
Noname manuscript No.
(will be inserted by the editor)

Kernel Methods for Software Effort Estimation

Effects of different kernel functions and bandwidths on
estimation accuracy

Ekrem Kocaguneli · Tim Menzies

Received: date / Accepted: date

Abstract Keywords Effort estimation, data mining, kernel function, bandwidth

1 Introduction

Software effort estimation is a relatively young and fairly vast field of research. Re-

gardless of the invaluable contributions from various researchers over the last decades,

we only discovered a limited portion of the field and we are far from being perfect. For

instance software effort estimates are reported to be often wrong by a factor of four [5]

or even more [17]. The critical results of wrong estimates for a company are obvious: 1)

Promising projects that would in fact stay within budget may be rejected, 2) accepted

projects may over-run their budget and worst of all 3) over-running projects may be

cancelled thereby wasting the entire effort.

The need for better methods of software effort estimation is apparent and we have

come a long way in understanding software effort estimation. However, it is not yet

absolutely clear. Therefore, effort estimation is an active area of research [4, 15,19,34]

that constantly explores more variations with each model being developed or improved.

For example, in 2006, Auer et al. [2] proposed an extensive search to learn the best

weights for different project features. In the same year, Menzies et al.’s COSEEKMO

tool explored thousands of combinations of discretizers, data pre-processors, feature

subset selectors, and inductive learners [26]. In 2007, Baker proposed an exhaustive

search of all possible project features, learners and other variables [3]. All these work

contributed narrowing down the possible space we need to discover to really understand
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software effort estimation. Future studies will continue to narrow down this space and

investigate other variations of software effort estimation methods.

In this research, we investigate a promising concept called kernel density estima-

tion [33]. Kernel-based methods are reported to be one of the most popular non-

parametric estimators that can uncover structural features in the data [38]. Further-

more, in various different contexts different researchers have benefited from kernel

density estimation and have reported successful results [10, 12,30].

Among various software effort estimation methods analogy based effort estimation

(ABE) is reported to be one of the most successful methods [16]. ABE is based on

the premise that effort of a future project can be estimated by adapting the effort

values of past k projects (adapted k projects are called analogies) [16,22,25]. Among

proposed adaptation methods we can name choosing closest analogy [6,11], taking mean

or median of k analogies [25, 36]. In both mean and median approach the influence of

analogies are equal, in other words, the low ranked analogies have just as much influence

as the high ranked analogies. To overcome the equal impact problem, Mendes et. al.

proposes a method called inverse rank weighted mean (IRWM) that allows higher

ranked analogies to have greater influence than the lower ones [24, 25]. IRWM assigns

expert defined weights to analogies. We will talk about ABE and weighting in detail

in Section 2.2.

Experts like Mendes et. al. have an intuition about the weighting approach and use

their domain knowledge to propose weighting strategies like IRWM. However, expert

judgment may not be available for all practitioners willing to use ABE. In this research

we use kernel density estimation as a weighting method in ABE. To the best of our

knowledge, kernel methods have not been explored in this domain. Therefore, we regard

our research as a contribution to reduce down the unknown space we are struggling to

discover. We conducted extensive experiments with various kernels and tried various

bandwidths for each kernel. Although these methods have yielded relatively successful

results in different domains, we did not observe a significant improvement over non-

weighted ABE. Basing on the fact that other researchers may or will be conducting

similar studies, we think that our work may give hints whether or not to try kernel

methods for weighted-ABE. Furthermore, in this research we question the reasons why

kernel methods do not have similar characteristics for software effort data.

To guide us in this research, we have identified the following research questions:

RQ1 Is there any evidence that weighting improves the performance of ABE?

RQ2 What is the effect of different kernels for weighting ABE?

RQ3 What is the effect of different bandwidths for different kernels when used for weight-

ing ABE?

RQ4 How do the characteristics of software effort datasets influence the performance of

kernel weighting for ABE?

The rest of the paper is organized as follows: In Section 2 we provide background

information regarding software effort estimation in general as well as ABE and kernel

density estimation. We continue with Section 3, in which we provide the details of the

methodology we adopted in this research such as the weighting strategy and datasets

we used as well as the experimental details and the performance criteria according to

which we evaluated our results. In Section 4 we give the results of our research and

continue with Section 5, where we summarize the possible threats the validity of our

results. Finally we discuss the conclusions of our research in Section 6 and present our
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answers to the research questions we followed. In Section 7 we list some of the likely

future directions of this research and conclude.

2 Background

In this section, we will provide background information regarding software effort es-

timation in general and ABE in particular. We will also address how kernel methods

have been utilized in the literature and discuss how they can be adapted to software

effort estimation domain as a weighting strategy for ABE.

2.1 Software Effort Estimation

We can divide software effort estimation into two groups [34]: Expert judgment and

model-based techniques.

Expert judgment methods are widely used in software effort estimation practices [13].

Expert judgment can be applied either explicitly (following a method like Delphi [4])

or implicitly (informal discussions among experts). Regardless of the method expert

judgment is applied, it is prone to some pitfalls. One possible pitfall in expert-based

methods is the fact that they are open to clashes of interest. For instance a faulty

estimation of a senior expert may be taken over the more accurate estimation made

by a junior expert. Another pitfall is that expert-based methods can be as good as

your experts are and the improvement of human capability in terms of making estima-

tions is very limited. This fact is also indicated by Jorgensen et. al. and they evaluate

capability of humans to improve their own expert judgment as poor [14].

Unlike expert-based methods, model-based techniques do not rely heavily on human

judgment. Model based techniques are products of:

1) Algorithmic and parametric approaches or

2) Induced prediction systems.

The first approach is in simplest terms the adaptation of an expert-proposed model

to local data. A widely known example to such an approach is Boehm’s COCOMO

method [5]. The second approach is particularly useful in the case where local data

does not conform to the specifications of the expert’s method. A few examples of

induced prediction systems are linear regression, neural nets, model trees and analogy

based estimation [26,35]. Regardless of the categorization of models, they are all built

on inherent assumptions. For example, linear regression assumes that the effort data

fits a straight line while model trees assumes that the data fits a set of straight lines. In

the cases where data violates these assumptions, patches are applied. An example of a

patch is taking the logarithm of exponential distributions before linear regression [5,18].

However, choosing the appropriate patch again requires qualified experts.

2.2 ABE

Analogy based estimation (ABE) or estimation by analogy (EBA) is a form of case

based reasoning (CBR). In their 2005 study Myrtveit et. al. follow a different catego-

rization than the one presented in this paper [29]. They group effort estimation models
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under sparse-data methods and many-data methods. According to this taxonomy CBR

may belong to both sparse-data or many data category. However, if CBR is used to

identify the closest case, then it is categorized as a many-data method. ABE is an

example of this use of CBR [29].

Although we can alter ABE by adding in different machinery into the system, how

basic ABE works is quite simple. ABE in the simplest terms, generates its estimate for

a test project by gathering evidence from the effort values of similar past projects in

some training set. When we analyze the previous research of experts on the domain

of ABE such as Shepperd et. al. [37], Mendes et. al. [25] and Li et. al. [22], we can

see a baseline technique lying under all ABE methodologies. The baseline technique is

composed of the following steps:

– Form a table whose rows are completed past projects (this is a training set).

– The columns of this set are composed of independent variables (the features that

define projects) and a dependent variable (the recorded effort value).

– Decide on the number of similar projects (analogies) to use from the training set

when examining a new test instance , i.e. decide on the k -value.

– For each test instance, select those k analogies out of the training set.

– While selecting analogies, use a similarity measure (such as the Euclidean dis-

tance of features).

– Before calculating similarity, apply a scaling measure on independent features

to equalize their influence on this similarity measure.

– Use a feature weighting scheme to reduce the influence of less informative fea-

tures.

– Adapt the effort values of the k nearest analogies to come up with an effort estimate.

Following the steps of this baseline technique, we will define a framework called

ABE0. ABE0 uses the Euclidean distance as a similarity measure, whose formula is

given in Equation 1.

Distance =

√√√√ n∑
i=1

wi(xi − yi)2 (1)

In Equation 1 we can see how weighting is used in the baseline approach for project

features. In Equation 1, wi corresponds to feature weights applied to independent

features. ABE0 framework does not favor any features over the others, therefore ABE0

uses a uniform weighting, i.e. wi = 1.

The adaptation of effort suggested by baseline approach does not have to be a

a complex process. ABE0 simply returns the median effort values of the k nearest

analogies. The reason why we chose ABE0 framework to use median instead of mean

in our research is due to the fact that the suggested number of analogies to be used in

ABE studies are very low. In that case, use of mean may let extreme effort values have

a very strong influence on the estimation. However, we want the estimates of ABE0

framework to represent the majority of selected instances and not greatly affected by

extreme values, which may or may not be noise. Therefore, ABE0 uses median instead

of mean.

In this research we will compare the results of ABE0 framework with a slightly mod-

ified version of it: Weighted Analogy Based Estimation (WABE). The word weighted

in WABE may at first be considered to refer to both weighting attributes as well

as weighting anologies. However, ABE0 framework already includes a mechanism for



5

weighting independent attributes (see Equation 1). Therefore, when we talk about

WABE, weighting will refer to weighting of instances rather than features.

WABE has been previously adressed in literature. For example Mendes et. al. pro-

poses inverse rank weighted mean (IRWM) [25], which can be considered as a form of

WABE. IRWM method enables higher ranked analogies to have greater influence than

the lower ones. Assuming that we have 3 analogies, the closest analogy (CA) gets a

weight of 3, the second closest (SC) gets a weight of 2 and the weight of the last analogy

(LA) is 1. With this weighting approach, IRWM would calculate the estimation as in

Equaiton 2.

Effort = (3 ∗ CA + 2 ∗ SA + 1 ∗ LA)/(3 + 2 + 1) (2)

IRWM has its root in expert judgment. In other words, in the lack of valuable

experts, such a weighting strategy would be almost impossible to apply to the needs

of a particular dataset. Being inspired by WABE methods like IRWM, in this research

we question whether it is possible to develop an automated WABE approach.

2.3 Kernel Density Estimation

Kernel density estimation is a non-parametric estimation method that is used to un-

cover the underlying structures of data, which a parametric approach may fail to re-

veal [38]. Since we used the univariate kernel density estimation, we will suffice to

mention the univariate case in this paper. However, the same approach can be easily

adapted to higher dimensionalities [33,38].

Assuming that we are given a sample X1, ..., Xn with a continuous, univariate

density f , the kernel density estimator is defined as in Equation 3.

f̂(x, h) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
(3)

In Equation 3, K is defined as the kernel and h is defined to be the bandwidth. Ker-

nel is usually chosen to be unimodal and symmetric about zero [38]. A probability dis-

tritibution function can be chosen as the Kernel function (for instance Gaussian kernel).

We will give more details concerning different kernel types and bandwidths in Section

3.1, where we describe how kernel methods are employed as a weighting/adaptation

strategy for WARE.

Kernel density estimation has been successfully used for different type of datasets.

For instance Palpanas et. al. use kernel density estimation to address the problem

of deviation detection in environment of sensor networks [30]. Frank et. al. use ker-

nel estimation for locally weighting the attributes of Naive Bayes, thereby relaxing

the independence assumption [10]. Furthermore John et. al. use kernel estimation to

tackle the normality assumption regarding continuous datasets [12]. They replace single

Gaussian distribution that is used to model continuous data with non-parametric ker-

nel density estimation and they report considerable improvements in real and artificial

datasets. Although kernel density estimation is used in different areas for modeling

different types of data, to the best of our knowledge it was not previously used in

the context of ABE. In this research we propose using kernel density estimation for

assigning weights to selected analogies in a WABE model.
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3 Methodology

In this section we provide the methodology that we adopted in our research. We discuss

how we use kernel density estimation as a weighting method for WABE as well as

which kernels we use for weighting. Furthermore, we provide information regarding

the datasets we used in this research and discuss their characteristics. Also we provide

information regarding the experimental settings we adopted. Finally we discuss the

performance criteria according to which we compare the performance of WABE to

ABE0.

3.1 Weighting Method

Before applying kernel density estimation for weighting the selected analogies, we run

ABE0 on our datasets. As we know ABE0 does not apply any weighting to selected

analogies. Our adaptation strategy in ABE0 is taking the median of the selected analo-

gies. Since different researchers propose different number analogies (different k values)

to be used in an ABE0 like system, we used various static k values and a dynamic

k value in our experiments. The static k values we used are 3, 5, 7 and 9. Static-k

approach we adopted is straightforward. For each test instance at hand, we select the k

closest analogies from the training set. The dynamic-k approach on the other hand is a

little bit trickier. The dynamic-k method selects a different k value for each individual

test instance. While doing that we randomly pick 10 instances (validation set) from

the training set. Then we run ABE0 on the remaining instances and record the k value

that yielded the lowest error rate for the training set as our dynamic-k.

After running ABE0, we run WABE for the same test instances with the same k

values. In WABE our weighting strategy is kernel methods. We use kernel density esti-

mation to uncover the underlying structures of software effort datasets. It is reported

that they perform better than parametric approaches in that regard [38].

Before applying weighting to k analogies, we separate the training set into two

sets: A and R. The set A contains the k analogies selected from the training set:

A = x1, ..., xk. The R set on the other contains the remaining instances from the

training set: R = t1, ..., tn−k where ti ∈ {TrainSet−A} and n is the number of

elements in training set. We build the kernel density estimation on R and evaluate the

density estimation at instances of A. The formula we use for calculating the density

estimates for each analogy in set A is given in Equation 4.

f(x) =
1

nh

∑
ti∈R

K

(
x− ti

h

)
(4)

With this approach we assume that the k analogies selected by ABE0 for a par-

ticular test instance come from a distribution that is specific to the dataset at hand.

Furthermore, according to this specific distribution we get different probability values

for each one of the k analogies. That is where weighting for WABE comes in. Since

we have different probability values for each analogy, we can use these values as an

indicator to decide on how much importance each analogy shall have in our estimation.

In other words, the analogies with higher probability values are more likely to have

particular chacteristics of a dataset, whereas low probability analogies are less likely to

belong to that dataset. Before using the probability values as weights, we scale them

to 0-1 interval according to Equation 5.
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weightxi =
probabilityxi −max(ProbabilityallAnalogies)

max(ProbabilityallAnalogies)−min(ProbabilityallAnalogies)
(5)

After scaling probability values, we use them as weights for adapting analogies.

The effort value of each analogy is multiplied with its weight and divided by the sum

of all weights. Then the last step of adaptation in WABE is to take the median of the

weighted effort values, that would give us the estimated effort for the test instance.

3.2 Data

Data is a sparse source in software effort estimation domain. However, there are com-

monly used public datasets. Since we want our research to be benchmarked with other

studies we chose to use publicly available datasets. In our research, we have used three

commonly used datasets in software effort estimation research: Nasa93, the original

Cocomo81 [5], and Desharnais [8]. Cocomo81 and Nasa93 datasets contain projects

developed in NASA, whereas Desharnais dataset contains projects developed by Cana-

dian software houses.

Apart from selecting commonly used datasets, we took the quality of the datasets

into consideration. In order to evaluate the goodness of datasets, Kitchenham and

Mendes propose a quality scoring that consists of four values: poor (less than ten

projects), fair (between ten to twenty projects), good (between twenty to forty projects)

and excellent (more than forty projects) [20]. Following this quality criteria all the

datasets we use in our research rank as excellent quality. The details regarding these

datasets can be found in Figure 1.

Dataset Features T = |Projects| Content Units
Cocomo81 17 63 NASA projects months
Nasa93 17 93 NASA projects months
Desharnais 12 81 Canadian software projects hours

Total: 237

Fig. 1: We used 237 projects coming from 3 datasets. Datasets have different characteristics
in terms of the number of attributes as well as the measures of these attributes.

3.3 Experiments

Our experimental settings aim at comparing the performance of standart ABE (ABE0)

to that of weighted ABE (WABE). We first run ABE0 on each of the 3 datasets

employed in this research. To separate train and test sets we used leave-one-out method,

which entails selecting 1 instance out of a dataset of size n as the test set and using the

remaining n−1 instances as the training set. For each test instance, we run ABE0 and

store the estimated effort for that test instance. Then we run WABE for the same test

instance and store the estimated effort coming from WABE. Both for ABE0 and WABE

we tried different k values as number of analogies plays a critical role in estimation

accuracy. Furthermore, to hinder any particular bias that would come from the settings

of a single experiment, we repeated the afore mentioned procedure 20 times.
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For WABE, apart from the k value we have different parameters that can be tuned:

Kernel type and bandwidth. Previously it is reported that the choice of kernel does not

have a significant effect on the performance [7]. However, this statement is valid for

spatial data and the effect of different kernels have not been investigated for software

effort data. Therefore, in our research we inlcluded different types of kernels to observe

the effect of kernel selection on effort data. The kernels we use in our research are:

Uniform, triangular, Epanechnikov and Gaussian. Furthermore, in addition to these

kernels we used IRWM [24,25] for weighting.

The selection of bandwidth for kernels has more influence on the performance than

the kernel types [7, 33]. One of the bandwidths suggested by John et. al. is h = 1/
√

n

where h is the bandwidth and n is the size of dataset [12]. The other bandwidth values

we used are: 2, 4, 8 and 16.

In this research we use 2 ABE methods (ABE0 and WABE) induced on 3 datasets

(Cocomo81, Nasa93 and Desharnais) with 5 different k values (k ∈ {1, 3, 5, 7, 9, dynamicK}).
Furthermore, we use 4 different kernels (Uniform, triangular, Epanechnikov and Gaus-

sian) with 5 bandwidth values as well as IRWM in WABE experiments. Therefore, to

further explore field of software effort estimation, we investigate a total of 330 different

settings in this research:

– ABE0 Experiments: 15 settings

– 3 datasets * 5 k values = 15

– WABE Experiments: 315 settings

– Kernel Weighting: 3 datasets * 5 k values * 4 kernels * 5 bandwidths = 300

– IRWM: 3 datasets * 5 k values = 15

3.4 Performance Criteria

To observe the effect of weighting in ABE, we use the following performance measures:

the magnitude of relative error (MRE), median magnitude of relative error (MdMRE),

mean magnitude of relative error (MMRE) and win-tie-loss values generated by a sta-

tistical test (Mann-Whitney U Test). MRE is used by the authors because it is the most

commonly used performance criterion for software effort estimation [28]. Furthermore,

as we can see from Formula 6, MRE gives a per-instance based estimation performance

evaluation.

MRE =
|actuali − predictedi|

actuali
(6)

Although we make use of MRE in our performance comparisons, we do not give

MRE values directly. We instead use MRE to aid other performance measures. For

example MdMRE is the median value of all the MRE values for all test instances and

MMRE is the mean value of all the MRE values. The formulas of MdMRE and MMRE

are given in Equations 7 and 8 respectively, where n is the test set size.

MdMRE = median(MRE1, MRE2, ..., MREn) (7)

MMRE =
1

n

n∑
i=1

|actuali − predictedi|
actuali

(8)
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wini = 0, tiei = 0, lossi = 0
winj = 0, tiej = 0, lossj = 0
if MANN-WHITNEY(MRE′si, MRE′si) says they are the same then

tiei = tiei + 1;
tiej = tiej + 1;

else
if median(MRE′si) < median(MRE′sj) then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 2: Pseudocode for Win-Tie-Loss Calculation Between Method i and j

However, MRE related measures are subject to many pitfalls. If MRE is used a

stand-alone performance evaluation criterion (i.e. not combined with appropriate sta-

tistical tests), it may lead to biased or even false conclusions. To prevent us from falling

into MRE-related pitfalls, we use another performance criterion called win-tie-loss cal-

culation. A win-tie-loss calculation tells that comparison between two methods i and j

makes sense only if they are statistically different. If there is no statistically significant

difference between two methods, say method i and method j, then it indicates that

results are observations coming from the same distribution, therefore methods are said

to tie and their tie values (tiei and tiej) are incremented. However, if there is a statisti-

cal difference between two methods, then the method with a lower median MRE score,

say i, is said to have a “win” and the one with the lower MRE, say j, is said to have

a “lose”. The related values wini and lossj are incremented by one. The pseudocode

for a win-tie-loss calculation is given in Figure 2. For the comparison of methods in

win-tie-loss calculation, a non-parametric statistical test (the Mann-Whitney rank-sum

test) is used at a significance level of 95%.

4 Results

As we have mentioned before, we will evaluate the effect of weighting closest analogies

via kernel density estimation in a WABE model according to three performance mea-

sures: Win-tie-loss values, MdMRE and MMRE. In this section we present the results.

We first evaluate the win-tie-loss values for each dataset. Since we have 10 settings for

each kernel subject to 20 runs, the sum of win, tie and loss values can be at most 180

((10 settings - 1 setting itself) * 20 = 180 ). The nice point of win-tie-loss calculation is

that it does not only show us whether WABE with kernel density estimation provides

an improvement to ABE0, but it also shows us the performance of a single method

(ABE0 or WABE) in comparison to all other methods.

After win-tie-loss analysis, we will observe whether the results elicited from win-

tie-loss values are in agreement with the results of MRE values. Since MRE provides

us a per-instance based perspective of estimation performance, with MRE results we

will have the chance to see whether the general-perspective results are similar to those

of per-instance based perspective.
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4.1 Evaluation of WIN-TIE-LOSS Results

In Figure 3 the win-tie-loss values for Cocomo81 are given. The first observationg we

can make from Figure 3 is that smaller number of analogies have always attained higher

win values and lower loss values. In other words, in all treatments k = 3 attains the

highest win and the lowest loss values.

Remember that the total sum of win-tie-loss values for a single treatment can be

at most 180. For all settings, the tie values are most of the time less than 45 (less than

25% of all the comparisons), which means that in 75% or more of the comparisons

there is a statistical difference between two methods. Furthermore, when we mutually

compare the results of ABE0 with WABE for a single k value, we see that for none of

the k values weighting via kernel density estimation improves the win values.

From Figure 3 we can also see the effect of applying different kernels and different

bandwidths on the performance of WABE. In terms of kernels, we can say that there is

not a considerable performance difference between different types. We see in Figure 3

that although there are small changes in terms of win-tie-loss values between different

kernels, the differences are not too big. We have a hint from the previous studies that

kernel type does not have much influence on the performance for spatial data [7].

For Cocomo81 dataset we observe that the same fact is also valid for software effort

estimation data.

Although the kernel type was reported to be of little importance to performance,

the bandwidth was reported to be influential [7, 33, 38]. However, we are unable to

observe the considerable effect of various bandwidhts on estimation performance. In

Figure 3 the win-tie-loss values kernels when used with 5 different bandwidhts are very

similar. In fact, for the uniform kernel the performance is completely identical between

different bandwidhts. Therefore, from Cocomo81 dataset we see that software effort

data behaves different than other data types, i.e. unlike spatial data software effort

data does not respond to change of bandwidhts.

Figure 4 shows the win-tie-loss results for Nasa93 dataset. The results for Nasa93

dataset are extremely similar to Cocomo81 dataset, that is in all cases the highest win

values belong to k = 3 and tie values are usually around 25% of 180 comparisons.

Furthermore, application of different kernels for WABE does not give a considerable

difference in either of win, tie or loss values. For instance, for the treatment k = 3 and

h = 1/sqrt(size) the difference between the highest and the lowest win value (141 and

122 respectively) is 19, which is around 10% of all 180 comparisons.

Similar to the effect of changing kernels, changing bandwidht also falls short of pro-

viding any noticable increase or decrease in estimation performance. For the treatment

k = 3 of uniform kernel, the difference of between the highest and the lowest values of

win-tie-loss values are 146 − 138 = 8, 42 − 34 = 8 and 0 − 0 = 0 respectively. All the

differences are even lower than 1%, which is negligible.

Another point we need to point out in Figure 4 is ithat in none of the k values

has WABE provided any improvement in estimation accuracy. This shows us that like

Cocomo81 dataset, Nasa93 dataset does not favor WABE over ABE0.

The win-tie-loss values for our last dataset Desharnais are given in Figure 5. The

interpretation of Figure 5 shows us a similar scenario to previous two datasets: Highest

win values were attained by k = 3 and the treatments are statistically different from

one another for most of the cases. Furthermore, just like the Cocomo81 and Nasa93

datasets, the effect of different kernels as well as the effect of various bandwidhts are

negligible and do not follow a certain pattern. Another similarity is that in none of
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3 145 33 1 145 33 2 145 33 2 145 33 2 145 33 2
5 139 38 2 139 38 3 139 38 3 139 38 3 139 38 3
7 124 40 15 124 40 16 124 40 16 124 40 16 124 40 16
9 116 18 45 116 18 46 116 18 46 116 18 46 116 18 46
d 97 4 78 97 4 79 97 4 79 97 4 79 97 4 79
3+W 79 16 85 79 16 85 79 16 85 79 16 85 79 16 85
5+W 41 18 120 41 18 121 41 18 121 41 18 121 41 18 121
7+W 10 42 127 10 42 128 10 42 128 10 42 128 10 42 128
9+W 6 40 133 6 40 134 6 40 134 6 40 134 6 40 134
d+W 2 29 148 2 29 149 2 29 149 2 29 149 2 29 149

G
a
u
ss
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n

3 136 42 2 137 32 11 138 38 4 139 36 5 142 32 6
5 130 48 2 129 40 11 133 44 3 131 44 5 132 42 6
7 116 57 7 117 41 22 122 47 11 119 46 15 122 41 17
9 114 33 33 108 19 53 115 25 40 114 26 40 113 22 45
d 95 7 78 78 27 75 88 16 76 70 32 78 95 4 81
3+W 66 34 80 80 60 40 80 24 76 79 40 61 85 21 74
5+W 27 39 114 59 13 108 61 3 116 61 14 105 60 5 115
7+W 7 50 123 41 10 129 40 3 137 39 7 134 38 7 135
9+W 4 53 123 20 10 150 19 4 157 20 6 154 20 7 153
d+W 1 45 134 0 10 170 0 4 176 0 5 175 0 5 175

Fig. 3: Win-tie-loss results for Cocomo81. The WABE experiments are shown with a +W sign,
whereas the dynamic k is represented with a d under the column k . We used 5 different band-
widhts (represented with h) for 4 different kernels. Similar to other data types, for Cocomo81
we do not see an improvement coming from different kernels. However, unlike other data types,
we are unable to observe an improvement coming from change of bandwidht values.

the kernel-bandwidth combinations has WABE yielded higher estimation performance

than ABE0.

Up to this point we have observed 315 different settings and saw that neither ker-

nel nor the bandwidht change does have a considerable impact on the performance

of WABE. Furthermore, we found out that simple ABE0 approach yields higher per-

formance measures in terms of win-tie-loss values. However, kernel estimation is not

the only alternative of weighting in a WABE model. Another WABE weighting ap-

proach we use in this research is so called IRWM [24, 25]. The win-tie-loss values of

all 3 datasets for IRWM weighted WABE are given in Figure 6. Since IRWM is a dif-

ferent weighting approach than kernel density estimation, we do not have kernels or

bandwidhts to compare in that scenario. On the other hand with IRWM results we can
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3 141 39 0 138 42 0 146 34 0 138 42 0 146 34 0
5 135 45 0 127 52 1 130 49 1 129 51 0 133 46 1
7 120 52 8 111 56 13 119 46 15 120 53 7 118 50 12
9 119 32 29 105 50 25 116 36 28 120 39 21 114 35 31
d 100 2 78 100 38 42 100 13 67 100 1 79 100 13 67
3+W 76 4 100 80 0 100 80 0 100 80 0 100 80 0 100
5+W 51 10 119 60 0 120 60 0 120 60 0 120 60 0 120
7+W 27 18 135 40 0 140 40 0 140 40 0 140 40 0 140
9+W 16 15 149 20 0 160 20 0 160 20 0 160 20 0 160
d+W 2 9 169 0 0 180 0 0 180 0 0 180 0 0 180

T
ri

a
n
g
u
la

r

3 122 47 11 119 46 15 125 43 12 128 40 12 110 53 17
5 115 52 13 107 57 16 115 54 11 120 49 11 98 63 19
7 103 60 17 97 58 25 104 57 19 110 49 21 88 61 31
9 99 41 40 91 52 37 104 46 30 109 35 36 83 36 61
d 90 32 58 85 39 56 90 14 76 89 5 86 98 63 19
3+W 91 44 45 71 68 41 50 57 73 55 62 63 77 77 26
5+W 59 12 109 11 59 110 11 50 119 3 60 117 7 73 100
7+W 32 20 128 6 67 107 15 53 112 9 61 110 2 77 101
9+W 16 22 142 10 68 102 19 54 107 12 59 109 9 66 105
d+W 0 16 164 17 58 105 37 32 111 33 44 103 7 73 100
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3 139 41 0 135 43 2 144 35 1 133 47 0 137 43 0
5 126 54 0 118 61 1 133 47 0 124 55 1 121 58 1
7 122 48 10 108 56 16 122 48 10 112 62 6 111 59 10
9 121 41 18 103 56 21 119 31 30 112 49 19 112 53 15
d 100 0 80 102 52 26 99 4 77 100 25 55 100 25 55
3+W 77 3 100 0 22 158 0 22 158 0 15 165 0 7 173
5+W 48 13 119 16 34 130 16 34 130 15 28 137 16 28 136
7+W 21 24 135 24 44 112 26 42 112 27 32 121 24 36 120
9+W 14 24 142 27 49 104 34 40 106 38 30 112 39 34 107
d+W 2 12 166 42 33 105 39 33 108 61 13 106 57 23 100

G
a
u
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n

3 124 44 12 122 45 13 102 60 18 127 41 12 117 52 11
5 113 54 13 113 54 13 92 70 18 119 50 11 114 56 10
7 97 63 20 103 57 20 86 71 23 108 55 17 105 61 14
9 90 53 37 105 46 29 83 66 31 108 38 34 107 52 21
d 88 42 50 88 13 79 83 61 36 85 8 87 90 13 77
3+W 92 48 40 60 52 68 75 60 45 50 47 83 50 46 84
5+W 55 16 109 7 38 135 20 37 123 13 37 130 8 32 140
7+W 23 33 124 16 50 114 17 56 107 16 48 116 17 49 114
9+W 4 40 136 25 44 111 19 61 100 23 48 109 26 46 108
d+W 0 35 145 44 35 101 24 56 100 48 34 98 47 31 102

Fig. 4: Win-tie-loss results for Nasa93. Results we have for Nasa93 are very similar to Cocomo81
dataset: Neither changing kernels nor the bandwidhts provides a noticable change in win-tie-
loss values. Also ABE0 results are better than the WABE values.

mutually compare the estimation performances of WABE and ABE0 approaches. Our

reading from Figure 6 is that for none of the three dataset does WABE outperform

ABE0. In other words, just like the kernel weighted WABE, IRWM weighted WABE

also fails to improve the ABE0 performance. Therefore, in a total of 330 settings (315

for kernel weighted WABE and 15 for IRWM weighted WABE) we see that WABE is

unable to improve the performance of simple ABE0 approach.

4.2 Evaluation of MRE-Based Measures

The MRE based measures we investigate in this section are MdMRE and MMRE.

The MdMRE and MMRE values of kernel weighted WABE for Cocomo81, Nasa93

and Desharnais datasets are provided in Figure 7, Figure 8 and Figure 9 respectively.
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3 123 55 2 123 57 0 120 60 0 120 59 1 126 54 0
5 124 56 0 121 59 0 118 62 0 119 61 0 121 59 0
7 116 61 3 116 62 2 115 64 1 115 64 1 114 64 2
9 116 53 11 115 56 9 115 59 6 115 59 6 115 50 15
d 101 15 64 100 16 64 100 19 61 101 17 62 101 19 60
3+W 79 1 100 80 0 100 80 0 100 80 0 100 80 0 100
5+W 52 9 119 60 0 120 60 0 120 60 0 120 60 0 120
7+W 26 21 133 40 0 140 40 0 140 40 0 140 40 0 140
9+W 18 16 146 20 0 160 20 0 160 20 0 160 20 0 160
d+W 0 3 177 0 0 180 0 0 180 0 0 180 0 0 180

T
ri

a
n
g
u
la

r

3 120 60 0 122 58 0 122 57 1 114 65 1 112 68 0
5 116 64 0 122 58 0 120 60 0 108 72 0 103 77 0
7 102 76 2 115 63 2 114 65 1 100 79 1 100 76 4
9 101 64 15 111 56 13 104 69 7 100 70 10 100 65 15
d 96 48 36 100 25 55 101 27 52 100 70 10 104 76 0
3+W 0 0 180 2 34 144 0 44 136 0 46 134 0 47 133
5+W 20 15 145 3 53 124 5 59 116 3 65 112 8 66 106
7+W 33 50 97 14 53 113 12 62 106 11 63 106 16 64 100
9+W 36 49 95 23 54 103 17 61 102 19 61 100 26 53 101
d+W 39 48 93 42 38 100 27 52 101 19 61 100 3 64 113

E
p
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3 132 48 0 130 50 0 126 54 0 123 57 0 123 57 0
5 118 61 1 126 53 1 118 61 1 120 60 0 123 57 0
7 116 56 8 119 59 2 105 73 2 114 65 1 117 60 3
9 114 57 9 118 49 13 100 68 12 114 53 13 110 61 9
d 103 12 65 93 10 77 100 46 34 100 23 57 100 19 61
3+W 80 0 100 1 26 153 0 21 159 0 12 168 0 18 162
5+W 57 2 121 9 41 130 10 43 127 12 36 132 11 36 133
7+W 34 8 138 23 42 115 18 59 103 23 42 115 21 49 110
9+W 20 8 152 34 35 111 29 51 100 35 36 109 30 46 104
d+W 0 0 180 49 31 100 32 48 100 54 26 100 47 33 100

G
a
u
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3 121 59 0 122 58 0 126 54 0 126 54 0 123 57 0
5 121 59 0 115 65 0 120 60 0 119 61 0 115 64 1
7 117 62 1 113 65 2 118 59 3 113 65 2 113 65 2
9 115 55 10 109 63 8 118 53 9 113 55 12 108 65 7
d 100 17 63 101 29 50 98 12 70 100 23 57 102 27 51
3+W 80 0 100 0 17 163 0 21 159 0 19 161 0 14 166
5+W 54 4 122 10 30 140 10 44 126 10 38 132 10 36 134
7+W 35 11 134 25 36 119 20 48 112 17 45 118 23 43 114
9+W 20 7 153 36 36 108 32 36 112 31 37 112 33 40 107
d+W 0 0 180 59 21 100 50 29 101 65 15 100 55 25 100

Fig. 5: Win-tie-loss results for Desharnais. The implications we have observed in Cocomo81 and
Nasa93 repeats for Desharnais dataset: Change of kernels does not provide a significant change
in win-tie-loss values and neither does changing bandwidth. There are some small changes in
different kernel-bandwidht combinations but we can not observe a pattern. Furthermore, ABE0
has a better estimation performance than WABE.

Similar to the notation of the previously introduced figures, kernel weighted settings

are shown with a +W sign and the dynamic k is represented with a d symbol.

In Figure 7 we see the MdMRE and MMRE values for Cocomo81. The results are

exteremely similar to win-tie-loss results, i.e. the general trend we have observed from

win-tie-loss values are present for MdMRE and MMRE: For the same k value WABE

fails to improve ABE0 and smaller k values yield lower MdMRE and MMRE values.

Lower k values have also yielded higher win and lower loss values, hence better per-

formance. Furthermore application of different kernels for weighting in WABE method

does not make a significant change in terms of MdMRE and MMRE results. Changing

bandwidhts for kernels does not create a recognizable pattern in the results either.
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3 143 37 0 141 39 0 126 54 0
5 128 50 2 126 54 0 120 60 0
7 115 55 10 115 53 12 115 62 3
9 101 46 33 117 43 20 116 55 9
d 0 56 124 97 16 67 101 13 66
3+W 88 25 67 78 4 98 80 0 100
5+W 49 48 83 49 14 117 50 10 120
7+W 28 59 93 22 29 129 24 25 131
9+W 23 52 105 19 19 142 16 19 145
d+W 0 22 158 0 1 179 0 6 174

Fig. 6: Win-tie-loss results of Cocomo81, Nasa93 and Desharnais for IRWM weighted WABE.
The notation in this figure is similar to previous figures: Weighting is represented by a +W
sign and dynamic kernel is represented by a d sign. IRWM is a different weighting strategy
than kernel weighting, hence we do not see kernel or bandwidht information in this figure.
Results are similar to previous scenarios: Lower k values attain higher win values and lower
loss values. Furhermore, most importantly WABE is unable to outperform ABE0.

Therefore, MdMRE and MMRE results for Cocomo81 dataset do not tell us anything

further than confirmation of our previous observations from win-tie-loss results.

Figure 8 lists the MdMRE as well as MMRE results for Nasa93 dataset. As we

can see from Figure 8, different kernel types generate very similar results of WABE for

various number of analogies (k values). In other words, change of kernel does not have

a considerable effect on the performance of WABE. Furthermore, small changes due to

change of kernels do not follow a particular pattern.

Like the change of kernels, changing bandwidth for a particular kernel has almost

non-existent effect. We see in Figure 8 that different bandwidths generate very close

MdMRE and MMRE results of WABE. More importantly there is no observable pattern

in the changes due to kernel or bandwidth alterations. Another common property of

Figure 8 to previous win-tie-loss figures as well as MdMRE-MMRE figure of Cocomo81

is that ABE0 methods gain higher estimation accuracies (higher win values, lower

MdMRE-MMRE).

We provide the MdMRE and MMRE values for Desharnais dataset in Figure 9.

Among all the kernels-bandwidth combinations we do not see a case where WABE

improves the performance of ABE0. Therefore, particular characteristic of being indif-

ferent to kernel methods that we observed in previous experiments is valid for Deshar-

nais dataset as well. Furthermore, what we see from Figure 9 is that instead of im-

proving ABE0 methods, kernel weighted WABE methods generate considerably worse

MdMRE and MMRE results. Only in one case (Epanechnikov kernel) do the MdMRE

and MMRE values for WABE goes down to values around 0.6. However, that is still

far worse than the standart ABE0 values. These results suggest that non-parametric

weighting for WABE method may not be a good idea. Therefore, we will finally take a

look at the MdMRE and MMRE values of an expert-weighted WABE method: IRWM.

Figure 10 presents our last table for MdMRE and MMRE results. The difference

between the previous MdMRE-MMRE results and the ones in Figure 10 is that previ-

ous results belong to a WABE method in which weighting was done via non-parametric

methods (minimum human interaction), whereas results in Figure 10 belong to a WABE

method whose weights are assigned by human experts (complete human dependence).

The weighting strategies between previous figures and Figure 10 are different. How-
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3 0.33 0.35 0.33 0.35 0.35 0.40 0.31 0.35 0.40 0.40
5 0.35 0.37 0.36 0.37 0.39 0.43 0.35 0.37 0.43 0.41
7 0.37 0.40 0.39 0.40 0.44 0.48 0.40 0.41 0.45 0.45
9 0.43 0.44 0.44 0.44 0.47 0.53 0.46 0.47 0.49 0.50
d 0.79 1.32 0.82 1.32 0.78 1.19 0.62 0.72 0.61 0.66
3+W 0.82 0.80 0.77 0.80 0.79 0.78 0.78 0.77 0.79 0.79
5+W 0.90 0.88 0.87 0.88 0.88 0.87 0.87 0.86 0.88 0.87
7+W 0.92 0.89 0.91 0.89 0.92 0.90 0.91 0.90 0.92 0.91
9+W 0.93 0.90 0.93 0.90 0.94 0.92 0.93 0.92 0.94 0.92
d+W 0.94 0.86 0.97 0.86 0.98 0.95 0.97 0.94 0.96 0.94
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3 0.33 0.36 0.28 0.35 0.33 0.36 0.36 0.39 0.33 0.39
5 0.36 0.39 0.35 0.38 0.36 0.38 0.39 0.41 0.39 0.42
7 0.40 0.42 0.39 0.41 0.40 0.41 0.43 0.44 0.44 0.45
9 0.43 0.46 0.45 0.47 0.45 0.46 0.47 0.50 0.49 0.50
d 0.82 1.65 0.69 1.06 0.63 0.72 0.54 0.61 0.68 0.90
3+W 0.82 0.81 0.72 0.72 0.73 0.73 0.76 0.75 0.76 0.74
5+W 0.90 0.88 0.73 0.72 0.75 0.72 0.78 0.74 0.78 0.73
7+W 0.92 0.91 0.74 0.69 0.75 0.70 0.78 0.72 0.77 0.71
9+W 0.94 0.91 0.74 0.69 0.75 0.68 0.77 0.71 0.77 0.70
d+W 0.92 0.84 0.78 0.80 0.76 0.71 0.77 0.70 0.77 0.77
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3 0.38 0.40 0.25 0.34 0.30 0.35 0.33 0.35 0.28 0.34
5 0.41 0.43 0.33 0.36 0.35 0.37 0.36 0.37 0.33 0.36
7 0.44 0.47 0.36 0.39 0.37 0.39 0.40 0.41 0.38 0.39
9 0.50 0.54 0.43 0.44 0.43 0.44 0.46 0.46 0.44 0.44
d 0.56 0.64 0.44 0.47 0.60 0.60 0.50 0.52 0.51 0.54
3+W 0.84 0.83 0.66 0.67 0.68 0.68 0.69 0.69 0.68 0.68
5+W 0.92 0.89 0.65 0.65 0.67 0.65 0.68 0.66 0.67 0.65
7+W 0.93 0.90 0.64 0.61 0.67 0.62 0.68 0.63 0.66 0.62
9+W 0.94 0.89 0.65 0.61 0.66 0.61 0.67 0.63 0.65 0.61
d+W 0.94 0.89 0.65 0.61 0.69 0.66 0.68 0.63 0.67 0.63

G
a
u
ss

ia
n

3 0.42 0.42 0.33 0.35 0.33 0.37 0.33 0.38 0.41 0.40
5 0.43 0.43 0.36 0.36 0.37 0.40 0.36 0.40 0.43 0.42
7 0.46 0.46 0.39 0.40 0.40 0.42 0.40 0.45 0.47 0.46
9 0.49 0.52 0.44 0.44 0.44 0.47 0.45 0.49 0.50 0.51
d 0.59 0.65 0.66 0.99 0.63 0.74 0.60 0.67 0.61 0.69
3+W 0.84 0.83 0.69 0.69 0.71 0.70 0.70 0.70 0.73 0.73
5+W 0.92 0.89 0.68 0.66 0.70 0.68 0.68 0.67 0.71 0.69
7+W 0.94 0.90 0.67 0.63 0.68 0.64 0.66 0.63 0.70 0.66
9+W 0.95 0.91 0.67 0.62 0.67 0.63 0.66 0.63 0.70 0.65
d+W 0.95 0.90 0.71 0.79 0.70 0.71 0.69 0.68 0.71 0.70

Fig. 7: MdMRE and MMRE results for Cocomo81 dataset. The column k lists the k values.
+W stands for weighting, i.e. WABE. Cocomo81 results confirm the previous conclusions: 1)
Neither the bandwidht nor the kernel type have a significant effect on the performance and 2)
WABE via kernel methods do not outperform ABE0.

ever, the trend in the results are very alike, i.e. in none of the 3 datasets can WABE

methods outperform ABE0 methods. Therefore, after 330 settings which involve both

non-parametric methods and expert methods for weighting WABE, we still do not

observe a case where WABE methods could bring an improvement on simple ABE0

method.

5 Threats to Validity

We will address the threats to validity of this research under 3 categories: Internal

validity, external validity and construct validity. Before addressing our research in
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3 0.40 0.37 0.23 0.34 0.20 0.29 0.43 0.37 0.43 0.39
5 0.43 0.39 0.26 0.35 0.21 0.31 0.43 0.39 0.44 0.42
7 0.43 0.43 0.33 0.39 0.25 0.34 0.43 0.43 0.44 0.45
9 0.43 0.46 0.35 0.43 0.29 0.39 0.43 0.46 0.44 0.48
d 0.81 1.75 0.30 0.34 0.42 0.57 0.43 0.46 0.49 0.60
3+W 0.83 0.80 0.77 0.77 0.75 0.75 0.78 0.78 0.79 0.78
5+W 0.90 0.87 0.86 0.86 0.85 0.85 0.87 0.86 0.88 0.86
7+W 0.93 0.90 0.90 0.89 0.89 0.89 0.91 0.90 0.91 0.90
9+W 0.94 0.92 0.92 0.92 0.92 0.91 0.93 0.92 0.93 0.92
d+W 0.90 0.84 0.83 0.82 0.97 0.96 0.93 0.92 0.97 0.96
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3 0.32 0.34 0.30 0.35 0.45 0.41 0.29 0.35 0.30 0.36
5 0.40 0.37 0.40 0.38 0.46 0.42 0.31 0.36 0.40 0.39
7 0.43 0.40 0.40 0.42 0.47 0.46 0.37 0.40 0.41 0.42
9 0.42 0.43 0.40 0.45 0.47 0.48 0.37 0.43 0.40 0.46
d 0.32 0.34 0.40 0.49 0.50 0.60 0.31 0.36 0.44 0.54
3+W 0.83 0.79 0.76 0.72 0.79 0.74 0.78 0.73 0.80 0.74
5+W 0.90 0.86 0.77 0.71 0.78 0.73 0.77 0.72 0.78 0.73
7+W 0.92 0.89 0.76 0.71 0.77 0.72 0.76 0.71 0.78 0.73
9+W 0.94 0.92 0.75 0.71 0.76 0.72 0.75 0.71 0.77 0.72
d+W 0.83 0.79 0.74 0.70 0.73 0.71 0.77 0.72 0.74 0.71
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3 0.29 0.33 0.34 0.34 0.45 0.39 0.45 0.40 0.48 0.43
5 0.39 0.36 0.40 0.36 0.45 0.41 0.46 0.42 0.48 0.45
7 0.39 0.40 0.41 0.40 0.46 0.45 0.47 0.45 0.49 0.49
9 0.39 0.44 0.40 0.43 0.46 0.48 0.47 0.48 0.49 0.52
d 0.40 0.50 0.57 0.71 0.45 0.50 0.47 0.46 0.62 0.72
3+W 0.83 0.79 0.74 0.71 0.76 0.73 0.75 0.72 0.80 0.75
5+W 0.90 0.86 0.71 0.68 0.74 0.70 0.72 0.68 0.75 0.71
7+W 0.93 0.90 0.68 0.66 0.72 0.69 0.70 0.67 0.73 0.70
9+W 0.95 0.92 0.67 0.65 0.70 0.68 0.68 0.66 0.71 0.69
d+W 0.96 0.94 0.66 0.71 0.68 0.67 0.69 0.66 0.68 0.72
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3 0.29 0.34 0.41 0.37 0.43 0.35 0.25 0.32 0.46 0.43
5 0.37 0.37 0.41 0.39 0.43 0.37 0.28 0.34 0.47 0.44
7 0.38 0.41 0.44 0.42 0.44 0.40 0.32 0.38 0.49 0.48
9 0.38 0.44 0.42 0.45 0.43 0.43 0.33 0.41 0.49 0.51
d 0.36 0.42 0.67 0.82 0.48 0.59 0.30 0.33 0.51 0.63
3+W 0.83 0.79 0.78 0.72 0.69 0.68 0.72 0.69 0.78 0.74
5+W 0.90 0.86 0.76 0.70 0.67 0.64 0.70 0.66 0.74 0.70
7+W 0.93 0.90 0.73 0.69 0.66 0.63 0.69 0.65 0.72 0.69
9+W 0.94 0.92 0.71 0.68 0.65 0.63 0.67 0.64 0.70 0.68
d+W 0.93 0.91 0.70 0.83 0.63 0.65 0.71 0.67 0.66 0.68

Fig. 8: MdMRE and MMRE results for Nasa93 dataset. Neither change of kernel nor the
change of bandwidht generates a considerable difference in results. Furthermore, small changes
in MdMRE and MMRE values due to different kernel-bandwidth combinations do not follow
a regular pattern. Another cocnlusions from this figure is that WABE fails to improve ABE0
and lower k values generate lower MdMRE-MMRE values.

terms of these categories of threats to validity, we would like to give their conscise

definitions.

– Internal validity asks to what extent the cause-effect relationship between depen-

dent and independent variables holds [1].

– External validity questions the ability to generalize the results [27].

– Construct validity (i.e. face validity) makes sure that we in fact measure what we

intend to measure [32].

Perfect case for the satisfaction of internal validity would be the application of

a theory that was learned from past experiences to new situations. However, data

in software effort estimation domain is a relatively sparse resource and most of the
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3 0.22 0.25 0.29 0.30 0.19 0.25 0.25 0.27 0.23 0.26
5 0.21 0.25 0.30 0.31 0.19 0.25 0.25 0.27 0.23 0.27
7 0.23 0.26 0.32 0.32 0.20 0.26 0.26 0.28 0.25 0.28
9 0.24 0.27 0.33 0.32 0.24 0.27 0.28 0.29 0.27 0.29
d 0.21 0.25 0.36 0.40 0.28 0.33 0.27 0.28 0.36 0.51
3+W 0.77 0.76 0.76 0.76 0.75 0.75 0.75 0.76 0.75 0.75
5+W 0.86 0.84 0.86 0.86 0.85 0.85 0.85 0.85 0.85 0.85
7+W 0.90 0.88 0.90 0.90 0.89 0.89 0.90 0.89 0.89 0.89
9+W 0.92 0.89 0.92 0.92 0.92 0.91 0.92 0.91 0.92 0.92
d+W 0.86 0.84 0.96 0.95 0.95 0.94 0.88 0.88 0.98 0.97

T
ri

a
n
g
u
la

r

3 0.25 0.28 0.20 0.25 0.28 0.29 0.27 0.29 0.27 0.29
5 0.25 0.29 0.20 0.25 0.27 0.30 0.27 0.29 0.28 0.29
7 0.27 0.30 0.22 0.26 0.28 0.30 0.28 0.30 0.30 0.31
9 0.30 0.31 0.24 0.27 0.30 0.30 0.29 0.31 0.32 0.31
d 0.33 0.37 0.21 0.26 0.29 0.30 0.35 0.45 0.40 0.54
3+W 0.48 0.49 0.67 0.65 0.67 0.67 0.67 0.66 0.66 0.65
5+W 0.39 0.41 0.65 0.64 0.66 0.65 0.66 0.64 0.64 0.63
7+W 0.36 0.38 0.65 0.62 0.66 0.62 0.65 0.62 0.63 0.60
9+W 0.35 0.37 0.64 0.61 0.65 0.61 0.64 0.61 0.62 0.59
d+W 0.35 0.39 0.65 0.63 0.65 0.61 0.62 0.58 0.61 0.58

E
p
a
n
e
ch

n
ik

o
v

3 0.23 0.26 0.26 0.29 0.24 0.26 0.19 0.26 0.27 0.30
5 0.23 0.26 0.27 0.29 0.23 0.26 0.20 0.26 0.26 0.30
7 0.24 0.27 0.29 0.30 0.24 0.27 0.21 0.27 0.28 0.30
9 0.25 0.28 0.30 0.32 0.26 0.28 0.23 0.28 0.30 0.31
d 0.30 0.37 0.36 0.51 0.30 0.34 0.30 0.39 0.44 0.63
3+W 0.77 0.77 0.67 0.66 0.64 0.63 0.65 0.63 0.65 0.64
5+W 0.87 0.85 0.64 0.62 0.62 0.60 0.62 0.60 0.62 0.61
7+W 0.90 0.89 0.62 0.59 0.60 0.57 0.59 0.56 0.60 0.58
9+W 0.92 0.90 0.61 0.58 0.58 0.55 0.58 0.54 0.59 0.56
d+W 0.95 0.94 0.56 0.54 0.56 0.53 0.54 0.51 0.53 0.59

G
a
u
ss

ia
n

3 0.28 0.30 0.29 0.30 0.20 0.25 0.24 0.26 0.21 0.26
5 0.29 0.30 0.29 0.31 0.22 0.25 0.23 0.26 0.23 0.26
7 0.31 0.31 0.30 0.31 0.23 0.26 0.24 0.26 0.24 0.27
9 0.33 0.32 0.32 0.32 0.24 0.27 0.26 0.28 0.26 0.28
d 0.36 0.37 0.36 0.38 0.23 0.26 0.33 0.42 0.26 0.27
3+W 0.79 0.77 0.66 0.65 0.64 0.63 0.63 0.63 0.64 0.63
5+W 0.87 0.85 0.64 0.62 0.61 0.60 0.60 0.59 0.61 0.59
7+W 0.90 0.88 0.61 0.58 0.60 0.57 0.57 0.55 0.58 0.56
9+W 0.92 0.90 0.59 0.56 0.58 0.55 0.57 0.54 0.56 0.54
d+W 0.93 0.92 0.57 0.54 0.60 0.59 0.54 0.52 0.67 0.67

Fig. 9: MdMRE and MMRE results for Desharnais dataset. None of the different kernel-
bandwidth combinations can improve the performance of WABE to a point better than ABE0
method.

studies make use of commonly-explored datasets like the ones we use in this research.

Therefore, the issue of internal validity thereatens all effort studies that use past data.

However, we can mitigate this threat by simulating the behavior of a learned theory

in new settings. In our study, we utilize leave-one-out method for all treatments to

address such internal validity issues. Leave-one-out selection enables us to separate

the training and test sets completely in each experiment, thereby making the test sets

completely new situations for the training sets.

To observe the generalizability of our results, we perform extensive experiments

on 3 datasets. The datasets are widely used in software effort estimation community

and have very diffferent characteristics in terms of various criteria such as size, num-

ber of features, types of features and measurement method. Furthermore datasets are

subject to extensive experimentation where we investigate the effects of WABE on
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Cocomo81 Nasa93 Desharnais

k M
d
M

R
E

M
M

R
E

M
d
M

R
E

M
M

R
E

M
d
M

R
E

M
M

R
E

IR
W

M

3 0.42 0.43 0.40 0.36 0.24 0.27
5 0.44 0.45 0.42 0.38 0.23 0.27
7 0.48 0.49 0.43 0.42 0.24 0.28
9 0.51 0.54 0.43 0.45 0.27 0.29
d 0.86 2.04 0.80 1.79 0.29 0.31
3+W 0.59 0.58 0.57 0.56 0.50 0.51
5+W 0.64 0.62 0.61 0.60 0.55 0.55
7+W 0.66 0.64 0.63 0.62 0.57 0.57
9+W 0.68 0.65 0.64 0.63 0.59 0.58
d+W 0.79 1.41 0.74 0.95 0.60 0.58

Fig. 10: MdMRE and MMRE results of Cocomo81, Nasa93 and Desharnais for IRWM weighted
WABE. k stands for the number of analogies used for estimation and +W sign means that
IRWM weighted WABE is used for estimation. Similar to kernel weighted WABE, expert
weighted WABE can not perform an improvement to ABE0 method.

performance under 330 settings. Our observations for all the settings are extremely

similar. Therefore, for the datasets used in our research, our humble opinion is that

the results have external validity. However, to have full confidence in our claims when

saying that WABE methods fail to improve ABE0, our study needs to be replicated

on other dataset and possibly with different weighting strategies.

The choice of performance measures is an open issue in software effort estimation

domain. Use of MRE as well as MRE-based measures are criticized for being unreli-

able [9, 29]. Foss et. al. for instance shows that MRE can be misleding if used as the

only performance criterion [9]. Although being criticized, MRE-based measures such as

MRE itself, MdMRE and MMRE appear as a practical performance evaluation option

to a number of researchers [21, 23, 31]. The limitation of MRE-based measures can be

partially - if not completely - addressed with the introduction of a statistical test. To

ensure the validity of our results we make use of Mann-Whitney U test at a significance

level of 95%. Furthermore, use of different performance measures such as MRE-based

measures as well as win-tie-loss, provides us different perspectives of the results.

6 Conclusions

In this research we have conducted extensive experiments with multiple kernels subject

to different bandwidths as a weighting strategy for WABE. Furthermore, we have also

used a previously proposed weighting strategy called IRWM for weighting in WABE.

In various different settings we have observed the effect of instance weighting on the

performance difference between WABE and ABE0.

Although it is reported that non-parametric methods perform better than para-

metric ones in discovering the characterics of data [38] and yielding better accuracy

values [12, 30], we are not able to observe a similar effect in software effort datasets.

For the datasets used in our research (Cocomo81, Nasa93 and Desharnais) there is not

a single case where WABE outperformed ABE0. Furthermore, the failure of WABE in

terms of improving standart ABE methods is not only restricted to a single weighting

strategy or to a single performance criterion. WABE methods weighted both via ker-

nel density estimation as well as IRWM result in the same conlusions: Weighting does
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not provide and improvement in ABE and ABE0 (very basic form of ABE) always

outperforms WABE.

We know that software effort estimaton as well as ABE is a rigorously studied

field and a lot of effort is invested in discovering the unknown space in this field. In

this research we questioned a previously proposed idea of weighting instances in ABE

methods. While weighting we used both the previously proposed method of IRWM

as well as a novel method called kernel density estimation. Our research investigates

a total of 330 settings in this space, among which 315 settings (settings of kernel

weighting) were never investigated before or were not published. Our readings of our

results is that weighting is not a very promising track to follow in ABE domain. Of

course our resutls can be refuted with further studies. However, we wanted to share

our findings and comments with the rest of the community so that they could have a

hint regarding weighting in ABE domain and decide whether or not to invest too much

effort in it.

6.1 Answers To Research Questions

In this section we map the evaluation of our results to particular research questions

that guided us in this research. Each particular research question and our answer to it

in the light of afore-presented results are as follows:

RQ1 Is there any evidence that weighting improves the performance of ABE?

From our experiments we did not see a single case that would suggest weighting

approaches would improve the performance of ABE methods. On the contrary, for

all k values ABE0 yielded much better results than the weighted version (WABE).

Therefore, the evidence we found in this research suggests that weighting decreases

estimation accuracy in ABE systems instead of increasing it.

RQ2 What is the effect of different kernels for weighting ABE?

Similar studies on different data types report that change of kernels does not have

a significant effect on the results [7,30]. In our research we do not see a considerable

effect coming from change of kernels either. There are slight variations in perfor-

mance measures due to change of kernels. However, they do not follow a pattern.

Therefore, we can not say that different kernels have a definite effect on the perfor-

mance of WABE methods. We can attribute the slight variations of performance

between different kernels to different train and test combinations in different runs.

But with the available information at hand, we can not claim any other reason

leading to these random small deviations.

RQ3 What is the effect of different bandwidths for different kernels when used for weight-

ing ABE?

Unlike the limited effect of different kernel types, choice of different bandwidhts are

reported to have a significant effect on the estimation performance [7,30]. However,

for software effort estimation domain -at least on the datasets used in this research-

we did not observe such an effect. Similar to the effect of changing kernel types,

change of bandwidhts had only limited effect on the accuracy values. As it was the

case for different kernels, different bandwidhts generate small variations. However,

they too lack a certain pattern that would make us reach to the conclusion of

favoring a certain bandwidth.

RQ4 How do the characteristics of software effort datasets influence the performance of

kernel weighting for ABE?
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Kernel density estimation is a non-parametric method and reported to yield promis-

ing results in various data types [10,12,30]. However, we did not see a single setting

in our research that would suggest a similar promising result. This fact might be

attributed to the particular characteristics of software effort datasets. Software ef-

fort datasets are much sparser than most of the other datasets in different domains.

This is due to the fact that each instance in an effort dataset is a completed project,

which may take multiple years to be completed. Furthermore, the dependent vari-

able in effort datasets (effort value of a completed project) is highly variable. In

other words, completion time of projects may diverge significanlty. Another partic-

ular characteristic of effort datasets is that evaluation of their attributes are more

open to personal judgment and error, which in return decreases the data quality.

All these factors (low instance number, large deviation in dependent variable and

being open to problems of low quality data) suggest that non-parametric methods

may be failing due to inherent characteristics of software effort data. Although it

may be true that kernel weighted WABE methods’ low performance is due to inap-

propriate data characteristics of effort data, we still fail to answer why we observe

the same low performance for IRWM weighted WABE. Therefore, with the avail-

able data at hand, we can not make a decisive conclusion on the effects of data

characteristics on kernel weighting for WABE. More sound conclusion to be drawn

with the results of this research would be the fact that weighting strategy for ABE

is not a promising option to increase estimation accuracy.

7 Future Work

One of the future directions to this research would be to use different weighting strate-

gies, which would better understand the datasets. Another future work could be to

understand the reasons of small variations coming from different kernel-bandwidth

combinations. One very obvious future work to follow could be the use of different

kernels or bandwidths for weighting. However, depending on our results we do not

recommend the last future work as a promising one.
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