Introduction to Kernel Smoothing

M. P. Wand & M. C. Jones

Kernel Smoothing

Monographs on Statistics and Applied Probability

Chapman & Hall, 1995.

Introduction

Histogram of some p-values

Introduction

- Estimation of functions such as regression functions or probability density functions.
- Kernel-based methods are most popular non-parametric estimators.
- Can uncover structural features in the data which a parametric approach might not reveal.

Univariate kernel density estimator

Given a random sample X_1, \ldots, X_n with a continuous, univariate density f. The kernel density estimator is

$$\hat{f}(x,h) = \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{x - X_i}{h}\right)$$

with kernel K and bandwidth h. Under mild conditions (h must decrease with increasing n) the kernel estimate converges in probability to the true density.

The kernel K

- Can be a proper pdf. Usually chosen to be unimodal and symmetric about zero.
- \Rightarrow Center of kernel is placed right over each data point.
- \Rightarrow Influence of each data point is spread about its neighborhood.
- \Rightarrow Contribution from each point is summed to overall estimate.

Gaussian kernel density estimate

Stefanie Scheid - Introduction to Kernel Smoothing - January 5, 2004

The bandwidth \boldsymbol{h}

- Scaling factor.
- Controls how wide the probability mass is spread around a point.
- Controls the smoothness or roughness of a density estimate.
- \Rightarrow Bandwidth selection bears danger of under- or oversmoothing.

KDE with b=0.1

Stefanie Scheid - Introduction to Kernel Smoothing - January 5, 2004

Stefanie Scheid - Introduction to Kernel Smoothing - January 5, 2004

KDE with b=0.005

Some kernels

Some kernels

$$K(x,p) = \frac{(1-x^2)^p}{2^{2p+1}B(p+1,p+1)} \mathbf{1}_{\{|x|<1\}}$$
 with $B(a,b) = \Gamma(a)\Gamma(b)/\Gamma(a+b).$

-p = 0: Uniform kernel.

-p = 1: Epanechnikov kernel.

-p=2: Biweight kernel.

Kernel efficiency

- Perfomance of kernel is measured by MISE (mean integrated squared error) or AMISE (asymptotic MISE).
- Epanechnikov kernel minimizes AMISE and is therefore optimal.
- Kernel efficiency is measured in comparison to Epanechnikov kernel.

Kernel	Efficiency
Epanechnikov	1.000
Biweight	0.994
Triangular	0.986
Normal	0.951
Uniform	0.930

 \Rightarrow Choice of kernel is not as important as choice of bandwidth.

Modified KDEs

- Local KDE: Bandwidth depends on x.
- Variable KDE: Smooth out the influence of points in sparse regions.
- Transformation KDE: If f is difficult to estimate (highly skewed, high kurtosis), transform data to gain a pdf that is easier to estimate.

Bandwidth selection

- Simple versus high-tech selection rules.
- Objective function: MISE/AMISE.
- R-function density offers several selection rules.

- Normal scale rule.
- Assumes f to be normal and calculates the AMISE-optimal bandwidth in this setting.
- First guess but oversmoothes if f is multimodal or otherwise not normal.

bw.ucv

- Unbiased (or least squares) cross-validation.
- Estimates part of MISE by leave-one-out KDE and minimizes this estimator with respect to h.
- Problems: Several local minima, high variability.

bw.bcv

- Biased cross-validation.
- Estimation is based on optimization of AMISE instead of MISE (as bw.ucv does).
- Lower variance but reasonable bias.

bw.SJ(method=c("ste", "dpi"))

- The AMISE optimization involves the estimation of density functionals like integrated squared density derivatives.
- dpi: Direct plug-in rule. Estimates the needed functionals by KDE.
 Problem: Choice of pilot bandwidth.
- ste: Solve-the-equation rule. The pilot bandwidth depends on h.

Comparison of bandwidth selectors

- Simulation results depend on selected true densities.
- Selectors with pilot bandwidths perform quite well but rely on asymptotics \Rightarrow less accurate for densities with "sharp features" (e.g. multiple modes).
- UCV has high variance but does not depend on asymptotics.
- BCV performs bad in several simulations.
- Authors' recommendation: DPI or STE better than UCV or BCV.

KDE with Epanechnikov kernel and DPI rule