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1 IntroductionIn recent years, methods for inducing probabilistic de-scriptions from training data have emerged as a majoralternative to more established approaches to machinelearning, such as decision-tree induction and neuralnetworks. For example, Cooper & Herskovits (1992)describe a greedy algorithm that determines the struc-ture of a Bayesian inference network from data, whileHeckerman, Geiger & Chickering (1994), Provan &Singh (1995), and others report advances on this ba-sic approach. Bayesian networks provide a promisingrepresentation for machine learning for the same rea-sons they are useful in performance tasks such as di-agnosis: they deal explicitly with issues of uncertaintyand noise, which are central problems in any inductiontask.However, some of the most impressive results to datehave come from a much simpler { and much older {approach to probabilistic induction known as the naive

Bayesian classi�er . Despite the simplifying assump-tions that underlie the naive Bayesian classi�er, exper-iments on real-world data have repeatedly shown it tobe competitive with much more sophisticated induc-tion algorithms. For example, Clark & Niblett (1989)report naive Bayes producing accuracies comparable tothose for rule-induction methods in medical domains,and Langley, Iba & Thompson (1992) found that itoutperformed an algorithm for decision-tree inductionin four out of �ve domains.These impressive results have motivated some re-searchers to explore extensions of naive Bayes thatlessen dependence on its assumptions but that retainits inherent simplicity and clear probabilistic seman-tics. Langley & Sage (1994) describe a variation thatmitigates the independence assumption by eliminat-ing predictive features that are correlated with others.Kononenko (1991) and Pazzani (1995) propose an al-ternative response to this assumption by selectivelyintroducing combinations of attributes into the mod-eling process.These and similar approaches represent an importantline of research in machine learning, the goal of whichis to discover learning methods that not only workwell on real-world data but also have clear seman-tics. Although one means to this end is to study moremodern systems and give a Bayesian interpretation,another research agenda begins with well-understoodmethods and attempts to improve on them by remov-ing assumptions that might hinder performance.In this paper, we take the latter approach, beginningwith the naive Bayesian classi�er, which traditionallymakes the assumption that numeric attributes are gen-erated by a single Gaussian distribution. Although aGaussian may provide a reasonable approximation tomany real-world distributions, it is certainly not al-ways the best approximation. This suggests anotherdirection in which we might pro�tably extend andimprove the approach: by investigating more generalmethods for density estimation.In the pages that follow we review Naive Bayes,the naive Bayesian classi�er, then describe FlexibleBayes, an extension that eschews the single Gaus-



CX1 X2 XkFigure 1: A naive Bayesian classi�er depicted as aBayesian network in which the predictive attributes(X1; X2; : : :Xk) are conditionally independent giventhe class attribute (C).sian assumption in favor of kernel density estimation(but which retains the independence assumption). Wenext discuss some important properties of kernel es-timation that Flexible Bayes inherits. After this,we present some hypotheses about the new method'sbehavior, followed by experiments with natural andarti�cial domains designed to test those hypotheses.In closing, we review some related work and suggestsome directions for future research.2 The Naive Bayesian Classi�erAs we have noted, the naive Bayesian classi�er pro-vides a simple approach, with clear semantics, to rep-resenting, using, and learning probabilitistic knowl-edge. The method is designed for use in supervisedinduction tasks, in which the performance goal is toaccurately predict the class of test instances and inwhich the training instances include class information.One can view such a classi�er as a specialized form ofBayesian network, termed naive because it relies ontwo important simplifying assumptions. In particular,it assumes that the predictive attributes are condition-ally independent given the class, and it posits thatno hidden or latent attributes inuence the predic-tion process. Thus, when depicted graphically, a naiveBayesian classi�er has the form shown in Figure 1, inwhich all arcs are directed from the class attribute tothe observable, predictive attributes (Buntine 1994).These assumptions support very e�cient algorithmsfor both classi�cation and learning. To see this, letC be the random variable denoting the class of aninstance and let X be a vector of random variablesdenoting the observed attribute values. Further, let crepresent a particular class label, and let x representa particular observed attribute value vector. Given atest case x to classify, one simply uses Bayes' rule tocompute the probability of each class given the vectorof observed values for the predictive attributes,p(C = cjX = x) = p(C = c)p(X = xjC = c)p(X = x) (1)and then predicts the most probable class. Here X = xrepresents the event thatX1 = x1^X2 = x2^: : :Xk =

xk. Because the event is simply a conjunction ofattribute value assignments, and because these at-tributes are assumed to be conditionally independent,one obtainsp(X = xjC = c) = p( î Xi = xijC = c)= Yi p(Xi = xijC = c) ;which is simple to compute for test cases and to esti-mate from training data. Generally one does not di-rectly estimate the distribution in the denominator ofEquation 1, as it is just a normalizing factor; insteadone ignores the denominator and then normalizes sothat the sum of p(C = cjX = x) over all classes is one.Naive Bayes treats discrete and numeric attributessomewhat di�erently. For each discrete attribute,p(X = xjC = c) is modeled by a single real num-ber between 0 and 1 which represents the probabilitythat the attribute X will take on the particular value xwhen the class is c. In contrast, each numeric attributeis modeled by some continuous probability distributionover the range of that attribute's values.A common assumption, not intrinsic to the naiveBayesian approach but often made nevertheless, isthat, within each class, the values of numeric at-tributes are normally distributed. One can representsuch a distribution in terms of its mean and standarddeviation, and one can e�ciently compute the proba-bility of an observed value from such estimates. Forcontinuous attributes we can writep(X = xjC = c) = g(x;�c; �c) ; where (2)g(x;�; �) = 1p2�� e� (x��)22�2 ; (3)the probability density function for a normal (or Gaus-sian) distribution.1The above model leaves us with a small set of param-eters to estimate from training data. For each classand nominal attribute, one must estimate the prob-ability that the attribute will take on each value inits domain, given the class. For each class and con-tinuous attribute, one must estimate the mean andstandard deviation of the attribute given the class.Maximum likelihood estimation of these parametersis straightforward. The estimated probability that anominal random variable takes a certain value is equalto its sample frequency { the number of times the value1Equation 2 is not strictly correct: the probability thata real-valued random variable exactly equals any value iszero. Instead we speak about the variable lying withinsome interval: p(x � X � x + �) = R x+�x g(x;�; �)dx.By the de�nition of a derivative, lim�!0 p(x � X � x +�)=� = g(x; �; �). Thus for some very small constant �,p(X = x) � g(x; �; �)��. The factor � then appears inthe numerator of Equation 1 for each class. They cancelout when we perform the normalization, so we may useEquation 2.
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Figure 2: The e�ect of using a single Gaussian versus akernel method to estimate the density of a continuousvariable.was observed divided by the total number of observa-tions. The maximum likelihood estimates of the meanand standard deviation of a normal distribution arethe sample average and the sample standard deviation(Schalko� 1992).To clarify the estimation process, consider a small dataset in which there are two classes (+ and �), a nom-inal attribute X1 which takes values a and b, and acontinuous attribute X2. Given the �ve training casesf(+; a; 1); (+; b; 1:2); (+; a;3:0); (�; b;4:4); (�; b;4:5)g,Naive Bayes obtains the probability estimatesp(C = +) = 3=5p(X1 = ajC = +) = 2=3p(X1 = bjC = +) = 1=3p(X2 = xjC = +) = g(x; 1:73; 1:21)for the positive class and analogous estimates for thenegative class. The solid curve in Figure 2 showsthe density function estimated for another numeric at-tribute from a somewhat larger data set.One can also use Bayesian estimation methods, whichcommonly assume a Dirichlet prior, to estimatethe model parameters. Despite the similar names,Bayesian estimation is less common in work on naiveBayesian classi�ers, as there is usually much data andfew parameters, so that the (typically weak) priors arequickly overwhelmed.In summary,Naive Bayes provides a simple and e�-cient approach to the problem of induction. However,it typically relies on an assumption that numeric at-tributes obey a Gaussian distribution, which may nothold for some domains. This suggests that one shouldexplore other methods for estimating continuous dis-tributions.

Table 1: Algorithmic complexity for Naive Bayesand Flexible Bayes, given n training cases and kfeatures. Naive Bayes Flex BayesOperation Time Space Time SpaceTrain on n cases O(nk) O(k) O(nk) O(nk)Test on m cases O(mk) O(mnk)3 Flexible Naive BayesWe can now introduce the Flexible Bayes learningalgorithm, which is exactly the same as Naive Bayesin all respects but one: the method used for densityestimation on continuous attributes. Although usinga single Gaussian is the most common technique forhandling continuous variables, it is certainly not theonly one. Researchers have also explored a variety ofnonparametric density estimation methods.We chose to investigate kernel density estimation. Re-call that in Naive Bayes we estimate the densityof each continuous attribute as p(X = xjC = c) =g(x; �c; �c). Kernel estimation with Gaussian kernels(one can use other kernel functions as well) looks muchthe same, except that the estimated density is aver-aged over a large set of kernelsp(X = xjC = c) = 1nXi g(x; �i; �c) ; (4)where i ranges over the training points of attribute Xin class c, and �i = xi. The dashed line in �gure 2shows the kernel density estimation based on the 20sampled points. Readers familiar with kernel methodsshould note that our Equation 4 is equivalent to thestandard kernel density formula p(X = xjC = c) =(nh)�1Pj K(x��ih ), where h = � and K = g(x; 0; 1).Whereas in Naive Bayes one could estimate �c and�c by storing only the sum of the observed x's andthe sum of their squares, the su�cient statistics fora normal distribution, Flexible Bayes must storeevery continuous attribute value it sees during train-ing. The only su�cient statistic for the list of �i'sis the list of xi's itself. (Nominal attributes' distri-butions are still learned by storing a single numberper value that represents the sample frequency, as inNaive Bayes.) When computing p(X = xjC = c)for a continuous attribute to classify an unseen testinstance, Naive Bayes only had to evaluate g once,but Flexible Bayes must perform n evaluations, oneper observed value of X in class c. This leads to someincrease in the storage and computational complexity,as summarized in Table 1.We have not yet addressed the most important issuein kernel density estimation { the setting of the widthparameter �. As we shall see in the next section, kernelestimation has some nice theoretical properties when



� shrinks to zero as the number of instances goes to in-�nity. The statistical literatures reports various rulesof thumb for setting the kernel width, but each heuris-tic makes implicit and explicit assumptions about thedensity function that will be true of some distributionsand not others. In this paper we set �c = 1=pnc,where nc is the number of training instances observedwith class c. Thus, as Flexible Bayes observes moretraining points, its density estimates become increas-ingly local.The intuition behind Flexible Bayes is that kernelestimation will let the method perform well in domainsthat violate the normality assumption, with little costin domains where it holds. To understand this claim,we must review the theoretical underpinnings of kernelmethods.4 Asymptotic properties of FlexibleBayesIn general, density estimation involves approximatingthe probability density function of a continuous ran-dom variable. The Bayesian classi�er encounters thisproblem whenever it must estimate p(XjC) for somecontinuous attribute X. This is a general problem instatistics, and a variety of methods are available forsolving it (Venables & Ripley 1994, Silverman 1986).In this section we discuss the theoretical properties ofkernel density estimation and their implications for theFlexible Bayes algorithm.Statisticians are principally concerned with the con-sistency of a density estimate (Izenman 1991).De�nition 1 (Strong Pointwise Consistency) Iff is a probability density function and f̂n is an es-timate of f based on n examples, then f̂n is stronglypointwise consistent if f̂ ! f(x) almost surely for allx; i.e., for every �, p(limn!1 jf̂n(x)� f(x)j < �) = 1:The strongest asymptotic result we could hope for re-garding Flexible Bayes would be that, provided theindependence assumption holds, its estimate of p(CjX)is strongly pointwise consistent. This would implythat, in the limit, using the Flexible Bayes esti-mate of p(CjX) for classi�cation produces the Bayesoptimal error rate. We will prove strong consistencyof Flexible Bayes in three steps, �rst proving thatthe method provides a strongly consistent estimate ofp(XjC) when X is nominal, then proving the sameproperty when X is continuous, then proving that theestimate p(CjX) is strongly consistent.Theorem 1 (Strong Consistency for Nominals)Let X1; : : : ; Xn be an independent sample from amultinomial distribution with v values, where the prob-ability of drawing value j is pj . Let nj =Pi 1Xi=j , the

number of samples of value j. Then nj=n is a stronglyconsistent estimator of pj.Proof: This is a direct instantiation of the strong lawof large numbers (Casella & Berger 1990).Theorem 2 (Strong Consistency for Reals)Due to Devroye (1983). The kernel density estimateis strongly consistent when:� The kernel function K must be a bona �de densityestimate { it must be nonnegative for all x, and itmust integrate to 1.� hn ! 0 as n !1. Recall that h in the standardnotation is equivalent to our �.� nhn !1 as n!1.All of these conditions are satis�ed by using Gaussiankernels with hn = 1=pn, so each p(XjC) density esti-mate in Flexible Bayes is strongly consistent.Lemma 1 (Consistency of Products) Let thefunctions f̂1; : : : ; f̂k be strongly consistent estimates ofdensity functions f1; : : : ; fk. Then Qi f̂i is a stronglyconsistent estimator of Qi fi.Proof: We prove that f̂1f̂2 is a strongly consistent es-timator of f1f2, from which the lemma follows by in-duction. By the de�nition of strong consistency, forany �1 and �2, p(limn!1 jf̂1;n � f1j < �1) = 1 for allx, and similarly for f̂2. For f̂1f̂2 to be strongly point-wise consistent, p(limn!1 jf̂1;nf̂2;n � f1f2j < �3) = 1must hold for all x, and this will be true whenever�1f̂2 + �2f̂1 + �1�2 < �3 (by some simple algebraic ma-nipulation). Since f̂1(x) and f̂2(x) are �nite, and since�1 and �2 may be made arbitrarily small, the bound on�3 can be made to hold, giving the desired result thatf̂1f̂2 is strongly consistent.Theorem 3 (Consistency of Flexible Bayes)Let the true conditional distribution of the class giventhe attributes be p(CjX) = Qi p(Xi=xi jC=c)p(C)Qi p(Xi=xi) . (Thisis the actual conditional distribution, not our esti-mate.) Then the Flexible Bayes estimate p̂(C =cjX = x) is a strongly consistent estimator of p(C =cjX = x).Proof: By Theorems 1 and 2, Flexible Bayes' esti-mates of p(XjC); p(X); and p(C) are strongly consis-tent, thus by Lemma 1 and a related lemma regardingthe quotient of strongly consistent estimates, Flexi-ble Bayes' estimate of p(CjX) is strongly consistent.



Table 2: Natural data set characteristics and ten-fold cross validation results. Characteristics given are set size,number of classes, number of nominal and continuous attributes. Results given are the mean and standarddeviations of the ten cross-validation runs for Naive Bayes and Flexible Bayes, along with the signi�cancelevel of a paired t test that one method is more accurate than the other. The accuracies for C4.5 are shown toprovide context.Data set Size #Class #Cont #Nom Naive Flex Flex Better? C4.5Breast Cancer (Wisc.) 699 2 10 0 95.9� 0.2 96.7� 0.2 X (99.0%) 95.4Cleveland Heart Disease 303 2 6 7 83.3� 0.6 80.0� 0.6 � (97.5%) 72.3Credit Card Application 690 2 6 9 74.8� 0.5 78.3� 0.6 85.9Glass 214 7 9 0 42.9� 1.7 66.2� 0.9 X (99.5%) 65.4Glass2 (Float/Non) 163 2 9 0 61.9� 1.4 83.8� 0.7 X (99.5%) 70.6Horse Colic 368 2 7 15 73.3� 0.9 69.7� 1.0 � (99.5%) 85.1Iris 150 3 4 0 96.0� 0.3 95.3� 0.4 95.3Labor Negotiation 57 2 8 16 86.0� 1.3 84.0� 1.6 85.7Meta-Learning 528 2 19 3 67.1� 0.6 76.5� 0.5 X (99.5%) 72.6Pima Diabetes 768 2 8 0 75.1� 0.6 73.9� 0.5 71.6Vehicle Silhouette 846 4 18 0 44.9� 0.6 61.5� 0.4 X (99.5%) 70.05 Experimental StudiesHowever convincing our arguments for incorporat-ing kernel estimation into the Bayesian classi�er, the�nite-sample behavior of this method is ultimately anempirical question. Within machine learning, the stan-dard experimental method (Kibler & Langley 1988)involves running a learning algorithm on a set of train-ing data, then using the induced model to make pre-dictions about separate test cases and measuring theaccuracy. To evaluate the behavior of the exibleBayesian classi�er, we designed and carried out a num-ber of experimental studies along these lines.5.1 Experiments on Natural DataTo determine the relevance of our approach to real-world problems, we �rst selected 11 databases fromthe UCI machine learning repository (Murphy & Aha1994) and elsewhere. Table 2 summarizes the numberof instances, the number of classes, and the numberof nominal and numeric attributes in each data set.Because a sizeable fraction of each domain's featureswere numeric, they seemed likely candidates for con-trasting the behavior of Flexible Bayes and NaiveBayes.For each domain, we used ten-fold cross validation toevaluate the generalization accuracy of the two induc-tion algorithms. That is, we randomly partitioned thedata into ten disjoint sets, then provided each algo-rithm with nine of the sets as training data and usedthe remaining set as test cases. We repeated this pro-cess ten times using the di�erent possible test sets andaveraged the resulting accuracies. We also carried outthis procedure with C4.5 (Quinlan 1993), a well-knownalgorithm for decision-tree induction, to provide a ref-erence point for comparison.

Table 2 shows the results of the runs on natural do-mains, including the mean accuracy and standard de-viation for each, whether one method was signi�cantlybetter than the other on a paired t test, and the sig-ni�cance level of that test. The table indicates thatFlexible Bayes was signi�cantly more accurate thanNaive Bayes in �ve of the 11 domains, less accuratein two domains, and not signi�cantly di�erent in fourcases. In two domains (Glass2 and Meta-Learning),the naive scheme was signi�cantly worse than C4.5,whereas the exible method did signi�cantly better.Curiously, the two domains where Naive Bayes out-performed Flexible Bayes were both medical do-mains. Possibly doctors tend to de�ne diseases suchthat important continuous features are roughly nor-mal, given whether a patient has a disease. If the con-ditional densities truly are Gaussian, Naive Bayes
100 120 140 160 180 200

0.
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Resting Blood Pressure (Systolic)

Single Gaussian
Kernel Density Estimation

Figure 3: Systematic measurement errors in the Cleve-land heart disease database.
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integration, we estimated the Bayes optimal error ratein this domain to be 1.863%. The apparent impossi-bility of the situation (namely, Flexible Bayes out-performing the Bayes optimal error rate) is explainedby realizing that the estimate of the algorithm's per-formance comes from a test set of 1000 instances. Weexpect that, had we used an order of magnitude moretest instances, the algorithm's error would match theBayes optimal error.In summary, we have compared our Flexible Bayesalgorithm with its natural benchmark, Naive Bayes,on a variety of natural and arti�cial domains, �ndingencouragement from the former and evidence for ourhypotheses in the latter.6 DiscussionAlthough our approach to Bayesian induction is novel,it does bear some similarities to other research in ma-chine learning and statistics. The use of density es-timation �gures prominently in several learning algo-rithms. Specht & Romsdahl (1994) is the latest ina series of papers on kernel estimation in the guise of\probabilistic neural networks." In contrast to our ap-proach, their method only handles continuous features,and makes no independence assumptions, so that a sin-gle d-dimensional density estimation is done per class,rather than d one-dimensional estimations. A novelfeature is their use of the conjugate gradient algorithmto optimize their cross-validation estimate of error overthe space of smoothing parameters (one parameter perdimension). This gave tremendous improvement onsome domains, and we expect that an adaptive kernelwidth would improve our results as well.A histogram is one of the oldest and simplest methodsof density estimation. Kononenko (1993) reports theuse of experts to discretize continuous features. In con-trast, Dougherty, Kohavi & Sahami (1995) study sev-eral methods for automatically discretizing continuousfeatures based on statistical and information-theoreticmetrics. They report that a naive Bayesian classi-�er combined with discretization gives higher accuracythan C4.5, averaged over many domains.The algorithms explored in this paper are but two sam-ples from a large space of possible algorithms that ourframework suggests. Figure 6 gives a perspective onthe work discussed in this paper, showing how NaiveBayes and Flexible Bayes relate to each other andto previous work.The representational power of the exible naiveBayesian classi�er seems quite similar to that for Gen-eralized Additive Models of Hastie & Tibshirani (1990)for regression. Their method predicts the value ofa continuous variable, given various nominal and nu-meric input variables, usingŷ = f0(Xi fi(xi)) ;
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Figure 6: The space encompassing the algorithms dis-cussed in this paper.where the fi are arbitrary (possibly nonlinear) func-tions. By taking logarithms, Equation 1 may be trans-formed into a generalized additive model.Two approaches seem close to our method at �rstglance, but upon close inspection there are impor-tant di�erences. Geiger & Heckerman (1994) presenta method for learning \Gaussian networks", which areBayes nets with some continuous variables estimatedby a single Gaussian distribution, in contrast to ourapproach in which densities are estimated kernel esti-mation. Kononenko (1993) uses discretization with a\fuzzy" modi�cation. Let x be the value of a contin-uous feature in a test instance. Rather than assigningx to a single interval, Kononenko \fuzzi�es" x using aGaussian and assigns probabilistically to several inter-vals. The use of the Gaussian at �rst seems similar,but in our work such kernels are used only to obtain asmooth density estimate on the training data.In future research, we hope to extend FlexibleBayes to set the kernel width adaptively. Cross-validation and other resampling schemes are relativelycheap to use in this context. For the implementationdiscussed here, the complexity of cross-validation isO(n2k), so a wrapper method for setting � similar tothat reported by John, Kohavi & Peger (1994) maybe employed on small- to medium-sized databases. Afurther possibility is borrow Cheeseman et al.'s (1988)Bayesian approach to density estimation with Gaus-sian mixtures using the EM algorithm (Dempster,Laird & Rubin 1977).7 ConclusionIn this paper we reviewed the naive Bayesian classi�erand the assumptions on which it relies, including thecommon use of a single Gaussian distribution for eachpredictive attribute. We argued that this assumptionmight be violated in some domains, and we proposedinstead to use a kernel estimation method to approx-imate more complex distributions. Experiments withnatural domains showed that, in a number of cases,
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