
Noname manuscript No.
(will be inserted by the editor)

Kernel Methods for Software Effort Estimation

Effects of different kernel functions and bandwidths on
estimation accuracy

Ekrem Kocaguneli · Tim Menzies · Jacky

W. Keung

Received: date / Accepted: date

Abstract The importance of software cost models and effort estimation is obvious:

They help practitioners to predict the expected cost of a project, better allocate the

available resources and efficiently schedule the processes. Thereby, enabling them to

finish software projects within time and budget with allocated resources. However,

estimates are usually wrong by higher than acceptable factors. This shows that despite

the considerable amount of research invested in software effort estimation, we still need

to further investigate new methods and discover dos and don’ts of the domain.

Analogy based estimation (ABE) is a promising field in software effort estimation.

In this research we investigate weighting analogies in the context of ABE and compare

the performances of weighted analogy based estimation (WABE) and ABE. We use a

novel weighting approach called kernel density estimation. Our research investigates a

total of 330 settings to see the effect of instance weighting by means of kernel density

estimation. Our results indicate that standart ABE methods are more successful than

WABE in all our experimental settings.

Keywords Effort estimation, data mining, kernel function, bandwidth

1 Introduction

Software effort estimates are reported to be often wrong by a factor of four [6] or

even more [18]. The critical results of wrong estimates for a company are obvious: 1)

Promising projects that would stay within budget may be rejected, 2) accepted projects

may over-run their budget and worst of all 3) over-running projects may be cancelled
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thereby wasting the entire effort. Therefore, effort estimation is an active research

area [5, 16, 20, 40] that constantly explores more variations with each model being de-

veloped or improved. For example, Auer et al. [3] proposed an extensive search to learn

the best weights for different project features in 2006. Menzies et al.’s COSEEKMO

tool explored thousands of combinations of discretizers, data pre-processors, feature

subset selectors, and inductive learners in the same year [29]. In 2007, Baker proposed

an exhaustive search of all possible project features, learners and other variables [4].

Pendharkar et. al. used Bayesian Network (BN) for effort estimation and incorporated

BN into decision making procedure aginst risks [35]. Mendes and Mosley employed

data-driven and hybrid BN models for web effort estimation [26]. Li et. al. investigated

the feature weighting as well as instance selection in analogy based estimation domain

to address the memory and computation costs in their 2009 study [23].

All these work contributed narrowing down the possible space we need to discover

to really understand software effort estimation. Future studies will continue to narrow

down this space and investigate other variations of software effort estimation methods.

In this research, we investigate a the concept of kernel density estimation [39].

Kernel-based methods are reported to be one of the most popular non-parametric

estimators that can uncover structural features in the data [47]. Furthermore, in various

different contexts different researchers have benefited from kernel density estimation

and have reported successful results [11, 13,34].

ABE is based on the premise that effort of a future project can be estimated by

adapting the effort values of past k similar projects (adapted k projects are called

analogies) [17, 23, 28]. Among proposed adaptation methods we can name choosing

closest analogy [7,12], taking mean or median of k analogies [28,43]. In both mean and

median approach the influence of analogies are equal, in other words, the low ranked

analogies have just as much influence as the high ranked analogies. To overcome the

equal impact problem, Mendes et. al. proposes a method called inverse rank weighted

mean (IRWM) that allows higher ranked analogies to have greater influence than the

lower ones [27,28].

Experts like Mendes et. al. have an intuition about the weighting approach and use

their domain knowledge to propose weighting strategies like IRWM. However, expert

judgment may not be available for all practitioners willing to use ABE. In this research

we use kernel density estimation as a weighting method in ABE. To the best of our

knowledge, kernel methods have not been explored in this domain.

To guide us in this research, we have identified the following research questions:

RQ1 Is there any evidence that weighting improves the performance of ABE?

RQ2 What is the effect of different kernels for weighting ABE?

RQ3 What is the effect of different bandwidths when used for weighting ABE?

RQ4 How do the characteristics of software effort datasets influence the performance of

kernel weighting for ABE?

Our results are mostly negative (different variants of kernel estimation have little

effect on estimation accuracy). However, these negative results have at least three

positive consequences. Firstly, we can assert that there is nothing inherently wrong

with intuition-based weighting schemes like IRWM (since all the weighting schemes we

explored had similar results). Secondly, we can better focus future research (the value

of k appears to be a more important factor in ABE rather than the kernel weighting).

Lastly, unlike studies in other domains concerning kernel weighting we cannot offer
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supportive evidence for a statistical heuristic that the kernel does not matter but the

bandwidth does.

The rest of the paper is organized as follows: In Section 2 we provide background

information regarding software effort estimation in general as well as ABE and kernel

density estimation. We continue with Section 4, in which we provide the details of the

methodology we adopted in this research such as the weighting strategy and datasets

we used as well as the experimental details and the performance criteria according to

which we evaluated our results. In Section 5 we give the results of our research and

continue with Section 6, where we summarize the possible threats the validity of our

results. Finally we discuss the conclusions of our research in Section 7 and present our

answers to the research questions we followed. In Section 8 we list some of the likely

future directions of this research and conclude.

2 Background

In this section, we will provide general background information about software effort

estimation and ABE. We will also address how kernel methods have been utilized in the

literature and discuss how they can be adapted to software effort estimation domain

as a weighting strategy for ABE.

2.1 Software Effort Estimation

We can divide software effort estimation into at least two groups [40]: Expert judgment

and model-based techniques.

Expert judgment methods are widely used in software effort estimation practices [14].

Expert judgment can be applied either explicitly (following a method like Delphi [5])

or implicitly (informal discussions among experts). Regardless of the method expert

judgment is applied, it is prone to some pitfalls. One possible pitfall in expert-based

methods is the fact that they are open to clashes of interest. For instance a faulty

estimation of a senior expert may be taken over the more accurate estimation made by

a junior expert. Another pitfall is that expert-based methods can be as good as your

experts are and the improvement of human capability in making estimations is very

limited. This fact is also indicated by Jorgensen et. al. and they evaluate capability of

humans to improve their own expert judgment as poor [15].

Unlike expert-based methods, model-based techniques do not rely heavily on human

judgment. Model based techniques are products of:

1) Algorithmic and parametric approaches or

2) Induced prediction systems.

The first approach is in simplest terms the adaptation of an expert-proposed model

to local data. A widely known example to such an approach is Boehm’s COCOMO

method [6]. The second approach is particularly useful in the case where local data

does not conform to the specifications of the expert’s method. A few examples of

induced prediction systems are linear regression, neural nets, model trees and analogy

based estimation [29,42]. Regardless of the categorization of models, they are all built

on inherent assumptions. For example, linear regression assumes that the effort data

fits a straight line while model trees assumes that the data fits a set of straight lines.
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In the cases where data violates these assumptions, patches are applied, e.g. take the

logarithm of exponential distributions before linear regression [6,19]. However, choosing

the appropriate patch again requires qualified experts.

2.2 ABE

Analogy based estimation (ABE) or estimation by analogy (EBA) is a form of case

based reasoning (CBR). According to the taxonomy presented in Section 2.1 ABE is

grouped together with induced prediction systems. In their 2005 study Myrtveit et. al.

follow a different categorization than the one presented in this paper [33]. They group

estimation models into sparse-data and many-data categories. Sparse-data methods

are defined to be estimation methods that need few or no historical data. Examples

to sparse-data methods are Analytical Hierarcy Process (AHP) [41], expert judgment

and case-based reasoning. Many-data methods are identified in the form of a function

and are subdivided into: 1) functions, 2) Arbitrary function approximators (AFA). The

functions may be in the form of y = AxB , where a mathematical relationship exists

between the variables of the expression (e.g. linear regression models). Unlike functions,

AFA make no assumption between predictor and response variables. EBA, classification

and regression trees (CART) and artificial neural networks (ANN) methods belong to

this class [33].

According to the taxonomy presented by Myrtveit et. al. CBR may belong to both

sparse-data or many data category [33]. If one uses CBR to reason from and already

selected case then it is identified to be a single-data method. However, if CBR is used

to identify the closest case, then it is categorized as a many-data method. ABE is an

example of this use of CBR [33].

ABE in the simplest terms, generates its estimate for a test project by gathering

evidence from the effort values of similar past projects in some training set. When we

analyze the previous research of experts on the domain of ABE such as Shepperd et.

al. [44], Mendes et. al. [28] and Li et. al. [23], we can see a baseline technique lying

under all ABE methodologies. The baseline technique is composed of the following

steps:

– Form a table whose rows are completed past projects (this is a training set).

– The columns of this set are composed of independent variables (the features that

define projects) and a dependent variable (the recorded effort value).

– Decide on the number of similar projects (analogies) to use from the training set

when examining a new test instance , i.e. decide on the k -value.

– For each test instance, select those k analogies out of the training set.

– While selecting analogies, use a similarity measure (for example the Euclidean

distance).

– Before calculating similarity, apply a scaling measure on independent features

to equalize their influence on this similarity measure.

– Use a feature weighting scheme to reduce the effect of less informative features.

– Adapt the effort values of the k nearest analogies to come up with an effort estimate.

Following the steps of this baseline technique, we will define a framework called

ABE0. ABE0 uses the Euclidean distance as a similarity measure, whose formula is

given in Equation 1.
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Distance =

√√√√ n∑
i=1

wi(xi − yi)2 (1)

In Equation 1 we can see how weighting is used in the baseline approach for project

features. In Equation 1, wi corresponds to feature weights applied to independent

features. ABE0 framework does not favor any features over the others, therefore ABE0

uses a uniform weighting, i.e. wi = 1.

Following the selection of projects in a CBR system, the next step is deciding on

how to adapt them. There is a wide variety of adaptation strategies in the literature [25].

Using effort value of the nearest neighbor [7], taking mean [32] or median [2] of closest

analogies, inverse distance and inverse rank weighted mean of closest analogies are

among the commonly used adaptation methods proposed in CBR literature [25]. The

adaptation of effort suggested by baseline approach does not have to be a a complex

process. ABE0 simply returns the median effort values of the k nearest analogies.

Angelis et. al. suggests that as the number of the closest projects increase, median is a

robust solution [2]. They have found that taking median instead of mean decreases the

estimation error. The reason why we chose ABE0 framework to use median instead of

mean in our research is due to the fact that we also make use of high k values as well as

low values and using mean could have let extreme effort values have a strong influence

on the estimation. However, we want the estimates of ABE0 framework to represent

the majority of selected instances and not greatly affected by extreme values, which

may or may not be noise. Therefore, ABE0 uses median instead of mean.

In this research we will compare the results of ABE0 framework with another ver-

sion of it: Weighted Analogy Based Estimation (WABE). The word weighted in WABE

may at first be considered to refer to both weighting attributes as well as weighting

anologies. However, ABE0 framework already includes a mechanism for weighting inde-

pendent attributes (see Equation 1). Therefore, when we talk about WABE, weighting

will refer to weighting of instances rather than features.

WABE has been previously adressed in literature. For example inverse rank weighted

mean (IRWM) was proposed by Mendes et. al. [28], which can be considered as a form

of WABE. IRWM method enables higher ranked analogies to have greater influence

than the lower ones. Assuming that we have 3 analogies, the closest analogy (CA) gets

a weight of 3, the second closest (SC) gets a weight of 2 and the weight assigned to

the last analogy (LA) is 1. With this weighting approach, IRWM would calculate the

estimation as in Equaiton 2. Note that we can generalize IRWM to handle more than 3

neighbors as follows: In the case of n closest analogies, the closest neighbor would have

the weight of n, the next one would have the weight of n− 1 and so on. The weighted

sum would then be divided by the sum of all weights:
∑n

i=1 i

Effort = (3 ∗ CA+ 2 ∗ SA+ 1 ∗ LA)/(3 + 2 + 1) (2)

IRWM has its root in expert judgment. In other words, in the lack of valuable

experts, such a weighting strategy would be almost impossible to apply to the needs

of a particular dataset. Being inspired by WABE methods like IRWM, in this research

we question whether it is possible to develop an automated WABE approach.
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Fig. 1 We see a Gaussian kernel density estimate built on individual data points. Each point
is in the center of a kernel and its effect is distributed to its neighborhood. The sum of all
kernels make up the final Gaussian kernel density estimate.

2.3 Kernel Density Estimation

IRWM is one example of a broad class of statistical reasoning called kernel density

estimation, where IRWM acts like a triangular kernel assigning weights to analogies on

the basis of their distance. Kernel density estimation is a non-parametric estimation

method that is used to uncover the underlying structures of data, which a parametric

approach may fail to reveal [47]. Since we used the univariate kernel density estimation,

we will suffice to mention the univariate case in this paper. However, the same approach

can be easily adapted to higher dimensionalities [39, 47].

Assuming that we are given a sample X1, ..., Xn with a continuous, univariate

density f , the kernel density estimator is defined as in Equation 3.

f̂(x, h) =
1

nh

n∑
i=1

K

(
x−Xi
h

)
(3)

In Equation 3, K is defined as the kernel and h is defined to be the bandwidth.

Kernel is usually chosen to be unimodal and symmetric about zero [47]. A probability

distritibution function can be chosen as the kernel function (for instance Gaussian

kernel). In a kernel estimation method, the center of the kernel is placed right on

each data point and the influence of each data point is distributed to the overall

neighborhood. To reach the final density function, contributions coming from each data

point are summed up. We can observe how each data point and kernel contributes to

the kernel estimate in Figure 1 [38].

Kernel density estimation has been successfully used for different type of datasets.

For instance Palpanas et. al. use kernel density estimation to address the problem

of deviation detection in environment of sensor networks [34]. Frank et. al. use ker-

nel estimation for locally weighting the attributes of Naive Bayes, thereby relaxing

the independence assumption [11]. Furthermore John et. al. use kernel estimation to

tackle the normality assumption regarding continuous datasets [13]. They replace single
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Gaussian distribution that is used to model continuous data with non-parametric ker-

nel density estimation and they report considerable improvements in real and artificial

datasets. Although kernel density estimation is used in different areas for modeling

different types of data, to the best of our knowledge it was not previously used in

the context of ABE. In this research we propose using kernel density estimation for

assigning weights to selected analogies (k values) in a WABE model.

For WABE, apart from the k value we have different parameters that can be tuned:

Kernel type and bandwidth. Previously it is reported that the choice of kernel does not

have a significant effect on the performance [8]. However, this statement is valid for

spatial data and the effect of different kernels have not been investigated for software

effort data. Therefore, in our research we inlcluded different types of kernels to observe

the effect of kernel selection on effort data.

The kernels we use in our research are: Uniform, triangular, Epanechnikov and

Gaussian. We can use a generic formula for some kernels, which is given in Equation

4, where 1(|x|<1) is the indicator function. Furthermore, Equation 5 and Equation 6

explain for the calculation of other functions in Equation 4. Depending on the value

of p in Equation 4, we can derive different kernels. For example for p = 0 we elicit the

uniform kernel, for p = 1 we elicit Epanechnikov kernel etc.

K(x, p) =

(
1− x2

)p
22p+1B (p+ 1, p+ 1)

1(|x|<1) (4)

B (p+ 1, p+ 1) =
Γ (a)Γ (b)

Γ (a+ b)
(5)

Γ (n) = (n− 1)! (6)

Since it is not the aim of this research, we will not go into more details regarding

the derivation of kernel equations and we will suffice to provide the final formulas. The

formula used for the calculation of each kernel is provided in Figure 2.

Kernel Type Formula

Uniform Kernel K(ρ) = 1
2
1(|ρ|<1)

Triangular Kernel K(ρ) = (1− |ρ|) 1(|ρ|<1)

Epanechnikov Kernel K(ρ) = 3
4

(
1− ρ2

)
1(|ρ|<1)

Gaussian Kernel K(ρ) = 1√
2π
e
−1
2 ρ

2)

Fig. 2 The formulas for different kernels used in this study. In formulas ρ = x−Xi
h

. Note that
IRWM kernel has different characteristics and its calculation details were provided in Section
2.2.

Furthermore, in addition to these kernels we used IRWM [27, 28] for weighting.

The general shapes of these kernels are given in Figure 3 [38]. IRWM is not actually
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proposed as a kernel method and it does not fully conform to the kernel definition (not

being symmetrical etc.). However, due to the weighting strategy it proposes we can

read it as an expert proposed kernel, whose shape would look like the right part of a

triangular kernel as in Figure 3(e).

(a) Uniform Kernel (b) Triangular Kernel

(c) Epanechnikov Kernel (d) Gaussian Kernel

(e) IRWM Kernel for k=10

Fig. 3 General shapes of the kernel types used in this research.

Although kernels seem to have very different shapes in Figure 3, their effect in

accuracy is limited. The selection of bandwidth for kernels has been reported to have

more influence on the performance than the kernel types [8, 39]. Bandwidth basically

controls how wide a probability mass is spread around a data point [38]. We can use

various bandwidth values for our kernel. However, using wrong bandwidth values pose

the danger of both under-smoothing and over-smoothing. We can see how choosing

different bandwidth values affect kernel density estimation in Figure 4 [38].

To avoid both under and over-smoothing conditions we used various bandwidth

values in our research. One of the bandwidths we used is suggested by John et. al.,

which is h = 1/
√

n where h is the bandwidth and n is the size of dataset [13]. The

other bandwidth values we used are: 2, 4, 8 and 16.
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(a) h=0.1 (b) h=0.05

(c) h=0.02 (d) h=0.005

Fig. 4 We see the effect of bandwidth on kernel density estimation. From Figure 4(a) to Figure
4(d), the bandwidth gets smaller and smaller and we observe a transition from over-smoothing
to under-smoothing.

3 Motivation

Software effort estimation is a very big research area and we have still discovered only a

small portion of it. With every new method proposed, we discover dos and don’ts of it.

We adopt the beneficial methods and retire the others, thereby consistently discovering

the estimation domain. However, the tendency is usually to report the attempts that

yield improvements on current methods and let go of the promising trials that did not

result in considerable improvements. In other words mostly we hear only the “dos”

of the domain. “Don’ts” part usually go unreported. However, it is fundamentally

important to report the results of all promising approaches, regardless of whether it

outperforms previous methods or not. Because they may save time in another similar

study or may inspire new directions.

In this research we elaborate on weighting in ABE and propose a novel method

for weighting analogies. For weighting we use kernel density estimation. Kernel density

estimation has the advantage of being a non-parametric estimation method that can

uncover particular properties of a dataset. It is reported to yield significant improve-

ments in various settings [11,11,34], but its effects are not addressed in effort estimation

domain. Software effort datasets also have particular challenges due to their inherent

characteristics and we need to figure out different ways to discover these characteristics.

We conduct extensive experiments with various kernels and try multiple bandwidths

for each kernel in our research. At the end we cover a considerable number of settings,

which were never adressed or reported before in effort estimation domain. Although

kernel methods have yielded relatively successful results in different domains, we did

not observe a significant improvement for ABE. Basing on the fact that other re-

searchers may or will be conducting similar studies, we think that our results can give

hints regarding kernel methods for weighting in ABE.
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4 Methodology

In this section we provide the methodology that we adopted in our research. We discuss

how we use kernel density estimation as a weighting method for WABE as well as

which kernels we use for weighting. Furthermore, we provide information regarding

the datasets we used in this research and discuss their characteristics. Also we provide

information regarding the experimental settings we adopted. Finally we discuss the

performance criteria according to which we compare the performance of WABE to

ABE0.

4.1 Weighting Method

Here we summarize how kernel density estimation is employed as a weighting method

in this research. Assume that our dataset is divided into two sets: A = {x1, ..., xk}
(selected Anologies) and R = {t1, ..., tn−k} (Rest of the dataset). We build the kernel

density estimation on R and evaluate the resulting function at instances of A. Equation

7 shows the probability calculation with kernel density estimation. In Equation 7 the

kernel K is built on training data ti ∈ R and is evaluated at kth analogy xk for a

bandwidth of h.

f(xk, h) =
1

nh

∑
ti∈R

K

(
xk − ti
h

)
(7)

The general idea of this approach is that selected k analogies for a test instance

come from a distribution and this distribution is specific to the dataset. Furthermore,

according to this specific distribution we get different probability values for each anal-

ogy. In other words, we have different f(xk, h) values for each analogy xk ∈ A. We use

these probability values as weights for analogies. Note that before using a probability

value as a weight, we we scale it to 0-1 interval according to Equation 8 where xk

represents all the analogies in A except xi.

weightxi =
f(xi, h)−max(f(xk, h))

max(f(xk, h))−min(f(xk, h))
(8)

After calculating weightxi for each one of the selected k analogies, we update their

recorded actual effort values according to their weights. Updating the actual effort

values simply means to multiply the actual effort value of an analogy with its related

weight. Equation 9 shows the calculation of the updated effort value for analogy xi.

In our research WABE approaches use the updated effort values for adaptation to

estimate the effort of a test instance.

updatedEffortxi = actualEffortxi ∗ weightxi (9)

4.2 Data

In our research, we have used three commonly used datasets in software effort esti-

mation research: Nasa93, the original Cocomo81 [6], and Desharnais [9]. Cocomo81

and Nasa93 datasets contain projects developed in NASA, whereas Desharnais dataset

contains projects developed by Canadian software houses.
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Apart from selecting commonly used datasets, we took the quality of the datasets

into consideration. In order to evaluate the goodness of datasets, Kitchenham and

Mendes propose a quality scoring that consists of four values: poor (less than ten

projects), fair (between ten to twenty projects), good (between twenty to forty projects)

and excellent (more than forty projects) [21]. Following this quality criteria all the

datasets we use in our research rank as excellent quality. The details regarding these

datasets can be found in Figure 5.

Dataset Features T = |Projects| Content Units
Cocomo81 17 63 NASA projects months
Nasa93 17 93 NASA projects months
Desharnais 12 81 Canadian software projects hours

Total: 237

Fig. 5 We used 237 projects coming from 3 datasets. Datasets have different characteristics
in terms of the number of attributes as well as the measures of these attributes.

4.3 Experiments

Our experimental settings aim at comparing the performance of standart ABE (ABE0)

to that of weighted ABE (WABE). We first run ABE0 on each of the 3 datasets

employed in this research. To separate train and test sets we used leave-one-out method,

which entails selecting 1 instance out of a dataset of size n as the test set and using

the remaining n− 1 instances as the training set. For each test instance, we run ABE0

and store the estimated effort for that test instance. Then we run WABE for the same

test instance and store the estimated effort coming from WABE. Both for ABE0 and

WABE we tried different k values since number of analogies plays a critical role in

estimation accuracy. Furthermore, to hinder any particular bias that would come from

the settings of a single experiment, we repeated the afore mentioned procedure 20

times.

In this research we use 2 ABE methods (ABE0 and WABE) induced on 3 datasets

(Cocomo81, Nasa93 and Desharnais) with 5 different k values (k ∈ {1, 3, 5, 7, 9, dynamicK}).
Furthermore, we use 4 different kernels (Uniform, triangular, Epanechnikov and Gaus-

sian) with 5 bandwidth values as well as IRWM in WABE experiments. Therefore, to

further explore field of software effort estimation, we investigate a total of 330 different

settings in this research:

– ABE0 Experiments: 15 settings

– 3 datasets * 5 k values = 15

– WABE Experiments: 315 settings

– Kernel Weighting: 3 datasets * 5 k values * 4 kernels * 5 bandwidths = 300

– IRWM: 3 datasets * 5 k values = 15

4.4 Performance Criteria

To observe the effect of weighting in ABE, we use the following performance measures:

the magnitude of relative error (MRE), median magnitude of relative error (MdMRE),

mean magnitude of relative error (MMRE) and win-tie-loss values generated by a
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statistical test (Mann-Whitney U Test). MRE is used by the authors because it is the

most commonly used performance criterion for assessing the performance of competing

software effort estimation methods [7,10,31]. Furthermore, as we can see from Formula

10, MRE value is a direct measure of the absolute difference between the prediction

and actual value [46] and hence it gives a per-instance based performance evaluation.

MRE =
|actuali − predictedi|

actuali
(10)

MMRE and MdMRE have emerged as two of the de facto standard evaluation

criteria for cost estimation models [45]. MMRE is the mean of all MRE values. However,

the mean approach considers every observation and is sensitive to individual predictions

that have high MREs [28]. One way to address this problem is the median approach via

MdMRE. Median also gives information about central tendency, but it is less sensitive

to extreme MRE values. Therefore, while we comment on the results of MRE-based

measures in Section 5.1, we provide both the MMRE and MdMRE values. The formulas

of MdMRE and MMRE are given in Equations 11 and 12 respectively, where n is the

test set size.

MdMRE = median(MRE1,MRE2, ...,MREn) (11)

MMRE =
1

n

n∑
i=1

|actuali − predictedi|
actuali

(12)

wini = 0, tiei = 0, lossi = 0
winj = 0, tiej = 0, lossj = 0
if MANN-WHITNEY(MRE′si, MRE′si) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if median(MRE′si) < median(MRE′sj) then
wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 6 Pseudocode for Win-Tie-Loss Calculation Between Method i and j

Note that, MRE related measures are subject to many pitfalls. If MRE is used

a stand-alone performance evaluation criterion (i.e. not combined with appropriate

statistical tests), it may lead to biased or even false conclusions [10]. To prevent us

from falling into MRE-related pitfalls, we use another performance criterion called

win-tie-loss calculation. A win-tie-loss calculation tells that comparison between two

methods i and j makes sense only if they are statistically different. If there is no

statistically significant difference between two methods, say method i and method

j, then it indicates that results are observations coming from the same distribution,

therefore methods are said to tie and their tie values (tiei and tiej) are incremented.

However, if there is a statistical difference between two methods, then the method

with a lower median MRE score, say i, is said to have a “win” and the one with the
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lower MRE, say j, is said to have a “lose”. The related values wini and lossj are

incremented by one. The pseudocode for a win-tie-loss calculation is given in Figure 6.

For the comparison of methods in win-tie-loss calculation, a non-parametric statistical

test (the Mann-Whitney rank-sum test) is used at a significance level of 95%.

5 Results

As we have mentioned before, we will evaluate the effect of weighting closest analogies

via kernel density estimation in a WABE model according to three performance mea-

sures: Win-tie-loss values, MdMRE and MMRE. In this section we present the results.

We first evaluate the MMRE and MdMRE results for each dataset and then present

the win-tie-loss values.

5.1 Evaluation of MRE-Based Measures

The MdMRE and MMRE values of kernel weighted WABE for Cocomo81, Nasa93

and Desharnais datasets are provided in Figure 7, Figure 8 and Figure 9 respectively.

Similar to the notation of the previously introduced figures, kernel weighted settings

are shown with a +W sign and the dynamic k is represented with a d symbol.

5.1.1 Results for Cocomo81

In Figure 7 we see the MdMRE and MMRE values for Cocomo81. The results are

exteremely similar to win-tie-loss results, i.e. the general trend we have observed from

win-tie-loss values are present for MdMRE and MMRE: For the same k value WABE

fails to improve ABE0 and smaller k values yield lower MdMRE and MMRE values.

Lower k values have also yielded higher win and lower loss values, hence better per-

formance. Furthermore application of different kernels for weighting in WABE method

does not make a significant change in terms of MdMRE and MMRE results. Changing

bandwidths for kernels does not create a recognizable pattern in the results either.

Therefore, MdMRE and MMRE results for Cocomo81 dataset do not tell us anything

further than confirmation of our previous observations from win-tie-loss results.

5.1.2 Results for Nasa93

Figure 8 lists the MdMRE as well as MMRE results for Nasa93 dataset. As we can

see from Figure 8, different kernel types generate very similar results of WABE for

various number of analogies (k values). In other words, change of kernel does not have

a considerable effect on the performance of WABE. Furthermore, small changes due to

change of kernels do not follow a particular pattern.

Like the change of kernels, changing bandwidth for a particular kernel has almost

non-existent effect. We see in Figure 8 that different bandwidths generate very close

MdMRE and MMRE results of WABE. More importantly there is no observable pattern

in the changes due to kernel or bandwidth alterations. Another common property of

Figure 8 to previous win-tie-loss figures as well as MdMRE-MMRE figure of Cocomo81

is that ABE0 methods gain higher estimation accuracies (higher win values, lower

MdMRE-MMRE).
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3 0.33 0.35 0.33 0.35 0.35 0.40 0.31 0.35 0.40 0.40
5 0.35 0.37 0.36 0.37 0.39 0.43 0.35 0.37 0.43 0.41
7 0.37 0.40 0.39 0.40 0.44 0.48 0.40 0.41 0.45 0.45
9 0.43 0.44 0.44 0.44 0.47 0.53 0.46 0.47 0.49 0.50
d 0.79 1.32 0.82 1.32 0.78 1.19 0.62 0.72 0.61 0.66
3+W 0.82 0.80 0.77 0.80 0.79 0.78 0.78 0.77 0.79 0.79
5+W 0.90 0.88 0.87 0.88 0.88 0.87 0.87 0.86 0.88 0.87
7+W 0.92 0.89 0.91 0.89 0.92 0.90 0.91 0.90 0.92 0.91
9+W 0.93 0.90 0.93 0.90 0.94 0.92 0.93 0.92 0.94 0.92
d+W 0.94 0.86 0.97 0.86 0.98 0.95 0.97 0.94 0.96 0.94
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3 0.33 0.36 0.28 0.35 0.33 0.36 0.36 0.39 0.33 0.39
5 0.36 0.39 0.35 0.38 0.36 0.38 0.39 0.41 0.39 0.42
7 0.40 0.42 0.39 0.41 0.40 0.41 0.43 0.44 0.44 0.45
9 0.43 0.46 0.45 0.47 0.45 0.46 0.47 0.50 0.49 0.50
d 0.82 1.65 0.69 1.06 0.63 0.72 0.54 0.61 0.68 0.90
3+W 0.82 0.81 0.72 0.72 0.73 0.73 0.76 0.75 0.76 0.74
5+W 0.90 0.88 0.73 0.72 0.75 0.72 0.78 0.74 0.78 0.73
7+W 0.92 0.91 0.74 0.69 0.75 0.70 0.78 0.72 0.77 0.71
9+W 0.94 0.91 0.74 0.69 0.75 0.68 0.77 0.71 0.77 0.70
d+W 0.92 0.84 0.78 0.80 0.76 0.71 0.77 0.70 0.77 0.77
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3 0.38 0.40 0.25 0.34 0.30 0.35 0.33 0.35 0.28 0.34
5 0.41 0.43 0.33 0.36 0.35 0.37 0.36 0.37 0.33 0.36
7 0.44 0.47 0.36 0.39 0.37 0.39 0.40 0.41 0.38 0.39
9 0.50 0.54 0.43 0.44 0.43 0.44 0.46 0.46 0.44 0.44
d 0.56 0.64 0.44 0.47 0.60 0.60 0.50 0.52 0.51 0.54
3+W 0.84 0.83 0.66 0.67 0.68 0.68 0.69 0.69 0.68 0.68
5+W 0.92 0.89 0.65 0.65 0.67 0.65 0.68 0.66 0.67 0.65
7+W 0.93 0.90 0.64 0.61 0.67 0.62 0.68 0.63 0.66 0.62
9+W 0.94 0.89 0.65 0.61 0.66 0.61 0.67 0.63 0.65 0.61
d+W 0.94 0.89 0.65 0.61 0.69 0.66 0.68 0.63 0.67 0.63
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3 0.42 0.42 0.33 0.35 0.33 0.37 0.33 0.38 0.41 0.40
5 0.43 0.43 0.36 0.36 0.37 0.40 0.36 0.40 0.43 0.42
7 0.46 0.46 0.39 0.40 0.40 0.42 0.40 0.45 0.47 0.46
9 0.49 0.52 0.44 0.44 0.44 0.47 0.45 0.49 0.50 0.51
d 0.59 0.65 0.66 0.99 0.63 0.74 0.60 0.67 0.61 0.69
3+W 0.84 0.83 0.69 0.69 0.71 0.70 0.70 0.70 0.73 0.73
5+W 0.92 0.89 0.68 0.66 0.70 0.68 0.68 0.67 0.71 0.69
7+W 0.94 0.90 0.67 0.63 0.68 0.64 0.66 0.63 0.70 0.66
9+W 0.95 0.91 0.67 0.62 0.67 0.63 0.66 0.63 0.70 0.65
d+W 0.95 0.90 0.71 0.79 0.70 0.71 0.69 0.68 0.71 0.70

Fig. 7 MdMRE and MMRE results for Cocomo81 dataset. The column k lists the k values.
+W stands for weighting, i.e. WABE. Cocomo81 results confirm the previous conclusions: 1)
Neither the bandwidth nor the kernel type have a significant effect on the performance and 2)
WABE via kernel methods do not outperform ABE0.

5.1.3 Results for Desharnais

We provide the MdMRE and MMRE values for Desharnais dataset in Figure 9. Among

all the kernels-bandwidth combinations we do not see a case where WABE improves

the performance of ABE0. Therefore, particular characteristic of being indifferent to

kernel methods that we observed in previous experiments is valid for Desharnais dataset

as well. Furthermore, what we see from Figure 9 is that instead of improving ABE0

methods, kernel weighted WABE methods generate considerably worse MdMRE and

MMRE results. Only in one case (Epanechnikov kernel) do the MdMRE and MMRE

values for WABE goes down to values around 0.6. However, that is still far worse than

the standart ABE0 values. These results suggest that non-parametric weighting for
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3 0.40 0.37 0.23 0.34 0.20 0.29 0.43 0.37 0.43 0.39
5 0.43 0.39 0.26 0.35 0.21 0.31 0.43 0.39 0.44 0.42
7 0.43 0.43 0.33 0.39 0.25 0.34 0.43 0.43 0.44 0.45
9 0.43 0.46 0.35 0.43 0.29 0.39 0.43 0.46 0.44 0.48
d 0.81 1.75 0.30 0.34 0.42 0.57 0.43 0.46 0.49 0.60
3+W 0.83 0.80 0.77 0.77 0.75 0.75 0.78 0.78 0.79 0.78
5+W 0.90 0.87 0.86 0.86 0.85 0.85 0.87 0.86 0.88 0.86
7+W 0.93 0.90 0.90 0.89 0.89 0.89 0.91 0.90 0.91 0.90
9+W 0.94 0.92 0.92 0.92 0.92 0.91 0.93 0.92 0.93 0.92
d+W 0.90 0.84 0.83 0.82 0.97 0.96 0.93 0.92 0.97 0.96
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3 0.32 0.34 0.30 0.35 0.45 0.41 0.29 0.35 0.30 0.36
5 0.40 0.37 0.40 0.38 0.46 0.42 0.31 0.36 0.40 0.39
7 0.43 0.40 0.40 0.42 0.47 0.46 0.37 0.40 0.41 0.42
9 0.42 0.43 0.40 0.45 0.47 0.48 0.37 0.43 0.40 0.46
d 0.32 0.34 0.40 0.49 0.50 0.60 0.31 0.36 0.44 0.54
3+W 0.83 0.79 0.76 0.72 0.79 0.74 0.78 0.73 0.80 0.74
5+W 0.90 0.86 0.77 0.71 0.78 0.73 0.77 0.72 0.78 0.73
7+W 0.92 0.89 0.76 0.71 0.77 0.72 0.76 0.71 0.78 0.73
9+W 0.94 0.92 0.75 0.71 0.76 0.72 0.75 0.71 0.77 0.72
d+W 0.83 0.79 0.74 0.70 0.73 0.71 0.77 0.72 0.74 0.71
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3 0.29 0.33 0.34 0.34 0.45 0.39 0.45 0.40 0.48 0.43
5 0.39 0.36 0.40 0.36 0.45 0.41 0.46 0.42 0.48 0.45
7 0.39 0.40 0.41 0.40 0.46 0.45 0.47 0.45 0.49 0.49
9 0.39 0.44 0.40 0.43 0.46 0.48 0.47 0.48 0.49 0.52
d 0.40 0.50 0.57 0.71 0.45 0.50 0.47 0.46 0.62 0.72
3+W 0.83 0.79 0.74 0.71 0.76 0.73 0.75 0.72 0.80 0.75
5+W 0.90 0.86 0.71 0.68 0.74 0.70 0.72 0.68 0.75 0.71
7+W 0.93 0.90 0.68 0.66 0.72 0.69 0.70 0.67 0.73 0.70
9+W 0.95 0.92 0.67 0.65 0.70 0.68 0.68 0.66 0.71 0.69
d+W 0.96 0.94 0.66 0.71 0.68 0.67 0.69 0.66 0.68 0.72

G
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3 0.29 0.34 0.41 0.37 0.43 0.35 0.25 0.32 0.46 0.43
5 0.37 0.37 0.41 0.39 0.43 0.37 0.28 0.34 0.47 0.44
7 0.38 0.41 0.44 0.42 0.44 0.40 0.32 0.38 0.49 0.48
9 0.38 0.44 0.42 0.45 0.43 0.43 0.33 0.41 0.49 0.51
d 0.36 0.42 0.67 0.82 0.48 0.59 0.30 0.33 0.51 0.63
3+W 0.83 0.79 0.78 0.72 0.69 0.68 0.72 0.69 0.78 0.74
5+W 0.90 0.86 0.76 0.70 0.67 0.64 0.70 0.66 0.74 0.70
7+W 0.93 0.90 0.73 0.69 0.66 0.63 0.69 0.65 0.72 0.69
9+W 0.94 0.92 0.71 0.68 0.65 0.63 0.67 0.64 0.70 0.68
d+W 0.93 0.91 0.70 0.83 0.63 0.65 0.71 0.67 0.66 0.68

Fig. 8 MdMRE and MMRE results for Nasa93 dataset. Neither change of kernel nor the
change of bandwidth generates a considerable difference in results. Furthermore, small changes
in MdMRE and MMRE values due to different kernel-bandwidth combinations do not follow
a regular pattern. Another cocnlusions from this figure is that WABE fails to improve ABE0
and lower k values generate lower MdMRE-MMRE values.

WABE method may not be a good idea. Therefore, we will finally take a look at the

MdMRE and MMRE values of an expert-weighted WABE method: IRWM.

5.1.4 IRWM Results for All Datasets

Figure 10 presents our last table for MdMRE and MMRE results. The difference be-

tween the previous MdMRE-MMRE results and the ones in Figure 10 is that previous

results belong to a WABE method in which weighting was done via non-parametric

methods (minimum human interaction), whereas results in Figure 10 belong to a WABE

method whose weights are assigned by human experts (complete human dependence).
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3 0.22 0.25 0.29 0.30 0.19 0.25 0.25 0.27 0.23 0.26
5 0.21 0.25 0.30 0.31 0.19 0.25 0.25 0.27 0.23 0.27
7 0.23 0.26 0.32 0.32 0.20 0.26 0.26 0.28 0.25 0.28
9 0.24 0.27 0.33 0.32 0.24 0.27 0.28 0.29 0.27 0.29
d 0.21 0.25 0.36 0.40 0.28 0.33 0.27 0.28 0.36 0.51
3+W 0.77 0.76 0.76 0.76 0.75 0.75 0.75 0.76 0.75 0.75
5+W 0.86 0.84 0.86 0.86 0.85 0.85 0.85 0.85 0.85 0.85
7+W 0.90 0.88 0.90 0.90 0.89 0.89 0.90 0.89 0.89 0.89
9+W 0.92 0.89 0.92 0.92 0.92 0.91 0.92 0.91 0.92 0.92
d+W 0.86 0.84 0.96 0.95 0.95 0.94 0.88 0.88 0.98 0.97
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3 0.25 0.28 0.20 0.25 0.28 0.29 0.27 0.29 0.27 0.29
5 0.25 0.29 0.20 0.25 0.27 0.30 0.27 0.29 0.28 0.29
7 0.27 0.30 0.22 0.26 0.28 0.30 0.28 0.30 0.30 0.31
9 0.30 0.31 0.24 0.27 0.30 0.30 0.29 0.31 0.32 0.31
d 0.33 0.37 0.21 0.26 0.29 0.30 0.35 0.45 0.40 0.54
3+W 0.48 0.49 0.67 0.65 0.67 0.67 0.67 0.66 0.66 0.65
5+W 0.39 0.41 0.65 0.64 0.66 0.65 0.66 0.64 0.64 0.63
7+W 0.36 0.38 0.65 0.62 0.66 0.62 0.65 0.62 0.63 0.60
9+W 0.35 0.37 0.64 0.61 0.65 0.61 0.64 0.61 0.62 0.59
d+W 0.35 0.39 0.65 0.63 0.65 0.61 0.62 0.58 0.61 0.58
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3 0.23 0.26 0.26 0.29 0.24 0.26 0.19 0.26 0.27 0.30
5 0.23 0.26 0.27 0.29 0.23 0.26 0.20 0.26 0.26 0.30
7 0.24 0.27 0.29 0.30 0.24 0.27 0.21 0.27 0.28 0.30
9 0.25 0.28 0.30 0.32 0.26 0.28 0.23 0.28 0.30 0.31
d 0.30 0.37 0.36 0.51 0.30 0.34 0.30 0.39 0.44 0.63
3+W 0.77 0.77 0.67 0.66 0.64 0.63 0.65 0.63 0.65 0.64
5+W 0.87 0.85 0.64 0.62 0.62 0.60 0.62 0.60 0.62 0.61
7+W 0.90 0.89 0.62 0.59 0.60 0.57 0.59 0.56 0.60 0.58
9+W 0.92 0.90 0.61 0.58 0.58 0.55 0.58 0.54 0.59 0.56
d+W 0.95 0.94 0.56 0.54 0.56 0.53 0.54 0.51 0.53 0.59

G
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3 0.28 0.30 0.29 0.30 0.20 0.25 0.24 0.26 0.21 0.26
5 0.29 0.30 0.29 0.31 0.22 0.25 0.23 0.26 0.23 0.26
7 0.31 0.31 0.30 0.31 0.23 0.26 0.24 0.26 0.24 0.27
9 0.33 0.32 0.32 0.32 0.24 0.27 0.26 0.28 0.26 0.28
d 0.36 0.37 0.36 0.38 0.23 0.26 0.33 0.42 0.26 0.27
3+W 0.79 0.77 0.66 0.65 0.64 0.63 0.63 0.63 0.64 0.63
5+W 0.87 0.85 0.64 0.62 0.61 0.60 0.60 0.59 0.61 0.59
7+W 0.90 0.88 0.61 0.58 0.60 0.57 0.57 0.55 0.58 0.56
9+W 0.92 0.90 0.59 0.56 0.58 0.55 0.57 0.54 0.56 0.54
d+W 0.93 0.92 0.57 0.54 0.60 0.59 0.54 0.52 0.67 0.67

Fig. 9 MdMRE and MMRE results for Desharnais dataset. None of the different kernel-
bandwidth combinations can improve the performance of WABE to a point better than ABE0
method.

The weighting strategies between previous figures and Figure 10 are different. How-

ever, the trend in the results are very alike, i.e. in none of the 3 datasets can WABE

methods outperform ABE0 methods. Therefore, after 330 settings which involve both

non-parametric methods and expert methods for weighting WABE, we still do not

observe a case where WABE methods could bring an improvement on simple ABE0

method.

5.2 Evaluation of WIN-TIE-LOSS Results

Since we have 10 settings for each kernel subject to 20 runs, the sum of win, tie and

loss values can be at most 180 ((10 settings - 1 setting itself) * 20 = 180 ).
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3 0.42 0.43 0.40 0.36 0.24 0.27
5 0.44 0.45 0.42 0.38 0.23 0.27
7 0.48 0.49 0.43 0.42 0.24 0.28
9 0.51 0.54 0.43 0.45 0.27 0.29
d 0.86 2.04 0.80 1.79 0.29 0.31
3+W 0.59 0.58 0.57 0.56 0.50 0.51
5+W 0.64 0.62 0.61 0.60 0.55 0.55
7+W 0.66 0.64 0.63 0.62 0.57 0.57
9+W 0.68 0.65 0.64 0.63 0.59 0.58
d+W 0.79 1.41 0.74 0.95 0.60 0.58

Fig. 10 MdMRE and MMRE results of Cocomo81, Nasa93 and Desharnais for IRWM
weighted WABE. k stands for the number of analogies used for estimation and +W sign
means that IRWM weighted WABE is used for estimation. Similar to kernel weighted WABE,
expert weighted WABE can not perform an improvement to ABE0 method.

5.2.1 Results for Cocomo81

In Figure 11 the win-tie-loss values for Cocomo81 are given. The first observationg

we can make from Figure 11 is that smaller number of analogies have always attained

higher win values and lower loss values. In other words, in all treatments k = 3 attains

the highest win and the lowest loss values.

Remember that the total sum of win-tie-loss values for a single treatment can be

at most 180. For all settings, the tie values are most of the time less than 45 (less than

25% of all the comparisons), which means that in 75% or more of the comparisons

there is a statistical difference between two methods. Furthermore, when we mutually

compare the results of ABE0 with WABE for a single k value, we see that for none of

the k values weighting via kernel density estimation improves the win values.

From Figure 11 we can also see the effect of applying different kernels and different

bandwidths on the performance of WABE. In terms of kernels, we can say that there

is not a considerable performance difference between different types. Note that our

results are consistent with prior research that reported different kernels yield similar

results [8]. For Cocomo81 dataset we observe that the same fact is also valid for software

effort estimation data.

The bandwidth was reported to be influential in different contexts [8,39,47]. How-

ever, we are unable to observe the considerable effect of various bandwidths on software

effort estimation data. In Figure 11 the win-tie-loss values kernels when used with 5

different bandwidths are very similar. In fact, for the uniform kernel the performance is

completely identical between different bandwidths. Therefore, from Cocomo81 dataset

we see that software effort data behaves differently than other data types, i.e. unlike

spatial data software effort data does not respond to changes in bandwidths.

5.2.2 Results for Nasa93

Figure 12 shows the win-tie-loss results for Nasa93 dataset. The results for Nasa93

are extremely similar to Cocomo81, that is in all cases the highest win values belong

to k = 3 and tie values are usually around 25% of 180 comparisons. Furthermore,

application of different kernels for WABE does not yield a considerable difference.
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3 144 32 4 144 32 4 144 32 4 144 32 4 144 32 4
5 127 48 5 127 48 5 127 48 5 127 48 5 127 48 5
7 116 48 16 116 48 16 116 48 16 116 48 16 116 48 16
9 113 28 39 113 28 39 113 28 39 113 28 39 113 28 39
d 76 24 80 76 24 80 76 24 80 76 24 80 76 24 80
3+W 74 51 55 74 51 55 74 51 55 74 51 55 74 51 55
5+W 28 34 118 28 34 118 28 34 118 28 34 118 28 34 118
7+W 12 41 127 12 41 127 12 41 127 12 41 127 12 41 127
9+W 6 34 140 6 34 140 6 34 140 6 34 140 6 34 140
d+W 16 32 132 16 32 132 16 32 132 16 32 132 16 32 132
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3 147 31 2 147 31 2 147 31 2 147 31 2 147 31 2
5 132 46 2 132 46 2 132 46 2 132 46 2 132 46 2
7 123 43 13 123 43 14 123 43 14 123 43 14 123 43 14
9 116 23 40 116 23 41 116 23 41 116 23 41 116 23 41
d 97 2 80 97 2 81 97 2 81 97 2 81 97 2 81
3+W 78 17 85 78 17 85 78 17 85 78 17 85 78 17 85
5+W 54 8 117 54 8 118 54 8 118 54 8 118 54 8 118
7+W 22 23 134 22 23 135 22 23 135 22 23 135 22 23 135
9+W 9 25 145 9 25 146 9 25 146 9 25 146 9 25 146
d+W 0 22 157 0 22 158 0 22 158 0 22 158 0 22 158
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3 145 33 1 145 33 2 145 33 2 145 33 2 145 33 2
5 139 38 2 139 38 3 139 38 3 139 38 3 139 38 3
7 124 40 15 124 40 16 124 40 16 124 40 16 124 40 16
9 116 18 45 116 18 46 116 18 46 116 18 46 116 18 46
d 97 4 78 97 4 79 97 4 79 97 4 79 97 4 79
3+W 79 16 85 79 16 85 79 16 85 79 16 85 79 16 85
5+W 41 18 120 41 18 121 41 18 121 41 18 121 41 18 121
7+W 10 42 127 10 42 128 10 42 128 10 42 128 10 42 128
9+W 6 40 133 6 40 134 6 40 134 6 40 134 6 40 134
d+W 2 29 148 2 29 149 2 29 149 2 29 149 2 29 149
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3 136 42 2 137 32 11 138 38 4 139 36 5 142 32 6
5 130 48 2 129 40 11 133 44 3 131 44 5 132 42 6
7 116 57 7 117 41 22 122 47 11 119 46 15 122 41 17
9 114 33 33 108 19 53 115 25 40 114 26 40 113 22 45
d 95 7 78 78 27 75 88 16 76 70 32 78 95 4 81
3+W 66 34 80 80 60 40 80 24 76 79 40 61 85 21 74
5+W 27 39 114 59 13 108 61 3 116 61 14 105 60 5 115
7+W 7 50 123 41 10 129 40 3 137 39 7 134 38 7 135
9+W 4 53 123 20 10 150 19 4 157 20 6 154 20 7 153
d+W 1 45 134 0 10 170 0 4 176 0 5 175 0 5 175

Fig. 11 Win-tie-loss results for Cocomo81. The WABE experiments are shown with a +W
sign, whereas the dynamic k is represented with a d under the column k . We used 5 different
bandwidths (represented with h) for 4 different kernels. Similar to other data types, for Co-
como81 we do not see an improvement coming from different kernels. However, unlike other
data types, we are unable to observe an improvement coming from change of bandwidth values.

For instance, for the treatment k = 3 and h = 1/sqrt(size) the difference between

the highest and the lowest win value (141 and 122 respectively) is only 19, which is

around 10% of all 180 comparisons. Similar to the effect of changing kernels, changing

bandwidth also falls short of providing any noticable increase or decrease in estimation

performance. Furthermore, we need to point out in Figure 12 is hat in none of the k

values has WABE provided any improvement in estimation accuracy. This shows us

that like Cocomo81 dataset, Nasa93 dataset does not favor WABE over ABE0.
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3 141 39 0 138 42 0 146 34 0 138 42 0 146 34 0
5 135 45 0 127 52 1 130 49 1 129 51 0 133 46 1
7 120 52 8 111 56 13 119 46 15 120 53 7 118 50 12
9 119 32 29 105 50 25 116 36 28 120 39 21 114 35 31
d 100 2 78 100 38 42 100 13 67 100 1 79 100 13 67
3+W 76 4 100 80 0 100 80 0 100 80 0 100 80 0 100
5+W 51 10 119 60 0 120 60 0 120 60 0 120 60 0 120
7+W 27 18 135 40 0 140 40 0 140 40 0 140 40 0 140
9+W 16 15 149 20 0 160 20 0 160 20 0 160 20 0 160
d+W 2 9 169 0 0 180 0 0 180 0 0 180 0 0 180

T
ri

a
n
g
u
la

r

3 122 47 11 119 46 15 125 43 12 128 40 12 110 53 17
5 115 52 13 107 57 16 115 54 11 120 49 11 98 63 19
7 103 60 17 97 58 25 104 57 19 110 49 21 88 61 31
9 99 41 40 91 52 37 104 46 30 109 35 36 83 36 61
d 90 32 58 85 39 56 90 14 76 89 5 86 98 63 19
3+W 91 44 45 71 68 41 50 57 73 55 62 63 77 77 26
5+W 59 12 109 11 59 110 11 50 119 3 60 117 7 73 100
7+W 32 20 128 6 67 107 15 53 112 9 61 110 2 77 101
9+W 16 22 142 10 68 102 19 54 107 12 59 109 9 66 105
d+W 0 16 164 17 58 105 37 32 111 33 44 103 7 73 100

E
p
a
n
e
ch

n
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3 139 41 0 135 43 2 144 35 1 133 47 0 137 43 0
5 126 54 0 118 61 1 133 47 0 124 55 1 121 58 1
7 122 48 10 108 56 16 122 48 10 112 62 6 111 59 10
9 121 41 18 103 56 21 119 31 30 112 49 19 112 53 15
d 100 0 80 102 52 26 99 4 77 100 25 55 100 25 55
3+W 77 3 100 0 22 158 0 22 158 0 15 165 0 7 173
5+W 48 13 119 16 34 130 16 34 130 15 28 137 16 28 136
7+W 21 24 135 24 44 112 26 42 112 27 32 121 24 36 120
9+W 14 24 142 27 49 104 34 40 106 38 30 112 39 34 107
d+W 2 12 166 42 33 105 39 33 108 61 13 106 57 23 100

G
a
u
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n

3 124 44 12 122 45 13 102 60 18 127 41 12 117 52 11
5 113 54 13 113 54 13 92 70 18 119 50 11 114 56 10
7 97 63 20 103 57 20 86 71 23 108 55 17 105 61 14
9 90 53 37 105 46 29 83 66 31 108 38 34 107 52 21
d 88 42 50 88 13 79 83 61 36 85 8 87 90 13 77
3+W 92 48 40 60 52 68 75 60 45 50 47 83 50 46 84
5+W 55 16 109 7 38 135 20 37 123 13 37 130 8 32 140
7+W 23 33 124 16 50 114 17 56 107 16 48 116 17 49 114
9+W 4 40 136 25 44 111 19 61 100 23 48 109 26 46 108
d+W 0 35 145 44 35 101 24 56 100 48 34 98 47 31 102

Fig. 12 Win-tie-loss results for Nasa93. Results we have for Nasa93 are very similar to Co-
como81 dataset: Neither changing kernels nor the bandwidths provides a noticable change in
win-tie-loss values. Also ABE0 results are better than the WABE values.

5.2.3 Results for Desharnais

The win-tie-loss values for our last dataset Desharnais are given in Figure 13. The

interpretation of Figure 13 shows us a similar scenario to previous two datasets: Highest

win values were attained by k = 3 and the treatments are statistically different from

one another for most of the cases. Furthermore, just like the Cocomo81 and Nasa93

datasets, the effect of different kernels as well as the effect of various bandwidths are

negligible and do not follow a certain pattern. Another similarity is that in none of

the kernel-bandwidth combinations has WABE yielded higher estimation performance

than ABE0.
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3 123 55 2 123 57 0 120 60 0 120 59 1 126 54 0
5 124 56 0 121 59 0 118 62 0 119 61 0 121 59 0
7 116 61 3 116 62 2 115 64 1 115 64 1 114 64 2
9 116 53 11 115 56 9 115 59 6 115 59 6 115 50 15
d 101 15 64 100 16 64 100 19 61 101 17 62 101 19 60
3+W 79 1 100 80 0 100 80 0 100 80 0 100 80 0 100
5+W 52 9 119 60 0 120 60 0 120 60 0 120 60 0 120
7+W 26 21 133 40 0 140 40 0 140 40 0 140 40 0 140
9+W 18 16 146 20 0 160 20 0 160 20 0 160 20 0 160
d+W 0 3 177 0 0 180 0 0 180 0 0 180 0 0 180

T
ri

a
n
g
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r

3 120 60 0 122 58 0 122 57 1 114 65 1 112 68 0
5 116 64 0 122 58 0 120 60 0 108 72 0 103 77 0
7 102 76 2 115 63 2 114 65 1 100 79 1 100 76 4
9 101 64 15 111 56 13 104 69 7 100 70 10 100 65 15
d 96 48 36 100 25 55 101 27 52 100 70 10 104 76 0
3+W 0 0 180 2 34 144 0 44 136 0 46 134 0 47 133
5+W 20 15 145 3 53 124 5 59 116 3 65 112 8 66 106
7+W 33 50 97 14 53 113 12 62 106 11 63 106 16 64 100
9+W 36 49 95 23 54 103 17 61 102 19 61 100 26 53 101
d+W 39 48 93 42 38 100 27 52 101 19 61 100 3 64 113

E
p
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n
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ch
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3 132 48 0 130 50 0 126 54 0 123 57 0 123 57 0
5 118 61 1 126 53 1 118 61 1 120 60 0 123 57 0
7 116 56 8 119 59 2 105 73 2 114 65 1 117 60 3
9 114 57 9 118 49 13 100 68 12 114 53 13 110 61 9
d 103 12 65 93 10 77 100 46 34 100 23 57 100 19 61
3+W 80 0 100 1 26 153 0 21 159 0 12 168 0 18 162
5+W 57 2 121 9 41 130 10 43 127 12 36 132 11 36 133
7+W 34 8 138 23 42 115 18 59 103 23 42 115 21 49 110
9+W 20 8 152 34 35 111 29 51 100 35 36 109 30 46 104
d+W 0 0 180 49 31 100 32 48 100 54 26 100 47 33 100

G
a
u
ss
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n

3 121 59 0 122 58 0 126 54 0 126 54 0 123 57 0
5 121 59 0 115 65 0 120 60 0 119 61 0 115 64 1
7 117 62 1 113 65 2 118 59 3 113 65 2 113 65 2
9 115 55 10 109 63 8 118 53 9 113 55 12 108 65 7
d 100 17 63 101 29 50 98 12 70 100 23 57 102 27 51
3+W 80 0 100 0 17 163 0 21 159 0 19 161 0 14 166
5+W 54 4 122 10 30 140 10 44 126 10 38 132 10 36 134
7+W 35 11 134 25 36 119 20 48 112 17 45 118 23 43 114
9+W 20 7 153 36 36 108 32 36 112 31 37 112 33 40 107
d+W 0 0 180 59 21 100 50 29 101 65 15 100 55 25 100

Fig. 13 Win-tie-loss results for Desharnais. The implications we have observed in Cocomo81
and Nasa93 repeats for Desharnais dataset: Change of kernels does not provide a significant
change in win-tie-loss values and neither does changing bandwidth. There are some small
changes in different kernel-bandwidth combinations but we can not observe a pattern. Fur-
thermore, ABE0 has a better estimation performance than WABE.

5.2.4 IRWM Results for All Datasets

Up to this point we have observed 315 different settings and saw that neither kernel nor

the bandwidth change does have a considerable impact on the performance of WABE.

Furthermore, we found out that simple ABE0 approach yields higher performance

measures in terms of win-tie-loss values. However, kernel estimation is not the only

alternative of weighting in a WABE model. Another WABE weighting approach we use

in this research is so called IRWM [27,28]. The win-tie-loss values of all 3 datasets for

IRWM weighted WABE are given in Figure 14. Since IRWM is a different weighting

approach than kernel density estimation, we do not have kernels or bandwidths to

compare in that scenario. On the other hand with IRWM results we can mutually
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compare the estimation performances of WABE and ABE0 approaches. Our reading

from Figure 14 is that for none of the three dataset does WABE outperform ABE0. In

other words, just like the kernel weighted WABE, IRWM weighted WABE also fails to

improve the ABE0 performance. Therefore, in a total of 330 settings (315 for kernel

weighted WABE and 15 for IRWM weighted WABE) we see that WABE is unable to

improve the performance of simple ABE0 approach.

Cocomo81 Nasa93 Desharnais
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3 143 37 0 141 39 0 126 54 0
5 128 50 2 126 54 0 120 60 0
7 115 55 10 115 53 12 115 62 3
9 101 46 33 117 43 20 116 55 9
d 0 56 124 97 16 67 101 13 66
3+W 88 25 67 78 4 98 80 0 100
5+W 49 48 83 49 14 117 50 10 120
7+W 28 59 93 22 29 129 24 25 131
9+W 23 52 105 19 19 142 16 19 145
d+W 0 22 158 0 1 179 0 6 174

Fig. 14 Win-tie-loss results of Cocomo81, Nasa93 and Desharnais for IRWM weighted WABE.
The notation in this figure is similar to previous figures: Weighting is represented by a +W
sign and dynamic kernel is represented by a d sign. IRWM is a different weighting strategy
than kernel weighting, hence we do not see kernel or bandwidth information in this figure.
Results are similar to previous scenarios: Lower k values attain higher win values and lower
loss values. Furhermore, most importantly WABE is unable to outperform ABE0.

6 Threats to Validity

We will address the threats to validity of this research under 3 categories: Internal

validity, external validity and construct validity. Before addressing our research in

terms of these categories of threats to validity, we would like to give their conscise

definitions.

– Internal validity asks to what extent the cause-effect relationship between depen-

dent and independent variables holds [1].

– External validity questions the ability to generalize the results [30].

– Construct validity (i.e. face validity) makes sure that we in fact measure what we

intend to measure [37].

The perfect case for the satisfaction of internal validity would be the application

of a theory that was learned from past experiences to new situations. However, data

in software effort estimation domain is a relatively sparse resource and most of the

studies make use of commonly-explored datasets like the ones we use in this research.

Therefore, the issue of internal validity thereatens all effort studies that use past data.

However, we can mitigate this threat by simulating the behavior of a learned theory

in new settings. In our study, we utilize leave-one-out method for all treatments to

address such internal validity issues. Leave-one-out selection enables us to separate

the training and test sets completely in each experiment, thereby making the test sets

completely new situations for the training sets.
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To observe the generalizability of our results, we perform extensive experiments

on 3 datasets. The datasets are widely used in software effort estimation commu-

nity and have very diffferent characteristics in terms of various criteria such as size,

number of features, types of features and measurement method. Furthermore datasets

are subject to rigorous experimentation where we investigate the effects of WABE on

performance under 330 settings. Our observations for all the settings are extremely

similar. Therefore, for the datasets used in our research, our humble opinion is that

the results have external validity. However, to have full confidence in our claims when

saying that WABE methods fail to improve ABE0, our study needs to be replicated

on other dataset and possibly with different weighting strategies.

The choice of performance measures is an open issue in software effort estimation

domain. For example MMRE and MdMRE are recognized as de facto evaluation criteria

for cost estimation models [45] and they appear as a practical performance evaluation

option to a number of researchers [22, 24, 36]. On the other hand, use of MMRE as

well as MdMRE is still criticized for being unreliable [10, 33]. Foss et. al. for instance

shows that MRE can be misleding, if used as the only performance criterion [10].

Therefore, a study willing to have construct validity should not merely rely on MRE-

based measures. To measure what we really intend to measure, we make use of win-

tie-loss measures apart from MMRE and MdMRE. Of course all these criteria have

their inherent weaknesses and strenghts. Our aim in combining these measures is to

use them in a complementary manner. For example strenght of MMRE as well as

MdMRE is that they give a general picture of per instance-based evaluation. However,

mean and median error measures become too general when averaged over 20 runs and

we do not have much knowledge regarding individual runs. Win-tie-loss measures on

the other hand compare each method with one-another for each run and allow us to

have a better opinion concerning individual runs. Furthermore, MMRE and MdMRE

show us the difference between two methods in terms of MRE. But this difference may

not always have statistical significance. To ensure the statistical validity of our results

we make use of Mann-Whitney U test at a significance level of 95% in win-tie-loss

calculations. Therefore, our use of different performance measures such as MMRE,

MdMRE as well as win-tie-loss, provides different perspectives of the results and lets

us know if the results have statistical significance.

7 Conclusions

In this research we used kernel density estimation as a weighting strategy for WABE.

We conducted extensive experiments with various kernels and observed the perfor-

mance variations between ABE0 and WABE. Unlike previous studies that report im-

proved accuracy values through the use of kernel density estimation [13, 34], we did

not observe such an effect on software effort datasets. For the datasets used in our re-

search (Cocomo81, Nasa93 and Desharnais) there was not a single case where WABE

outperformed ABE0.

7.1 Answers To Research Questions

In this section we map the evaluation of our results to particular research questions

that guided us in this research.
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RQ1 Is there any evidence that weighting improves the performance of ABE?

In our experiments we do not see a single case in which weighting improved ABE.

On the contrary, for all settings ABE0 yields much better results than WABE.

Therefore, the evidence suggests that weighting decreases estimation accuracy in

ABE systems.

RQ2 What is the effect of different kernels for weighting ABE?

We observe inconsistent and extremely limited effect due to change of kernels. There

are only slight variations in performance when different kernels are used. However,

performance variations do not follow a definite pattern and they are far from being

considerable.

RQ3 What is the effect of different bandwidths when used for weighting ABE?

Change of bandwidths shows a very limited and random effect on the accuracy

values too. Therefore, we cannot say that applying different bandwidths has a

certain effect on WABE performance.

RQ4 How do the characteristics of software effort datasets influence the performance of

kernel weighting for ABE?

Kernel density estimation for WABE falls short of improving ABE0 in our exper-

imental settings. This fact can be attributed to the particular characteristics of

software effort datasets. Effort datasets are much smaller than most of the datasets

in different domains. The dependent variable (effort value of a completed project) is

highly variable. Furthermore, the attribute values are very open to personal judg-

ment and error. All these factors suggest that non-parametric methods may be

failing due to inherent characteristics of software effort data.

8 Future Work

We can identify 3 main domains in which this study may be extended:

1. Dataset: In this research we used 3 commonly used software effort datasets. How-

ever, this study may be replicated on other software effort datasets as well. Further-

more, ABE is not restricted to software effort estimation domain. Kernel density

estimation may be experimented on other ABE-applicable datasets as well.

2. Kernel Type: We used 5 kernels (including IRWM) as weighting strategies in our

research. But the ones used in this research are obviously not the only kernel

types. It may be the case that other particular kernels will perform differently than

the ones used here. Therefore, one future direction to this research would be the

investigation of different kernels for better performance.

3. Weighting Strategy: Weighting strategy in a WABE method may be completely

different than kernel density estimation. Another future direction can be experi-

mentation on different weighting strategies that are preferably based on different

assumptions.
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