training instanes.Naive Bayes omputes the posterior probability of lass l for a test instanewith attribute values a1; a2; :::; am as follows:p(lja1; a2; :::; am) = p(l)Qmj=1 p(aj jl)Poq=1 hp(q)Qmj=1 p(aj jq)i ; (4)where o is the total number of lasses.The individual probabilities on the right-hand side of this equation are estimatedbased on the weighted data. The prior probability for lass l beomesp(l) = 1 +Pni=0 I(i = l)w0io+Pni=0 w0i ; (5)where i is the lass value of the training instane with index i, and the indiatorfuntion I(x = y) is one if x = y and zero otherwise.Assuming attribute j is nominal, the onditional probability of aj (the value ofthis attribute in the test instane) is given byp(aj jl) = 1 +Pni=0 I(aj = aij)I(i = l)w0inj +Pni=0 I(aj = aij)w0i ; (6)3
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Figure 1: The two spheres dataset.where nj is the number of values for attribute j, and aij is the value of attribute jin instane i.If the data ontains a numeri attribute, we either disretize it using Fayyadand Irani's MDL-based disretization sheme (Fayyad & Irani, 1993), and treat theresult as a nominal attribute, or we make the normality assumption, estimatingthe mean and the variane based on the weighted data. We will present empirialresults for both approahes.3 Experimental resultsWe �rst present some illustrative results on two arti�ial problems before disussingthe performane of our method on standard benhmark datasets.3.1 Evaluation on arti�ial dataIn this setion we ompare the behaviour of loally weighted naive Bayes to thatof the k-nearest neighbour algorithm on two arti�ially generated datasets. Inpartiular, we are interested in how sensitive the two tehniques are to the size ofthe neighbourhood, that is, the hoie of k. We also disuss results for standardnaive Bayes, using the normality assumption to �t the numeri attributes.Figure 1 shows the �rst arti�ial dataset. This problem involves preditingwhih of two spheres an instane is ontained within. The spheres are arranged sothat the �rst sphere (radius 0.5) is ompletely ontained within the larger (hollow)seond sphere (radius 1.0). Instanes are desribed in terms of their oordinates inthree dimensional spae. The dataset ontains 500 randomly drawn instanes fromeah of the two spheres (lasses).Figure 2 plots the performane of loally weighted naive Bayes (LWNB), k-nearest neighbours (KNN) and k-nearest neighbours with distane weighting (KN-NDW) on the two spheres data for inreasing values of k. Eah point on the graphrepresents the auray of a sheme averaged over the folds of a single run of 10-foldross validation. From Figure 2 it an be seen that the performane of k-nearestneighbour su�ers with inreasing k as more instanes within an expanding bandaround the boundary between the spheres get mislassi�ed. Loally weighted naiveBayes, on the other hand, initially improves performane up to k = 40 and thenslightly dereases as k inreases further. The data is well suited to naive Bayes4
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0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1Figure 3: The hekers board dataset.beause the normal distributions plaed over the dimensions within eah sphereare suÆiently di�erent. Standard naive Bayes ahieves an auray of 97.9% onthe two spheres data. When k is set to inlude all the training instanes loallyweighted naive Bayes gets 95.9% orret.Figure 3 shows the seond arti�ial dataset. This problem involves preditingwhether an instane belongs to a blak or white square on a hekers board given itsx and y oordinates. 1000 instanes were generated by randomly sampling valuesbetween 0 and 1 for x and y. Eah square on the hekers board has a width andheight of 0.125.Figure 4 plots the performane of loally weighted naive Bayes, k-nearest neigh-bours, and k-nearest neighbours with distane weighting on the hekers board datafor inreasing values of k. The strong interation between the two attributes in thisdata makes it impossible for standard naive Bayes to learn the target onept.From Figure 4 it an be seen that loally weighted naive Bayes begins with verygood performane at k <= 5 and then graefully degrades to standard naive Bayes'performane of 50% orret by k = 150. In omparison, k-nearest neighbours' per-formane is far less preditable with respet to the value of k|it exhibits very good5
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Figure 4: Performane of k-nearest neighbours (KNN), k-nearest neighbours withdistane weighting (KNNDW) and loally weighted naive Bayes (LWNB) on thehekers board data.performane at k <= 5, quikly degrades to a minimum of 28% orret at k = 60,improves to 60% orret at k = 150 and then starts to derease again.3.2 Evaluation on UCI datasetsThis setion evaluates the performane of loally weighted naive Bayes (LWNB)on a olletion of 37 benhmark datasets from the UCI repository (Blake & Merz,1998). The properties of these datasets are shown in Table 1.We ran two experiments. The �rst ompares loally weighted naive Bayes withk = 50 to standard naive Bayes (NB) and to k-nearest neighbours with and withoutdistane weighting (KNNDW, KNN) using k = 5; 10. In this experiment normaldistributions were used by NB and LWNB for numeri attributes. The seondexperiment ompares loally weighted naive Bayes to standard naive Bayes, a lazyBayesian rule learner (LBR) (Zheng & Webb, 2000) and averaged one-dependeneestimators (AODE) (Webb, 2003). In this ase, sine LBR and AODE an onlyhandle nominal attributes, we disretized all numeri attributes using the methodof Fayyad and Irani (Fayyad & Irani, 1993).All auray estimates were obtained by averaging the results from 10 separateruns of strati�ed 10-fold ross-validation. In other words, eah sheme was applied100 times to generate an estimate for a partiular dataset. In the ase wheredisretization is applied as a pre-proessing step, the intervals are �rst estimatedfrom the training folds and then applied to test folds. Throughout, we speak of tworesults for a dataset as being \signi�antly di�erent" if the di�erene is statistiallysigni�ant at the 5% level aording to the orreted resampled t-test (Nadeau &Bengio, 1999), eah pair of data points onsisting of the estimates obtained in one ofthe 100 folds for the two learning shemes being ompared. We also show standarddeviations for the 100 results.Table 2 shows the results for the �rst experiment. Compared to standard naiveBayes, loally weighted naive Bayes is signi�antly more aurate on 17 datasetsand only signi�antly less aurate on three datasets. In many ases our methodimproves the performane of naive Bayes onsiderably. For example, on the voweldata auray inreases from 63% to 95.6%. Similar levels of improvement an beseen on glass, autos, pendigits, sonar, vehile and segment. Compared to k-nearestneighbours, loally weighted naive Bayes is signi�antly more aurate on 14 and6



Table 1: Datasets used for the experimentsDataset Inst. % Msng Num. Nom. Classanneal 898 0.0 6 32 5arrhythmia 452 0.3 206 73 13audiology 226 2.0 0 69 24australian 690 0.6 6 9 2autos 205 1.1 15 10 6bal-sale 625 0.0 4 0 3breast- 286 0.3 0 9 2breast-w 699 0.3 9 0 2diabetes 768 0.0 8 0 2eoli 336 0.0 7 0 8german 1000 0.0 7 13 2glass 214 0.0 9 0 6heart- 303 0.2 6 7 2heart-h 294 20.4 6 7 2heart-stat 270 0.0 13 0 2hepatitis 155 5.6 6 13 2horse-oli 368 23.8 7 15 2hypothyroid 3772 6.0 23 6 4ionosphere 351 0.0 34 0 2iris 150 0.0 4 0 3kr-vs-kp 3196 0.0 0 36 2labor 57 3.9 8 8 2lymph 148 0.0 3 15 4mushroom 8124 1.4 0 22 2optdigits 5620 0.0 64 0 10pendigits 10992 0.0 16 0 10prim-tumor 339 3.9 0 17 21segment 2310 0.0 19 0 7sik 3772 6.0 23 6 2sonar 208 0.0 60 0 2soybean 683 9.8 0 35 19splie 3190 0.0 0 61 3vehile 846 0.0 18 0 4vote 435 5.6 0 16 2vowel 990 0.0 10 3 11waveform 5000 0.0 40 0 3zoo 101 0.0 1 15 719 datasets for k = 5 and k = 10 respetively. When distane weighting is usedwith k-nearest neighbours, our method is signi�antly more aurate on 13 and17 datasets for k = 5 and k = 10 respetively. Loally weighted naive Bayes issigni�antly less aurate than k-nearest neighbours on diabetes and australian.Table 3 shows the results for the seond experiment. This experiment omparesdisretized loally weighted naive Bayes to disretized naive Bayes, lazy Bayesianrules and averaged one-dependene estimators. When ompared to naive Bayes, ourmethod is signi�antly more aurate on 13 datasets and signi�antly less aurateon three. Similar to the situation in the �rst experiment, many of the improvementsover naive Bayes are quite onsiderable. When ompared to lazy Bayesian rules,our method is signi�antly better on six datasets and signi�antly worse on four.Note that three of the results for lazy Bayesian rules are missing beause of thismethod's omputational omplexity. Against averaged one-dependene estimators,the result is seven signi�ant wins in favour of our method versus �ve signi�ant7



Table 2: Experimental results for loally weighted naive Bayes (LWNB) versusnaive Bayes (NB) and k-nearest neighbours with and without distane weighting(KNNDW, KNN)Data Set LWNB NB KNN KNN KNNDW KNNDWk = 50 k = 5 k = 10 k = 5 k = 10anneal 98.32�1.2 86.59�3.3 � 97.27�1.7 96.09�1.7 � 97.32�1.6 96.28�1.7 �arrhythmia 62.63�3.7 62.4 �7 59.23�3.5 � 58.07�2.4 � 59.22�3.8 � 59.45�2.8 �audiology 78.89�6.7 72.64�6.1 � 62.31�8.7 � 55.42�7.8 � 64.53�8.2 � 58.42�7.2 �australian 83.06�4.6 77.86�4.2 � 86.14�3.9 86.14�4.3 86.14�3.9 86.75�4.1 Æautos 77.45�9.6 57.41�10.8� 62.56�10.4� 59.64�11.2� 68.39�10.5� 61.83�11.3�bal-sale 89.89�1.8 90.53�1.7 87.97�2.6 � 90.26�1.9 87.98�2.6 � 90.27�1.9breast- 72.79�7.0 72.7 �7.7 74 �4.6 73.44�4.4 74.49�4.8 74.32�4.8breast-w 96.28�2.2 96.07�2.2 96.91�2.1 96.62�2.1 97.01�2.0 96.81�2.1diabetes 70.63�4.8 75.75�5.3 Æ 73.86�4.6 Æ 72.94�4.3 73.86�4.6 Æ 73.75�4.5 Æeoli 84.31�5.9 85.5 �5.5 86.1 �5.6 86.2 �5.9 86.58�5.6 87.35�5.9german 75.06�3.3 75.16�3.5 73.17�3.5 73.93�2.6 73.17�3.5 74.45�3.2glass 72.35�8.3 49.45�9.5 � 66.04�7.7 63.26�8.5 � 68.74�8.1 65.08�9.0 �heart- 81.42�6.1 83.34�7.2 82.13�6.2 82.31�6.6 82.13�6.2 82.19�6.1heart-h 82.33�6.7 83.95�6.3 82.32�6.3 82.63�6.6 82.32�6.3 82.12�6.6heart-stat 79.3 �6.9 83.59�6 79.89�6.9 81.3 �6.4 79.89�6.9 80.7 �7.0hepatitis 86.08�7.0 83.81�9.7 84.21�8.2 83.57�8.2 84.21�8.2 83.78�7.9horse-oli 82.45�5.5 78.7 �6.2 81.71�5.3 82.33�5.4 81.73�5.3 81.95�5.3hypothyroid 96.39�0.9 95.3 �0.7 � 93.1 �0.7 � 93.07�0.6 � 93.17�0.8 � 93.18�0.7 �ionosphere 83.3 �4.7 82.17�6.1 85.1 �4.7 84.87�4.9 85.1 �4.7 84.27�4.9iris 95.6 �4.7 95.53�5 95.73�4.6 95.73�4.6 95.73�4.6 95.27�4.8kr-vs-kp 97.78�0.8 87.79�1.9 � 96.16�1.0 � 95.04�1.3 � 96.41�1.0 � 95.54�1.2 �labor 93.5 �9.6 93.57�10.3 84.43�14.3 87.83�13.3 84.77�14.2 88.77�13.2lymph 83.89�9.7 83.13�8.9 84.18�8.1 81.19�9.0 84.98�7.9 82.6 �9.0mushroom 100 �0.0 95.76�0.7 � 100 �0.0 99.92�0.1 � 100 �0.0 99.94�0.1optdigits 98.56�0.5 91.39�1.0 � 98.72�0.5 98.53�0.5 98.73�0.5 98.69�0.5pendigits 99.38�0.2 85.76�0.9 � 99.26�0.3 99.01�0.3 � 99.27�0.2 99.1 �0.3 �prim-tumor 44.63�6.1 49.71�6.5 Æ 47.32�6.6 46.96�6.4 46.43�6.8 46.7 �6.4segment 96.61�1.2 80.16�2.1 � 95.25�1.4 � 94.55�1.5 � 95.5 �1.3 � 94.96�1.5 �sik 96.82�0.7 92.75�1.4 � 95.46�1.4 � 95.38�1.2 � 95.45�1.4 � 95.57�1.3 �sonar 88 �5.9 67.71�8.7 � 82.28�9.1 75.25�9.9 � 82.28�9.1 75.89�8.9 �soybean 93.44�2.6 92.94�2.9 90.12�3.4 � 87.2 �3.4 � 90.28�3.3 � 88.07�3.2 �splie 94.29�1.3 95.41�1.2 Æ 79.86�1.9 � 83.48�1.8 � 82.15�1.7 � 85.1 �1.7 �vehile 75.09�4.1 44.68�4.6 � 70.17�4.5 � 69.9 �3.8 � 71.49�4.1 � 70.17�3.9 �vote 95.38�2.8 90.02�3.9 � 93.17�3.7 � 92.94�3.6 � 93.08�3.8 � 92.92�3.7 �vowel 95.59�2.4 62.9 �4.4 � 93.39�2.9 � 58.96�5.1 � 93.86�2.8 72.56�5.8 �waveform 81.88�1.8 80.01�1.4 � 79.29�1.8 � 80.46�1.8 � 79.33�1.8 � 81.12�2.0zoo 97.21�4.5 94.97�5.9 95.05�6.7 88.71�6.3 � 95.05�6.7 89.9 �6.7 �Æ, � statistially signi�ant improvement or degradation over LWNBlosses.4 Related workThere is of ourse a lot of prior work that has tried to improve the performane ofnaive Bayes. Usually these approahes address the main weakness in naive Bayes|the independene assumption|either expliitly by diretly estimating dependen-ies, or impliitly by inreasing the number of parameters that are estimated. Bothapproahes allow for a tighter �t of the training data.Typially the independene assumption is relaxed in a way that still keeps8



Table 3: Experimental results for disretized loally weighted naive Bayes (LWNBD)versus disretized naive Bayes (NBD), lazy Bayesian rules (LBR) and averaged one-dependene estimators (AODE)Data Set LWNBD NBD LBR AODEk = 50anneal 99.2 �0.9 95.9 �2.2 � 98.01�1.5 � 97.75�1.5 �arrhythmia 69.36�4.2 72.04�5.5 | 72.5 �5.4 Æaudiology 78.89�6.7 72.64�6.1 � 72.2 �6.3 � 72.28�6.2 �australian 85.06�3.7 86.22�3.8 86.1 �3.9 86.75�3.8autos 84.59�8.0 65.17�10.9� 73.8 �10.4� 74.27�11.5�bal-sale 69.4 �4.6 71.56�4.8 Æ 72.17�4.6 Æ 69.96�4.6breast- 72.79�7.0 72.7 �7.7 72.35�7.8 72.57�7.2breast-w 96.77�2.0 97.2 �1.7 97.21�1.7 97 �1.9diabetes 74.44�4.6 75.26�4.8 75.38�4.7 75.7 �4.7eoli 81.28�5.2 81.99�4.9 81.66�4.8 82.23�4.6german 72.96�3.5 75.04�3.6 74.9 �3.5 75.87�3.6 Æglass 74.5 �9.7 71.79�8.9 72.22�8.8 74.39�8.3heart- 81.12�6.4 83.47�6.9 83.54�6.9 82.84�6.7heart-h 82.81�6.6 84.2 �6.3 84.54�6.3 84.1 �6.3heart-stat 83.63�6.1 82.56�6.1 82.59�6.1 82.7 �6.6hepatitis 84.82�7.9 84.28�10.3 84.91�9.7 85.22�9.2horse-oli 82.61�5.5 79.54�5.8 82.33�5.8 82.99�5.6hypothyroid 98.56�0.5 98.19�0.7 99.12�0.5 Æ 98.56�0.6ionosphere 92.42�4.3 89.29�5.0 � 90 �4.8 91.06�4.7iris 93.33�6.1 93.33�5.8 93.2 �5.9 93.07�5.8kr-vs-kp 97.78�0.8 87.79�1.9 � 96.79�1.1 � 91.01�1.7 �labor 89.63�12.6 88.57�13.2 87.5 �13.9 88.8 �14lymph 86.86�8.0 85.1 �8.3 85.45�8.5 86.73�7.9mushroom 100 �0.0 95.76�0.7 � 99.96�0.1 99.97�0.1optdigits 97.36�0.7 92.17�1.0 � | 96.91�0.8 �pendigits 98.25�0.4 87.72�1.0 � 96.18�0.6 � 97.77�0.4 �prim-tumor 44.63�6.1 49.71�6.5 Æ 48.85�7.3 49.68�6.8 Æsegment 95.77�1.3 91.16�1.7 � | 95.09�1.3sik 97.47�0.7 97.12�0.8 97.66�0.8 97.36�0.8sonar 76.06�9.6 76.23�9.5 76.04�9.7 76.56�9.5soybean 93.44�2.6 92.94�2.9 93.41�2.7 93.41�2.8splie 94.29�1.3 95.41�1.2 Æ 95.8 �1.1 Æ 96.07�1.0 Ævehile 71.43�4.0 61.21�3.4 � 69.53�3.9 70.43�3.6vote 95.38�2.8 90.02�3.9 � 94.11�3.3 94.34�3.4vowel 87.14�3.4 58.56�5.3 � 74.67�3.8 � 76.87�4.7 �waveform 82 �1.7 79.97�1.4 � 83.42�1.6 Æ 85 �1.5 Æzoo 96.25�5.6 93.21�7.3 93.21�7.3 94.66�6.4Æ, � statistially signi�ant improvement or degradation over LWNBDthe omputational advantages of pure naive Bayes. Two suh methods are tree-augmented naive Bayes (Friedman et al., 1997) and AODE (Webb, 2003). Bothallow to apture some attribute dependenies while still being omputationally ef-�ient.Some alternative approahes try to transform the original problem to a formthat allows for the orret treatment of some of the dependenies. Both semi-naiveBayes (Kononenko, 1991) and the Cartesian produt method (Pazzani, 1996) aresuh transformation-based attempts for apturing pairwise dependenies.Methods that impliitly inrease the number of parameters estimated inludeNBTrees (Kohavi, 1996) and Lazy Bayesian Rules (Zheng & Webb, 2000). Both9
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