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Abstract Analogy based estimation (ABE) generates an effort estimate for a new

software project through an adaptation of similar past projects (a.k.a analogies). A

majority of ABE methods follow uniform weighting in adaptation procedure. Non-

uniform weighting has also been proposed as an alternative adaptation method, yet

has not been thoroughly investigated. In this research we investigate kernel density

estimation for non-uniform weighting in the context of ABE. We used different kernel

methods to compute non-uniform weights of analogies. In an extensive experimentation

of 330 ABE variants, we found that it is vital to select the right number of neighbors

for estimation accuracy. However, non-uniform weighting induced by a kernel method

could never outperform uniformly weighted ABE. Hence, we speculate that kernel

density estimation in ABE is not a very productive research area to explore.

Keywords Effort estimation, data mining, kernel function, bandwidth

1 Introduction

Software effort estimates are reported to be often wrong by a factor of four [?] or even

more [?]. The critical results of wrong estimates for a company are obvious: 1) promising

projects that would stay within budget may be rejected, 2) accepted projects may over-

run their planned resources and worst of all 3) over-running projects may be cancelled

thereby wasting the entire effort. Therefore, effort estimation is an active research

area [?,?,?,?] that constantly explores more variations with each model being developed

or improved. For example, Auer et al. [?] proposed an extensive search to learn the
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best weights for different project features in 2006. Menzies et al.’s COSEEKMO tool

explored thousands of discretizer combinations, data pre-processors, feature subset

selectors, and inductive learners in the same year [?]. In 2007, Baker proposed an

exhaustive search of all possible project features, learners and other variables [?].

Pendharkar et. al. used Bayesian Network (BN) for effort estimation and incorporated

BN into decision making procedure aginst risks [?]. Mendes and Mosley employed

data-driven and hybrid BN models for web effort estimation [?]. Li et. al. investigated

the feature weighting as well as instance selection in analogy based estimation (ABE)

domain to address the memory and computation costs in their 2009 study [?]. All

these work contributed narrowing down the possible space we need to discover to

really understand software effort estimation. Future studies will continue to narrow

down this space and investigate other variations of software effort estimation methods.

ABE is based on the premise that effort of a future project can be estimated

by adapting the effort values of k similar past projects (adapted k projects are also

called analogies) [?,?,?]. Among proposed adaptation methods we can name choosing

closest analogy [?,?], taking mean or median of k analogies [?,?]. In both mean and

median approach the influence of analogies are equal, in other words, the low ranked

analogies have just as much influence as the high ranked analogies. Equal influence of

analogies is an example of uniform weighting ABE methods (from now on U-ABE).

Another method for weighting is to let different analogies have different influence on

the final estimate. For example Mendes et. al. proposes a method called inverse rank

weighted mean (IRWM) that allows higher ranked analogies to have greater influence

than the lower ranked ones [?,?]. Such methods that let different analogies have unequal

influence are examples of non-uniform weighting ABE methods (from now on N-ABE).

In this research, we contribute narrowing down the search space in software ef-

fort estimation by investigating different weighting strategies in ABE. We investigate

the impact of non-uniform weighting and use the concept of kernel density estima-

tion [?] in the context of N-ABE. Kernel-based methods are reported to be one of the

most popular non-parametric estimators that can uncover structural features in the

data [?]. Furthermore, in various different contexts different researchers benefit from

kernel density estimation and report successful results [?,?,?].

To guide us in this paper, we have identified the following research questions:

RQ1 Is there any evidence that non-uniform weighting improves the performance of

ABE?

RQ2 What is the effect of different kernels for non-uniform weighting ABE?

RQ3 What is the effect of different bandwidths when used for non-uniform weighting

ABE?

RQ4 How do the characteristics of software effort datasets influence the performance of

kernel weighting in non-uniform weighting ABE?

RQ5 Which parameters among kernel, bandwidth and selected analogy number matter

the most in terms of estimation accuracy?

In our research, after an extensive study of 330 variants of ABE, it is clear that

selecting the right number of neighbors is vital for effort estimation. However, U-

ABE methods are never enhanced by a particular kernel method. Hence, we do not

believe kernel selection to be a productive area of research to explore in software effort

estimation. We therefore advise researchers in this area to explore other aspects of

effort estimation.
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Although results of N-ABE are negative, these negative results have at least three

positive consequences. Firstly, we can assert that there is nothing inherently wrong

with intuition-based weighting schemes like IRWM (since all the weighting schemes

we explored had similar results). Secondly, we can better focus future research. Our

reading of the results presented in this paper is that in smaller data sets, nuanced

explorations of some neighborhood is less useful than the size of that neighborhood.

In other words, the value of k appears to be a more important factor in ABE rather

than non-uniform weighting strategies. Lastly, unlike studies in other domains that

claim “kernel does not matter but the bandwidth does”, we cannot offer supportive

evidence for a statistical heuristic that leads to the same conclusion. Our results point

to the conclusion that neither kernel nor the bandwidth has a considerable impact for

improvement in software effort estimation. The benefit of our last result is a reduction

in search space for future explorations.

The rest of the paper is organized as follows: In Section 2 we provide background

information regarding software effort estimation in general as well as ABE and kernel

density estimation. We continue with Section 3, in which we provide the details of the

methodology we adopted in this research: Weighting strategies, datasets, experimental

settings and performance criteria. In Section 4 we provide a brief discussion of our pre-

experimental intuition of N-ABE over some intuitive examples. Then in Section 5 we

give the results of our research and continue with Section 6, where we summarize the

possible threats the validity of our results. We discuss the conclusions of our research

in Section 7 and present our answers to the research questions we followed. Finally in

Section 8 we list some of the likely future directions of this research and conclude.

2 Background

In this section, we will provide general background information about software effort

estimation and ABE. We will also address how kernel methods have been utilized in the

literature and discuss how they can be adapted to software effort estimation domain

as a weighting strategy.

2.1 Software Effort Estimation

We can divide software effort estimation into at least two groups [?]: expert judgment

and model-based techniques. Expert judgment methods are widely used in software effort

estimation practices [?]. Expert judgment can be applied either explicitly (following a

method like Delphi [?]) or implicitly (informal meetings among experts). Regardless

of the method expert judgment is applied, it is prone to some pitfalls. One possible

pitfall in expert-based methods is the fact that they are open to clashes of interest. For

instance a faulty estimation of a senior expert may be taken over the more accurate

estimation made by a junior expert. Another pitfall is that expert-based methods can

be as good as your experts. Jorgensen et al. report that human experts are very poor

at evaluating and improving their estimation skills [?].

Unlike expert-based methods, model-based techniques do not rely heavily on human

judgment. Model based techniques are products of:

1) Algorithmic and parametric approaches or

2) Induced prediction systems.
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The first approach is in simplest terms the adaptation of an expert-proposed model

to local data. A widely known example to such an approach is Boehm’s COCOMO

method [?]. The second approach is particularly useful in the case where local data

does not conform to the specifications of the expert’s method. A few examples of

induced prediction systems are linear regression, neural nets, model trees and analogy

based estimation [?, ?]. Regardless of the categorization of models, they are all built

on inherent assumptions. For example, linear regression assumes that the effort data

fits a straight line while model trees assume that the data fits a set of straight lines.

In the cases where data violates these assumptions, patches are applied, e.g. take the

logarithm of exponential distributions before linear regression [?,?]. However, choosing

the appropriate patch again requires qualified experts.

2.2 ABE

Analogy based estimation (ABE) or estimation by analogy (EBA) is a form of case

based reasoning (CBR). According to the taxonomy presented in Section 2.1 ABE is

grouped together with induced prediction systems. In their 2005 study Myrtveit et. al.

follow a different categorization than the one presented in this paper [?]. They group

estimation models into sparse-data and many-data categories. Sparse-data methods

are defined to be estimation methods that need few or no historical data. Examples

to sparse-data methods are Analytical Hierarcy Process (AHP) [?], expert judgment

and case-based reasoning. Many-data methods are identified in the form of a function

and are subdivided into: 1) functions, 2) Arbitrary function approximators (AFA).

The functions may be in the form of y = AxB , where a mathematical relationship

exists between the variables of the expression (e.g. linear regression models). Unlike

functions, AFA make no assumption between predictor and response variables. EBA,

classification and regression trees (CART) and artificial neural networks (ANN) belong

to this class [?].

According to the taxonomy presented by Myrtveit et. al. CBR may belong to both

sparse-data or many data category [?]. If one uses CBR to reason from and already

selected case then it is identified to be a single-data method. However, if CBR is used

to identify the closest case, then it is categorized as a many-data method. ABE is an

example of this use of CBR [?].

ABE in the simplest terms, generates its estimate for a test project by gathering

evidence from the effort values of similar past projects in some training set. When we

analyze the previous research of experts on the domain of ABE such as Shepperd et.

al. [?], Mendes et. al. [?] and Li et. al. [?], we can see a baseline technique lying under

all ABE methodologies. The baseline technique is composed of the following steps:

– Form a table whose rows are completed past projects (this forms the training set).

– The columns of this table are composed of independent variables (the features that

define projects) and a dependent variable (the recorded effort value).

– Decide on the number of similar projects (analogies) to use from the training set

when examining a new test instance , i.e. decide on the k -value.

– For each test instance, select those k analogies out of the training set.

– While selecting analogies, use a similarity measure (for example the Euclidean

distance).

– Before calculating similarity, apply a scaling measure on independent features

to equalize their influence on this similarity measure.
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– Use a feature weighting scheme to reduce the effect of less informative features.

– Adapt the effort values of the k nearest analogies to come up with an effort estimate.

Following the steps of this baseline technique, we will define a framework called

ABE0. ABE0 uses the Euclidean distance as a similarity measure, whose formula is

given in Equation 1.

Distance =

√√√√ n∑
i=1

wi(xi − yi)2 (1)

In Equation 1, wi corresponds to feature weights applied to independent features.

ABE0 framework does not favor any features over the others, therefore each feature

has equal importance in ABE0, i.e. wi = 1.

Following the selection of projects in a CBR system, the next step is deciding on

how to adapt them. There is a wide variety of adaptation strategies in the literature [?].

Using effort value of the nearest neighbor [?], taking mean [?] or median [?] of closest

analogies, inverse distance and inverse rank weighted mean of closest analogies are

among the commonly used adaptation methods in CBR literature [?]. The adaptation

of effort suggested by baseline approach does not have to be a a complex process.

ABE0 simply returns the median effort values of the k nearest analogies. Since ABE0

implicitly assigns equal weights to k nearest analogies, it turns out to be an U-ABE

method.

Angelis et. al. suggests that as the number of the closest projects increase, median

is a robust solution [?]. They have found that taking median instead of mean decreases

the estimation error. The reason why we chose ABE0 framework to use median instead

of mean in our research is due to the fact that we also make use of high as well as low k

values and using mean could have let extreme effort values have a strong influence on

the estimation. However, we want the estimates of ABE0 framework to represent the

majority of selected instances and not greatly affected by extreme values. Therefore,

ABE0 uses median instead of mean.

In this research we will compare the results of ABE0 framework with different

non-uniform weighting strategies, i.e. with different N-ABE methods. N-ABE methods

have been previously adressed in literature. For example inverse rank weighted mean

(IRWM) was proposed by Mendes et. al. [?]. IRWM method enables higher ranked

analogies to have greater influence than the lower ones. Assuming that we have 3

analogies, the closest analogy (CA) gets a weight of 3, the second closest (SC) gets a

weight of 2 and the weight assigned to the last analogy (LA) is 1. With this weighting

approach, IRWM would calculate the estimation as in Equaiton 2. Note that we can

generalize IRWM to handle more than 3 neighbors as follows: In the case of n closest

analogies, the closest neighbor would have the weight of n, the next one would have

the weight of n− 1 and so on. The weighted sum would then be divided by the sum of

all weights:
∑n

i=1 i

Effort = (3 ∗ CA+ 2 ∗ SA+ 1 ∗ LA)/(3 + 2 + 1) (2)

IRWM has its root in expert judgment. In other words, in the lack of valuable

experts, such a weighting strategy would be almost impossible to apply to the needs

of a particular dataset.
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Fig. 1 We see a Gaussian kernel density estimate built on individual data points. Each point
is in the center of a kernel and its effect is distributed to its neighborhood. The sum of all
kernels make up the final Gaussian kernel density estimate.

2.3 Kernel Density Estimation

IRWM is one example of a broad class of statistical reasoning called kernel density

estimation, where IRWM acts like a triangular kernel assigning weights to analogies on

the basis of their distance. Kernel density estimation is a non-parametric estimation

method that is used to uncover the underlying structures of data, which a parametric

approach may fail to reveal [?]. Since we used the univariate kernel density estimation,

we will suffice to mention the univariate case in this paper. However, the same approach

can be easily adapted to higher dimensionalities [?,?].

The kernel function is usually chosen to be unimodal and symmetric about zero [?].

A probability distritibution function can be chosen as the kernel function (for instance

Gaussian kernel). In a kernel estimation method, the center of the kernel is placed

right on each data point and the influence of each data point is distributed to the

overall neighborhood. To reach the final density function, contributions coming from

each data point are summed up. For example, note how individual Gaussian curves

add up to generate the final density estimate in Figure 1 (one kernel is added for each

observation along the x-axis [?]).

Kernel density estimation has been successfully used for different type of datasets.

For instance Palpanas et. al. use kernel density estimation to address the problem

of deviation detection in environment of sensor networks [?]. Frank et. al. use kernel

estimation for locally weighting the attributes of Naive Bayes [?]. Furthermore John

et. al. use kernel estimation to tackle the normality assumption regarding continuous

datasets [?]. They replace single Gaussian distribution that is used to model continuous

data with non-parametric kernel density estimation and they report considerable im-

provements on real and artificial datasets. Although kernel density estimation is used

in different areas for modeling different types of data, to the best of our knowledge it

was not previously used in the context of ABE. In this research we propose using kernel

density estimation as a N-ABE method for assigning weights to selected analogies.

The kernels we use in our research are: Uniform, triangular, Epanechnikov and

Gaussian. We can use a generic formula for some kernels, which is given in Equation
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3, where 1(|x|<1) is the indicator function. Furthermore, Equation 4 and Equation 5

explain for the calculation of other functions in Equation 3. Depending on the value

of p in Equation 3, we can derive different kernels. For example for p = 0 we elicit the

uniform kernel, for p = 1 we elicit Epanechnikov kernel etc.

K(x, p) =

(
1− x2

)p
22p+1B (p+ 1, p+ 1)

1(|x|<1) (3)

B (p+ 1, p+ 1) =
Γ (a)Γ (b)

Γ (a+ b)
(4)

Γ (n) = (n− 1)! (5)

This paper explores the kernels of Figure 2 as well as IRWM [?, ?]. The general

shapes of these kernels are given in Figure 3 [?]. IRWM is not actually proposed as

a kernel method and it does not fully conform to the kernel definition (not being

symmetrical etc.). However, due to the weighting strategy it proposes we can read it as

an expert proposed kernel, whose shape would look like the right part of a triangular

kernel as in Figure 3(e).

Initially, we planned to explore many more kernels than those listed above. However,

to our surprise, we found that estimation accuration was not influenced by the kernel

method. A literature review revealed that a similar effect has been reported in domains

other than effort estimation. A standard result is that the selection of bandwidth (h)

for kernels is more influential than the kernel types [?,?]. Bandwidth h is fundamentally

a scaling factor that controls how wide probability density function will spread around

a point and the choice of h determines how smooth or rough density estimation will

be, i.e. appropriate choice of h is critical to avoid under and over-smoothing [?,?]. To

avoid both under and over-smoothing conditions we used various bandwidth values

in our research. One of the bandwidths we used is suggested by John et. al., which

is h = 1/
√
n where h is the bandwidth and n is the size of dataset [?]. The other

bandwidth values we used are: 2, 4, 8 and 16.

We can see how choosing different bandwidth values affect kernel density estimation

in Figure 4. Figure 4 from [?] is suggestive, but not convincing evidence that effort

Kernel Type Formula

Uniform Kernel K(ρ) = 1
2
1(|ρ|<1)

Triangular Kernel K(ρ) = (1− |ρ|) 1(|ρ|<1)

Epanechnikov Kernel K(ρ) = 3
4

(
1− ρ2

)
1(|ρ|<1)

Gaussian Kernel K(ρ) = 1√
2π
e

−1
2
ρ2)

Fig. 2 The formulas for different kernels used in this study. In formulas ρ = x−Xi
h

. Note that
IRWM kernel has different characteristics and its calculation details were provided in Section
2.2.
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(a) Uniform Kernel (b) Triangular Kernel

(c) Epanechnikov Kernel (d) Gaussian Kernel

(e) IRWM Kernel for k=10

Fig. 3 General shapes of the kernel types used in this research. Note that IRWM is not sym-
metric unlike other kernels, that is due to the fact IRWM has a different weighting procedure
than other kernels (see Equation 2).

estimation may not be improved by the selection of the kernel method. Prior work

(reporting that bandwidth h values were more important than choice of kernel) comes

from (e.g.) the signal processing literature [?,?]. Data sets in those domains are very

different to the data sets seen in effort estimation: thousands to billions of instances

(for signal processing) versus dozens to hundreds of instances (for effort estimation).

In data-started domains like effort estimation, it may be the case that an intelligent

selection of the kernel could compensate for data scarcity. Note that other authors

in the field of effort estimation have also shared this opinion [?, ?]. However, we are

unaware of any effort estimation publications that explore this issue in a systematic

manner. Hence, the rest of this paper.
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(a) h=0.1 (b) h=0.05

(c) h=0.02 (d) h=0.005

Fig. 4 We see the effect of bandwidth on kernel density estimation. From Figure 4(a) to Figure
4(d), the bandwidth gets smaller and smaller and we observe a transition from over-smoothing
to under-smoothing.

3 Methodology

In this section we provide the methodology that we adopted in our research. We discuss

how we use kernel density estimation as a non-uniform weighting method as well as

which kernels we use for this purpose. Furthermore, we provide information regarding

the datasets we used in this research and discuss their characteristics. Also we pro-

vide information regarding the experimental settings we adopted. Finally we discuss

the performance criteria according to which we compare the performance of N-ABE

methods to basic U-ABE method ABE0.

3.1 Weighting Method

Here we summarize how kernel density estimation is employed as a non-uniform weight-

ing method in this research. Assume that our dataset is divided into two sets: A =

{x1, ..., xk} (selected Anologies) and R = {t1, ..., tn−k} (Rest of the dataset). We build

the kernel density estimation on R and evaluate the resulting function at instances of A.

Equation 6 shows the probability calculation with kernel density estimation. In Equa-

tion 6 the kernel K is built on training data ti ∈ R and is evaluated at kth analogy xk
for a bandwidth of h.

f(xk, h) =
1

nh

∑
ti∈R

K
(
xk − ti
h

)
(6)

The general idea of this approach is that selected k analogies for a test instance

come from a distribution and this distribution is specific to the dataset. Furthermore,

according to this specific distribution we get different probability values for each anal-

ogy. In other words, we have different f(xk, h) values for each analogy. We use these
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probability values as weights for analogies. Note that before using a probability value

as a weight, we need to scale it to 0-1 interval according to Equation 7, where xk
represents all the analogies in A except xi.

weightxi =
f(xi, h)−max(f(xk, h))

max(f(xk, h))−min(f(xk, h))
(7)

After calculating weightxi for each analogy, we update their actual effort values

according to their weights. Updating the actual effort values simply means multiplying

an effort value with its weight. Equation 8 shows how actual effort value of an analogy,

xi, is updated.

updatedEffortxi = actualEffortxi ∗ weightxi (8)

3.1.1 Uniform vs. Non-Uniform Weighting

Another implicit weighting in ABE0 exists during adaptation of the selected analogies.

For ABE0 we assume that each one of the k analogies have equal importance. Hence,

we implicitly give equal weights to all analogies.

Fig. 5 In the case of uniform weighting all analogies are implicityly given equal probability
values, hence equal weights. However, non-uniform weighting prefers some analogies over the
others. For example, in uniform kernel only the non-rejected analogies are given equal weights.

This may seem exactly the same as what we do in uniform kernel, i.e. giving equal

weights to k analogies. However, the implicit weighting in ABE0 and uniform kernel are

different from one another. In uniform kernel, depending on how we select bandwidth

some of the analogies may get zero probability and therefore rejected. When we take a

look at Figure 5 we see 5 random analogies for ABE0 as well as for WABE with uniform

kernel. Although the shapes for weighting in two methods look extremely similar, the

weighting schemes in both figures are very different from each other. In ABE0, each

analogy is implicitly given the same weight and all the analogies are considered for

adaptation. On the other hand, WABE gives weight to analogies with respect to their

acceptance or rejection. In Figure 3.1.1 two out of 5 analogies are rejected -hence given

the weight zero- and only 3 analogies are considered for adaptation. Therefore, ABE0
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(non-weighted ABE) and WABE (weighted ABE) are two different methods with very

different characteristics.

3.2 Data

In our research, we have used three commonly used datasets in software effort esti-

mation research: Nasa93, the original Cocomo81 [?], and Desharnais [?]. Cocomo81

and Nasa93 datasets contain projects developed in NASA, whereas Desharnais dataset

contains projects developed by Canadian software houses.

Apart from selecting commonly used datasets, we took the quality of the datasets

into consideration. In order to evaluate the goodness of datasets, Kitchenham and

Mendes propose a quality scoring that consists of four values: poor (less than ten

projects), fair (between ten to twenty projects), good (between twenty to forty projects)

and excellent (more than forty projects) [?]. Following this quality criteria all the

datasets we use in our research rank as excellent quality. The details regarding these

datasets can be found in Figure 6.

Dataset Features T = |Projects| Content Units
Cocomo81 17 63 NASA projects months
Nasa93 17 93 NASA projects months
Desharnais 12 81 Canadian software projects hours

Total: 237

Fig. 6 We used 237 projects coming from 3 datasets. Datasets have different characteristics
in terms of the number of attributes as well as the measures of these attributes.

3.3 Experiments

Our experimental settings aim at comparing the performance of standart ABE (ABE0)

to that of weighted ABE (WABE). We first run ABE0 on each of the 3 datasets

employed in this research. To separate train and test sets we used leave-one-out method,

which entails selecting 1 instance out of a dataset of size n as the test set and using

the remaining n− 1 instances as the training set. For each test instance, we run ABE0

and store the estimated effort for that test instance. Then we run WABE for the same

test instance and store the estimated effort coming from WABE. Both for ABE0 and

WABE we tried different k values since number of analogies plays a critical role in

estimation accuracy. Furthermore, to hinder any particular bias that would come from

the settings of a single experiment, we repeated the afore mentioned procedure 20

times.

In this research we use 2 ABE methods (ABE0 and WABE) induced on 3 datasets

(Cocomo81, Nasa93 and Desharnais) with 5 different k values (k ∈ {1, 3, 5, 7, 9, dynamicK}).
Furthermore, we use 4 different kernels (Uniform, triangular, Epanechnikov and Gaus-

sian) with 5 bandwidth values as well as IRWM in WABE experiments. Therefore, to

further explore field of software effort estimation, we investigate a total of 330 different

settings in this research:

– ABE0 Experiments: 15 settings

– 3 datasets * 5 k values = 15
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– WABE Experiments: 315 settings

– Kernel Weighting: 3 datasets * 5 k values * 4 kernels * 5 bandwidths = 300

– IRWM: 3 datasets * 5 k values = 15

3.4 Performance Criteria

To observe the effect of weighting in ABE, we use the following performance measures:

the magnitude of relative error (MRE), median magnitude of relative error (MdMRE),

mean magnitude of relative error (MMRE) and win-tie-loss values generated by a

statistical test (Mann-Whitney U Test). MRE is used by the authors because it is the

most commonly used performance criterion for assessing the performance of competing

software effort estimation methods [?,?,?]. Furthermore, as we can see from Formula

9, MRE value is a direct measure of the absolute difference between the prediction and

actual value [?] and hence it gives a per-instance based performance evaluation.

MRE =
|actuali − predictedi|

actuali
(9)

MMRE and MdMRE have emerged as two of the de facto standard evaluation

criteria for cost estimation models [?]. MMRE is the mean of all MRE values. However,

the mean approach considers every observation and is sensitive to individual predictions

that have high MREs [?]. One way to address this problem is the median approach via

MdMRE. Median also gives information about central tendency, but it is less sensitive

to extreme MRE values. Therefore, while we comment on the results of MRE-based

measures in Section 5.1, we provide both the MMRE and MdMRE values. The formulas

of MdMRE and MMRE are given in Equations 10 and 11 respectively, where n is the

test set size.

MdMRE = median(MRE1,MRE2, ...,MREn) (10)

MMRE =
1

n

n∑
i=1

|actuali − predictedi|
actuali

(11)

wini = 0, tiei = 0, lossi = 0
winj = 0, tiej = 0, lossj = 0
if MANN-WHITNEY(MRE′si, MRE′si) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if median(MRE′si) < median(MRE′sj) then
wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 7 Pseudocode for Win-Tie-Loss Calculation Between Method i and j
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Note that, MRE related measures are subject to many pitfalls. If MRE is used

a stand-alone performance evaluation criterion (i.e. not combined with appropriate

statistical tests), it may lead to biased or even false conclusions [?]. To prevent us

from falling into MRE-related pitfalls, we use another performance criterion called

win-tie-loss calculation. A win-tie-loss calculation tells that comparison between two

methods i and j makes sense only if they are statistically different. If there is no

statistically significant difference between two methods, say method i and method

j, then it indicates that results are observations coming from the same distribution,

therefore methods are said to tie and their tie values (tiei and tiej) are incremented.

However, if there is a statistical difference between two methods, then the method

with a lower median MRE score, say i, is said to have a “win” and the one with the

lower MRE, say j, is said to have a “lose”. The related values wini and lossj are

incremented by one. The pseudocode for a win-tie-loss calculation is given in Figure 7.

For the comparison of methods in win-tie-loss calculation, a non-parametric statistical

test (the Mann-Whitney rank-sum test) is used at a significance level of 95%.

4 Discussion

In theory, it seems that the selection of the right kernel could significantly improve ef-

fort estimation: For example, an intelligent selection of the kernel might compensate for

data scarcity. Other effort estimation researchers have shared this theoretical point of

view [?,?]. However, to the best of our knowledge, the effect of selecting different kernel

methods has not been rigorously explored in the SE literature. Our pre-experimental

intuition in this research was that non-uniform weighting could end up performing no

better and perhaps even worse than simple uniform weighting for effort estimation

datasets. To demonstrate why we had such a negative opinion, we provide an intu-

itive example in Figure 8. Assume that for a particular test project, 3 analogies are

chosen (P1, P2, P3) with effort values of 10.0, 20.0 and 60.0. Also assume that kernel

density estimation assigned the the probabilities of 0.1, 0.3 and 0.5 to these analogies

respectively. When we normalize these probability values to a 0-1 interval, the weights

assigned to P1, P2, P3 become 0.0, 0.5 and 1.0. As we can see in Figure 8, the estima-

tion (i.e. median of analogies) for uniform weighting case would be 20.0, whereas the

estimation for non-uniform weighting case would be 35.0. A shift from an estimate of

20.0 to 35.0 is a dramatic change of 75% rather than a slight correction. Therefore, our

intuition was that weighting in software effort estimation could be disruptive rather

than constructive.

Analogies P1 P2 P3

Effort Values 10.0 20.0 60.0
Probabilities 0.1 0.3 0.5
Weights 0.0 0.5 1.0

Uniform Weighting Estimate 20.0
Non-Uniform Weighting Estimate 35.0

Fig. 8 An intuitive example. In a 3 analogy case, there is a 75% change for a hypothetical
test project between uniform and non-uniform weighting effort estimates.

Indeed, rigorous experimentation presented in this research confirms our intuition:

Our results are mostly negative, i.e. different variants of kernel estimation do not in-
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crease estimation accuracy. Then the most likely question to be raised is “Why do other

fields [?,?,?] benefit from weighting, whereas effort estimation does not?”. Our belief

is that the answer is partially hidden behind the low sample sizes of effort datasets.

Scarcity of the samples means that the weighting observes a signal being broadcast

from very small number of points in the neighborhood. Although we can tune the size

of the neighborhood with the bandwidth value, in low sample sizes kernel estimation

still performs poorly.

We can observe the effect of instance size and bandwidth value on the estimation

accuracy in Figure 9. In Figure 9 we simulate 50, 100 and 1000 samples coming from

two Gaussian probability distribution functions (PDFs): N(20, 5) and N(35, 5). Then

we use kernel density estimation technique with a Gaussian kernel to estimate the

density at discrete values of x in [0-55] interval with a step-size of 1. In Figure 9 the

x-axis shows the instance IDs for discrete x values and instance IDs are equal to actual

x values. An x with the ID of say 10 corresponds to the discrete x value of 10. The

y-axis in Figure 9 shows the probability values for each x instance. To better observe

the probability values, we plot data as logarithmic scale for y-axis while still reporting

the actual probability values rather than the logged values. The probability values of x

for the actual Normal distributions are shown with a solid line. Ideally we want to get

estimates as close as possible to the envelope indicated by the solid line. The density

estimates with different bandwidths (different h values) are shown with different lines

in Figure 9. Three bandwidth values mean different neighborhood sizes and they enable

different number of sample points to fall into neighborhoods. h = 0.001 is an example

of a too small bandwidht value. As we see, for all sample sizes h = 0.001 does hardly

let any points to fall into the neighborhood of x, therefore the probability is zero most

of the time and whenever point(s) fall into neighborhood of x, we observe sparks of

probability. Contrary to 0.001, bandwidth value of 10 is a too large value and it cannot

model the underlying Gaussian distributions either. When we look at Figure 9, we see

that estimations made with h = 10 are over-smoothed and h = 10 can only estimate

a single Gaussian distribution instead of two. In this simple example h = 1 yields the

closest estimates to the actual probability values. However, we see that even for h = 1,

the sample size plays a critical role in estimation. When we look at the fit between

h = 1 estimates and the actual PDFs in Figure 9, we see that as we increase the size of

simulated points the large deviations that we observe in Figure 9(a) diminishes through

Figure 9(c).

In case of signal processing the sample sizes are closer to Figure 9(c) and as we

see from the simulation example, kernel estimates can successfully model such densely

populated datasets. In this simulation example we chose the instance sizes of 50 and

100 on purpose, because, software effort datasets used in our research fall into the

range of these numbers. Hence Figure 9(a) and Figure 9(b) can give us hints about

the kernel density estimation applied on software effort estimates. When we observe

behaviour of kernel estimates for low sample sizes in Figure 9(a) and Figure 9(b), it is

somewhat expected to observe lower performance values in sparsely populated datasets

like software effort datasets.

Although simulation study also confirms our intuitive feeling, data coming from

simulation can hardly model the real-life data in software effort estimation domain

and we wanted to observe whether results of intuitive examples would also hold for

real-life datasets.



15

(a) 50 Sample Points

(b) 100 Sample Points

(c) 1000 Sample Points

Fig. 9 The effect of sample size and bandwidth on kernel density estimation. The choice of
optimum bandwidth (h value) is important. However, even with the optimum bandwidth, one
still needs enough number of points for successful kernel density estimation. In this figure the
best h value is 1. In terms of sample size, the value of 50 appears to be too small. As we
increase the sample size to 100, we get better fit between estimated and actual probability
values. But for a very close fit, we need to go up to 1000 sample points.
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5 Results

As we have mentioned before, we will evaluate the effect of weighting closest analogies

via kernel density estimation in a WABE model according to three performance mea-

sures: Win-tie-loss values, MdMRE and MMRE. In this section we present the results.

We first evaluate the MMRE and MdMRE results for each dataset and then present

the win-tie-loss values.

5.1 Evaluation of MRE-Based Measures

The MdMRE and MMRE values of kernel weighted WABE for Cocomo81, Nasa93 and

Desharnais datasets are provided in Figure 10, Figure 11 and Figure 12 respectively.

Similar to the notation of the previously introduced figures, kernel weighted settings

are shown with a +W sign and the dynamic k is represented with a d symbol.

5.1.1 Results for Cocomo81

In Figure 10 we see the MdMRE and MMRE values for Cocomo81. For the same k

value WABE fails to improve ABE0 and smaller k values yield lower MdMRE and

MMRE values. Furthermore application of different kernels for weighting in WABE

method does not make a significant change in terms of MdMRE and MMRE results.

Changing bandwidths for kernels does not create a recognizable pattern in the results

either.

5.1.2 Results for Nasa93

Figure 11 lists the MdMRE as well as MMRE results for Nasa93 dataset. As we can

see from Figure 11, different kernel types generate very similar results of WABE for

various number of analogies (k values). In other words, change of kernel does not have

a considerable effect on the performance of WABE. Furthermore, small changes due to

change of kernels do not follow a particular pattern.

Like the change of kernels, changing bandwidth for a particular kernel has almost

non-existent effect. We see in Figure 11 that different bandwidths generate very close

MdMRE and MMRE results of WABE. More importantly there is no observable pattern

in the changes due to kernel or bandwidth alterations. Another common property of

Figure 11 to MdMRE-MMRE results of of Cocomo81 is that ABE0 methods gain

higher estimation accuracies (lower MdMRE and MMRE values).

5.1.3 Results for Desharnais

We provide the MdMRE and MMRE values for Desharnais dataset in Figure 12. Among

all the kernels-bandwidth combinations we do not see a case where WABE improves the

performance of ABE0. Therefore, particular characteristic of being indifferent to kernel

methods that we observed in previous experiments is valid for Desharnais dataset as

well. Furthermore, what we see from Figure 12 is that instead of improving ABE0

methods, kernel weighted WABE methods generate considerably worse MdMRE and

MMRE results. Only in one case (Epanechnikov kernel) do the MdMRE and MMRE

values for WABE goes down to values around 0.6. However, that is still far worse than

the standart ABE0 values.
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5 0.35 0.37 0.36 0.37 0.39 0.43 0.35 0.37 0.43 0.41
7 0.37 0.40 0.39 0.40 0.44 0.48 0.40 0.41 0.45 0.45
9 0.43 0.44 0.44 0.44 0.47 0.53 0.46 0.47 0.49 0.50
d 0.79 1.32 0.82 1.32 0.78 1.19 0.62 0.72 0.61 0.66
3+W 0.82 0.80 0.77 0.80 0.79 0.78 0.78 0.77 0.79 0.79
5+W 0.90 0.88 0.87 0.88 0.88 0.87 0.87 0.86 0.88 0.87
7+W 0.92 0.89 0.91 0.89 0.92 0.90 0.91 0.90 0.92 0.91
9+W 0.93 0.90 0.93 0.90 0.94 0.92 0.93 0.92 0.94 0.92
d+W 0.94 0.86 0.97 0.86 0.98 0.95 0.97 0.94 0.96 0.94
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3 0.33 0.36 0.28 0.35 0.33 0.36 0.36 0.39 0.33 0.39
5 0.36 0.39 0.35 0.38 0.36 0.38 0.39 0.41 0.39 0.42
7 0.40 0.42 0.39 0.41 0.40 0.41 0.43 0.44 0.44 0.45
9 0.43 0.46 0.45 0.47 0.45 0.46 0.47 0.50 0.49 0.50
d 0.82 1.65 0.69 1.06 0.63 0.72 0.54 0.61 0.68 0.90
3+W 0.82 0.81 0.72 0.72 0.73 0.73 0.76 0.75 0.76 0.74
5+W 0.90 0.88 0.73 0.72 0.75 0.72 0.78 0.74 0.78 0.73
7+W 0.92 0.91 0.74 0.69 0.75 0.70 0.78 0.72 0.77 0.71
9+W 0.94 0.91 0.74 0.69 0.75 0.68 0.77 0.71 0.77 0.70
d+W 0.92 0.84 0.78 0.80 0.76 0.71 0.77 0.70 0.77 0.77
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3 0.38 0.40 0.25 0.34 0.30 0.35 0.33 0.35 0.28 0.34
5 0.41 0.43 0.33 0.36 0.35 0.37 0.36 0.37 0.33 0.36
7 0.44 0.47 0.36 0.39 0.37 0.39 0.40 0.41 0.38 0.39
9 0.50 0.54 0.43 0.44 0.43 0.44 0.46 0.46 0.44 0.44
d 0.56 0.64 0.44 0.47 0.60 0.60 0.50 0.52 0.51 0.54
3+W 0.84 0.83 0.66 0.67 0.68 0.68 0.69 0.69 0.68 0.68
5+W 0.92 0.89 0.65 0.65 0.67 0.65 0.68 0.66 0.67 0.65
7+W 0.93 0.90 0.64 0.61 0.67 0.62 0.68 0.63 0.66 0.62
9+W 0.94 0.89 0.65 0.61 0.66 0.61 0.67 0.63 0.65 0.61
d+W 0.94 0.89 0.65 0.61 0.69 0.66 0.68 0.63 0.67 0.63
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3 0.42 0.42 0.33 0.35 0.33 0.37 0.33 0.38 0.41 0.40
5 0.43 0.43 0.36 0.36 0.37 0.40 0.36 0.40 0.43 0.42
7 0.46 0.46 0.39 0.40 0.40 0.42 0.40 0.45 0.47 0.46
9 0.49 0.52 0.44 0.44 0.44 0.47 0.45 0.49 0.50 0.51
d 0.59 0.65 0.66 0.99 0.63 0.74 0.60 0.67 0.61 0.69
3+W 0.84 0.83 0.69 0.69 0.71 0.70 0.70 0.70 0.73 0.73
5+W 0.92 0.89 0.68 0.66 0.70 0.68 0.68 0.67 0.71 0.69
7+W 0.94 0.90 0.67 0.63 0.68 0.64 0.66 0.63 0.70 0.66
9+W 0.95 0.91 0.67 0.62 0.67 0.63 0.66 0.63 0.70 0.65
d+W 0.95 0.90 0.71 0.79 0.70 0.71 0.69 0.68 0.71 0.70

Fig. 10 MdMRE and MMRE results for Cocomo81 dataset. The column k lists the k values.
+W stands for weighting, i.e. WABE. Cocomo81 results confirm the previous conclusions: 1)
Neither the bandwidth nor the kernel type have a significant effect on the performance and 2)
WABE via kernel methods do not outperform ABE0.

5.1.4 IRWM Results for All Datasets

Figure 13 presents our last table for MdMRE and MMRE results. The difference be-

tween the previous MdMRE-MMRE results and the ones in Figure 13 is that previous

results belong to a WABE method in which weighting was done via non-parametric

methods (minimum human interaction), whereas results in Figure 13 belong to a WABE

method whose weights are assigned by human experts (complete human dependence).

The weighting strategies between previous figures and Figure 13 are obviously differ-

ent. However, the trend in the results are very alike, i.e. in none of the 3 datasets can

WABE methods outperform ABE0 methods.
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T
ri
a
n
g
u
la
r

3 0.32 0.34 0.30 0.35 0.45 0.41 0.29 0.35 0.30 0.36
5 0.40 0.37 0.40 0.38 0.46 0.42 0.31 0.36 0.40 0.39
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9 0.42 0.43 0.40 0.45 0.47 0.48 0.37 0.43 0.40 0.46
d 0.32 0.34 0.40 0.49 0.50 0.60 0.31 0.36 0.44 0.54
3+W 0.83 0.79 0.76 0.72 0.79 0.74 0.78 0.73 0.80 0.74
5+W 0.90 0.86 0.77 0.71 0.78 0.73 0.77 0.72 0.78 0.73
7+W 0.92 0.89 0.76 0.71 0.77 0.72 0.76 0.71 0.78 0.73
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3 0.29 0.33 0.34 0.34 0.45 0.39 0.45 0.40 0.48 0.43
5 0.39 0.36 0.40 0.36 0.45 0.41 0.46 0.42 0.48 0.45
7 0.39 0.40 0.41 0.40 0.46 0.45 0.47 0.45 0.49 0.49
9 0.39 0.44 0.40 0.43 0.46 0.48 0.47 0.48 0.49 0.52
d 0.40 0.50 0.57 0.71 0.45 0.50 0.47 0.46 0.62 0.72
3+W 0.83 0.79 0.74 0.71 0.76 0.73 0.75 0.72 0.80 0.75
5+W 0.90 0.86 0.71 0.68 0.74 0.70 0.72 0.68 0.75 0.71
7+W 0.93 0.90 0.68 0.66 0.72 0.69 0.70 0.67 0.73 0.70
9+W 0.95 0.92 0.67 0.65 0.70 0.68 0.68 0.66 0.71 0.69
d+W 0.96 0.94 0.66 0.71 0.68 0.67 0.69 0.66 0.68 0.72
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3 0.29 0.34 0.41 0.37 0.43 0.35 0.25 0.32 0.46 0.43
5 0.37 0.37 0.41 0.39 0.43 0.37 0.28 0.34 0.47 0.44
7 0.38 0.41 0.44 0.42 0.44 0.40 0.32 0.38 0.49 0.48
9 0.38 0.44 0.42 0.45 0.43 0.43 0.33 0.41 0.49 0.51
d 0.36 0.42 0.67 0.82 0.48 0.59 0.30 0.33 0.51 0.63
3+W 0.83 0.79 0.78 0.72 0.69 0.68 0.72 0.69 0.78 0.74
5+W 0.90 0.86 0.76 0.70 0.67 0.64 0.70 0.66 0.74 0.70
7+W 0.93 0.90 0.73 0.69 0.66 0.63 0.69 0.65 0.72 0.69
9+W 0.94 0.92 0.71 0.68 0.65 0.63 0.67 0.64 0.70 0.68
d+W 0.93 0.91 0.70 0.83 0.63 0.65 0.71 0.67 0.66 0.68

Fig. 11 MdMRE and MMRE results for Nasa93 dataset. Neither change of kernel nor the
change of bandwidth generates a considerable difference in results. Furthermore, small changes
in MdMRE and MMRE values due to different kernel-bandwidth combinations do not follow
a regular pattern. Another cocnlusions from this figure is that WABE fails to improve ABE0
and lower k values generate lower MdMRE-MMRE values.

5.2 Evaluation of WIN-TIE-LOSS Results

Since we have 10 settings for each kernel subject to 20 runs, the sum of win, tie and

loss values can be at most 180 ((10 settings - 1 setting itself) * 20 = 180 ).

5.2.1 Results for Cocomo81

In Figure 14 the win-tie-loss values for Cocomo81 are given. The first observationg

we can make from Figure 14 is that smaller number of analogies have always attained

higher win values and lower loss values. In other words, in all treatments k = 3 attains

the highest win and the lowest loss values.
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7 0.24 0.27 0.29 0.30 0.24 0.27 0.21 0.27 0.28 0.30
9 0.25 0.28 0.30 0.32 0.26 0.28 0.23 0.28 0.30 0.31
d 0.30 0.37 0.36 0.51 0.30 0.34 0.30 0.39 0.44 0.63
3+W 0.77 0.77 0.67 0.66 0.64 0.63 0.65 0.63 0.65 0.64
5+W 0.87 0.85 0.64 0.62 0.62 0.60 0.62 0.60 0.62 0.61
7+W 0.90 0.89 0.62 0.59 0.60 0.57 0.59 0.56 0.60 0.58
9+W 0.92 0.90 0.61 0.58 0.58 0.55 0.58 0.54 0.59 0.56
d+W 0.95 0.94 0.56 0.54 0.56 0.53 0.54 0.51 0.53 0.59
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3 0.28 0.30 0.29 0.30 0.20 0.25 0.24 0.26 0.21 0.26
5 0.29 0.30 0.29 0.31 0.22 0.25 0.23 0.26 0.23 0.26
7 0.31 0.31 0.30 0.31 0.23 0.26 0.24 0.26 0.24 0.27
9 0.33 0.32 0.32 0.32 0.24 0.27 0.26 0.28 0.26 0.28
d 0.36 0.37 0.36 0.38 0.23 0.26 0.33 0.42 0.26 0.27
3+W 0.79 0.77 0.66 0.65 0.64 0.63 0.63 0.63 0.64 0.63
5+W 0.87 0.85 0.64 0.62 0.61 0.60 0.60 0.59 0.61 0.59
7+W 0.90 0.88 0.61 0.58 0.60 0.57 0.57 0.55 0.58 0.56
9+W 0.92 0.90 0.59 0.56 0.58 0.55 0.57 0.54 0.56 0.54
d+W 0.93 0.92 0.57 0.54 0.60 0.59 0.54 0.52 0.67 0.67

Fig. 12 MdMRE and MMRE results for Desharnais dataset. None of the different kernel-
bandwidth combinations can improve the performance of WABE to a point better than ABE0
method.

Remember that the total sum of win-tie-loss values for a single treatment can be

at most 180. For all settings, the tie values are most of the time less than 45 (less than

25% of all the comparisons), which means that in 75% or more of the comparisons

there is a statistical difference between two methods. Furthermore, when we mutually

compare the results of ABE0 with WABE for a single k value, we see that for none of

the k values weighting via kernel density estimation improves the win values.

From Figure 14 we can also see the effect of applying different kernels and different

bandwidths on the performance of WABE. In terms of kernels, we can say that there

is not a considerable performance difference between different types. Note that our

results are consistent with prior research that reported different kernels yield similar

results [?]. For Cocomo81 dataset we observe that the same fact is also valid for software

effort estimation data.
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d 0.86 2.04 0.80 1.79 0.29 0.31
3+W 0.59 0.58 0.57 0.56 0.50 0.51
5+W 0.64 0.62 0.61 0.60 0.55 0.55
7+W 0.66 0.64 0.63 0.62 0.57 0.57
9+W 0.68 0.65 0.64 0.63 0.59 0.58
d+W 0.79 1.41 0.74 0.95 0.60 0.58

Fig. 13 MdMRE and MMRE results of Cocomo81, Nasa93 and Desharnais for IRWM
weighted WABE. k stands for the number of analogies used for estimation and +W sign
means that IRWM weighted WABE is used for estimation. Similar to kernel weighted WABE,
expert weighted WABE can not perform an improvement to ABE0 method.

The bandwidth was reported to be influential in different contexts [?,?,?]. However,

we are unable to observe the considerable effect of various bandwidths on software

effort estimation data. In Figure 14 the win-tie-loss values kernels when used with 5

different bandwidths are very similar. In fact, for the uniform kernel the performance is

completely identical between different bandwidths. Therefore, from Cocomo81 dataset

we see that software effort data behaves differently than other data types, i.e. unlike

spatial data software effort data does not respond to changes in bandwidths.

5.2.2 Results for Nasa93

Figure 15 shows the win-tie-loss results for Nasa93 dataset. The results for Nasa93

are extremely similar to Cocomo81, that is in all cases the highest win values belong

to k = 3 and tie values are usually around 25% of 180 comparisons. Furthermore,

application of different kernels for WABE does not yield a considerable difference.

For instance, for the treatment k = 3 and h = 1/sqrt(size) the difference between

the highest and the lowest win value (141 and 122 respectively) is only 19, which is

around 10% of all 180 comparisons. Similar to the effect of changing kernels, changing

bandwidth also falls short of providing any noticable increase or decrease in estimation

performance. Furthermore, we need to point out in Figure 15 is hat in none of the k

values has WABE provided any improvement in estimation accuracy. This shows us

that like Cocomo81 dataset, Nasa93 dataset does not favor WABE over ABE0.

5.2.3 Results for Desharnais

The win-tie-loss values for our last dataset Desharnais are given in Figure 16. The

interpretation of Figure 16 shows us a similar scenario to previous two datasets: Highest

win values were attained by k = 3 and the treatments are statistically different from

one another for most of the cases. Furthermore, just like the Cocomo81 and Nasa93

datasets, the effect of different kernels as well as the effect of various bandwidths are

negligible and do not follow a certain pattern. Another similarity is that in none of

the kernel-bandwidth combinations has WABE yielded higher estimation performance

than ABE0.
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3 144 32 4 144 32 4 144 32 4 144 32 4 144 32 4
5 127 48 5 127 48 5 127 48 5 127 48 5 127 48 5
7 116 48 16 116 48 16 116 48 16 116 48 16 116 48 16
9 113 28 39 113 28 39 113 28 39 113 28 39 113 28 39
d 76 24 80 76 24 80 76 24 80 76 24 80 76 24 80
3+W 74 51 55 74 51 55 74 51 55 74 51 55 74 51 55
5+W 28 34 118 28 34 118 28 34 118 28 34 118 28 34 118
7+W 12 41 127 12 41 127 12 41 127 12 41 127 12 41 127
9+W 6 34 140 6 34 140 6 34 140 6 34 140 6 34 140
d+W 16 32 132 16 32 132 16 32 132 16 32 132 16 32 132

T
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a
n
g
u
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r

3 147 31 2 147 31 2 147 31 2 147 31 2 147 31 2
5 132 46 2 132 46 2 132 46 2 132 46 2 132 46 2
7 123 43 13 123 43 14 123 43 14 123 43 14 123 43 14
9 116 23 40 116 23 41 116 23 41 116 23 41 116 23 41
d 97 2 80 97 2 81 97 2 81 97 2 81 97 2 81
3+W 78 17 85 78 17 85 78 17 85 78 17 85 78 17 85
5+W 54 8 117 54 8 118 54 8 118 54 8 118 54 8 118
7+W 22 23 134 22 23 135 22 23 135 22 23 135 22 23 135
9+W 9 25 145 9 25 146 9 25 146 9 25 146 9 25 146
d+W 0 22 157 0 22 158 0 22 158 0 22 158 0 22 158

E
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3 145 33 1 145 33 2 145 33 2 145 33 2 145 33 2
5 139 38 2 139 38 3 139 38 3 139 38 3 139 38 3
7 124 40 15 124 40 16 124 40 16 124 40 16 124 40 16
9 116 18 45 116 18 46 116 18 46 116 18 46 116 18 46
d 97 4 78 97 4 79 97 4 79 97 4 79 97 4 79
3+W 79 16 85 79 16 85 79 16 85 79 16 85 79 16 85
5+W 41 18 120 41 18 121 41 18 121 41 18 121 41 18 121
7+W 10 42 127 10 42 128 10 42 128 10 42 128 10 42 128
9+W 6 40 133 6 40 134 6 40 134 6 40 134 6 40 134
d+W 2 29 148 2 29 149 2 29 149 2 29 149 2 29 149

G
a
u
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n

3 136 42 2 137 32 11 138 38 4 139 36 5 142 32 6
5 130 48 2 129 40 11 133 44 3 131 44 5 132 42 6
7 116 57 7 117 41 22 122 47 11 119 46 15 122 41 17
9 114 33 33 108 19 53 115 25 40 114 26 40 113 22 45
d 95 7 78 78 27 75 88 16 76 70 32 78 95 4 81
3+W 66 34 80 80 60 40 80 24 76 79 40 61 85 21 74
5+W 27 39 114 59 13 108 61 3 116 61 14 105 60 5 115
7+W 7 50 123 41 10 129 40 3 137 39 7 134 38 7 135
9+W 4 53 123 20 10 150 19 4 157 20 6 154 20 7 153
d+W 1 45 134 0 10 170 0 4 176 0 5 175 0 5 175

Fig. 14 Win-tie-loss results for Cocomo81. The WABE experiments are shown with a +W
sign, whereas the dynamic k is represented with a d under the column k . We used 5 different
bandwidths (represented with h) for 4 different kernels. Similar to other data types, for Co-
como81 we do not see an improvement coming from different kernels. However, unlike other
data types, we are unable to observe an improvement coming from change of bandwidth values.

5.2.4 IRWM Results for All Datasets

Up to this point we have observed 315 different settings and saw that neither kernel nor

the bandwidth change does have a considerable impact on the performance of WABE.

Furthermore, we found out that simple ABE0 approach yields higher performance

measures in terms of win-tie-loss values. However, kernel estimation is not the only

alternative of weighting in a WABE model. Another WABE weighting approach we

use in this research is so called IRWM [?,?]. The win-tie-loss values of all 3 datasets for

IRWM weighted WABE are given in Figure 17. Since IRWM is a different weighting

approach than kernel density estimation, we do not have kernels or bandwidths to

compare in that scenario. On the other hand with IRWM results we can mutually
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3 141 39 0 138 42 0 146 34 0 138 42 0 146 34 0
5 135 45 0 127 52 1 130 49 1 129 51 0 133 46 1
7 120 52 8 111 56 13 119 46 15 120 53 7 118 50 12
9 119 32 29 105 50 25 116 36 28 120 39 21 114 35 31
d 100 2 78 100 38 42 100 13 67 100 1 79 100 13 67
3+W 76 4 100 80 0 100 80 0 100 80 0 100 80 0 100
5+W 51 10 119 60 0 120 60 0 120 60 0 120 60 0 120
7+W 27 18 135 40 0 140 40 0 140 40 0 140 40 0 140
9+W 16 15 149 20 0 160 20 0 160 20 0 160 20 0 160
d+W 2 9 169 0 0 180 0 0 180 0 0 180 0 0 180

T
ri
a
n
g
u
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r

3 122 47 11 119 46 15 125 43 12 128 40 12 110 53 17
5 115 52 13 107 57 16 115 54 11 120 49 11 98 63 19
7 103 60 17 97 58 25 104 57 19 110 49 21 88 61 31
9 99 41 40 91 52 37 104 46 30 109 35 36 83 36 61
d 90 32 58 85 39 56 90 14 76 89 5 86 98 63 19
3+W 91 44 45 71 68 41 50 57 73 55 62 63 77 77 26
5+W 59 12 109 11 59 110 11 50 119 3 60 117 7 73 100
7+W 32 20 128 6 67 107 15 53 112 9 61 110 2 77 101
9+W 16 22 142 10 68 102 19 54 107 12 59 109 9 66 105
d+W 0 16 164 17 58 105 37 32 111 33 44 103 7 73 100

E
p
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3 139 41 0 135 43 2 144 35 1 133 47 0 137 43 0
5 126 54 0 118 61 1 133 47 0 124 55 1 121 58 1
7 122 48 10 108 56 16 122 48 10 112 62 6 111 59 10
9 121 41 18 103 56 21 119 31 30 112 49 19 112 53 15
d 100 0 80 102 52 26 99 4 77 100 25 55 100 25 55
3+W 77 3 100 0 22 158 0 22 158 0 15 165 0 7 173
5+W 48 13 119 16 34 130 16 34 130 15 28 137 16 28 136
7+W 21 24 135 24 44 112 26 42 112 27 32 121 24 36 120
9+W 14 24 142 27 49 104 34 40 106 38 30 112 39 34 107
d+W 2 12 166 42 33 105 39 33 108 61 13 106 57 23 100

G
a
u
ss
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n

3 124 44 12 122 45 13 102 60 18 127 41 12 117 52 11
5 113 54 13 113 54 13 92 70 18 119 50 11 114 56 10
7 97 63 20 103 57 20 86 71 23 108 55 17 105 61 14
9 90 53 37 105 46 29 83 66 31 108 38 34 107 52 21
d 88 42 50 88 13 79 83 61 36 85 8 87 90 13 77
3+W 92 48 40 60 52 68 75 60 45 50 47 83 50 46 84
5+W 55 16 109 7 38 135 20 37 123 13 37 130 8 32 140
7+W 23 33 124 16 50 114 17 56 107 16 48 116 17 49 114
9+W 4 40 136 25 44 111 19 61 100 23 48 109 26 46 108
d+W 0 35 145 44 35 101 24 56 100 48 34 98 47 31 102

Fig. 15 Win-tie-loss results for Nasa93. Results we have for Nasa93 are very similar to Co-
como81 dataset: Neither changing kernels nor the bandwidths provides a noticable change in
win-tie-loss values. Also ABE0 results are better than the WABE values.

compare the estimation performances of WABE and ABE0 approaches. Our reading

from Figure 17 is that for none of the three dataset does WABE outperform ABE0. In

other words, just like the kernel weighted WABE, IRWM weighted WABE also fails to

improve the ABE0 performance. Therefore, in a total of 330 settings (315 for kernel

weighted WABE and 15 for IRWM weighted WABE) we see that WABE is unable to

improve the performance of simple ABE0 approach.
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3 123 55 2 123 57 0 120 60 0 120 59 1 126 54 0
5 124 56 0 121 59 0 118 62 0 119 61 0 121 59 0
7 116 61 3 116 62 2 115 64 1 115 64 1 114 64 2
9 116 53 11 115 56 9 115 59 6 115 59 6 115 50 15
d 101 15 64 100 16 64 100 19 61 101 17 62 101 19 60
3+W 79 1 100 80 0 100 80 0 100 80 0 100 80 0 100
5+W 52 9 119 60 0 120 60 0 120 60 0 120 60 0 120
7+W 26 21 133 40 0 140 40 0 140 40 0 140 40 0 140
9+W 18 16 146 20 0 160 20 0 160 20 0 160 20 0 160
d+W 0 3 177 0 0 180 0 0 180 0 0 180 0 0 180

T
ri
a
n
g
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3 120 60 0 122 58 0 122 57 1 114 65 1 112 68 0
5 116 64 0 122 58 0 120 60 0 108 72 0 103 77 0
7 102 76 2 115 63 2 114 65 1 100 79 1 100 76 4
9 101 64 15 111 56 13 104 69 7 100 70 10 100 65 15
d 96 48 36 100 25 55 101 27 52 100 70 10 104 76 0
3+W 0 0 180 2 34 144 0 44 136 0 46 134 0 47 133
5+W 20 15 145 3 53 124 5 59 116 3 65 112 8 66 106
7+W 33 50 97 14 53 113 12 62 106 11 63 106 16 64 100
9+W 36 49 95 23 54 103 17 61 102 19 61 100 26 53 101
d+W 39 48 93 42 38 100 27 52 101 19 61 100 3 64 113

E
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3 132 48 0 130 50 0 126 54 0 123 57 0 123 57 0
5 118 61 1 126 53 1 118 61 1 120 60 0 123 57 0
7 116 56 8 119 59 2 105 73 2 114 65 1 117 60 3
9 114 57 9 118 49 13 100 68 12 114 53 13 110 61 9
d 103 12 65 93 10 77 100 46 34 100 23 57 100 19 61
3+W 80 0 100 1 26 153 0 21 159 0 12 168 0 18 162
5+W 57 2 121 9 41 130 10 43 127 12 36 132 11 36 133
7+W 34 8 138 23 42 115 18 59 103 23 42 115 21 49 110
9+W 20 8 152 34 35 111 29 51 100 35 36 109 30 46 104
d+W 0 0 180 49 31 100 32 48 100 54 26 100 47 33 100

G
a
u
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n

3 121 59 0 122 58 0 126 54 0 126 54 0 123 57 0
5 121 59 0 115 65 0 120 60 0 119 61 0 115 64 1
7 117 62 1 113 65 2 118 59 3 113 65 2 113 65 2
9 115 55 10 109 63 8 118 53 9 113 55 12 108 65 7
d 100 17 63 101 29 50 98 12 70 100 23 57 102 27 51
3+W 80 0 100 0 17 163 0 21 159 0 19 161 0 14 166
5+W 54 4 122 10 30 140 10 44 126 10 38 132 10 36 134
7+W 35 11 134 25 36 119 20 48 112 17 45 118 23 43 114
9+W 20 7 153 36 36 108 32 36 112 31 37 112 33 40 107
d+W 0 0 180 59 21 100 50 29 101 65 15 100 55 25 100

Fig. 16 Win-tie-loss results for Desharnais. The implications we have observed in Cocomo81
and Nasa93 repeats for Desharnais dataset: Change of kernels does not provide a significant
change in win-tie-loss values and neither does changing bandwidth. There are some small
changes in different kernel-bandwidth combinations but we can not observe a pattern. Fur-
thermore, ABE0 has a better estimation performance than WABE.
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3 143 37 0 141 39 0 126 54 0
5 128 50 2 126 54 0 120 60 0
7 115 55 10 115 53 12 115 62 3
9 101 46 33 117 43 20 116 55 9
d 0 56 124 97 16 67 101 13 66
3+W 88 25 67 78 4 98 80 0 100
5+W 49 48 83 49 14 117 50 10 120
7+W 28 59 93 22 29 129 24 25 131
9+W 23 52 105 19 19 142 16 19 145
d+W 0 22 158 0 1 179 0 6 174

Fig. 17 Win-tie-loss results of Cocomo81, Nasa93 and Desharnais for IRWM weighted WABE.
The notation in this figure is similar to previous figures: Weighting is represented by a +W
sign and dynamic kernel is represented by a d sign. IRWM is a different weighting strategy
than kernel weighting, hence we do not see kernel or bandwidth information in this figure.
Results are similar to previous scenarios: Lower k values attain higher win values and lower
loss values. Furhermore, most importantly WABE is unable to outperform ABE0.
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6 Threats to Validity

We will address the threats to validity of this research under 3 categories: Internal

validity, external validity and construct validity. Before addressing our research in

terms of these categories of threats to validity, we would like to give their conscise

definitions.

– Internal validity asks to what extent the cause-effect relationship between depen-

dent and independent variables holds [?].

– External validity questions the ability to generalize the results [?].

– Construct validity (i.e. face validity) makes sure that we in fact measure what we

intend to measure [?].

The perfect case for the satisfaction of internal validity would be the application

of a theory that was learned from past experiences to new situations. However, data

in software effort estimation domain is a relatively sparse resource and most of the

studies make use of commonly-explored datasets like the ones we use in this research.

Therefore, the issue of internal validity thereatens all effort studies that use past data.

However, we can mitigate this threat by simulating the behavior of a learned theory

in new settings. In our study, we utilize leave-one-out method for all treatments to

address such internal validity issues. Leave-one-out selection enables us to separate

the training and test sets completely in each experiment, thereby making the test sets

completely new situations for the training sets.

To observe the generalizability of our results, we perform extensive experiments

on 3 datasets. The datasets are widely used in software effort estimation commu-

nity and have very diffferent characteristics in terms of various criteria such as size,

number of features, types of features and measurement method. Furthermore datasets

are subject to rigorous experimentation where we investigate the effects of WABE on

performance under 330 settings. Our observations for all the settings are extremely

similar. Therefore, for the datasets used in our research, our humble opinion is that

the results have external validity. However, to have full confidence in our claims when

saying that WABE methods fail to improve ABE0, our study needs to be replicated

on other dataset and possibly with different weighting strategies.

The choice of performance measures is an open issue in software effort estima-

tion domain. For example MMRE and MdMRE are recognized as de facto evaluation

criteria for cost estimation models [?] and they appear as a practical performance eval-

uation option to a number of researchers [?, ?, ?]. On the other hand, use of MMRE

as well as MdMRE is still criticized for being unreliable [?,?]. Foss et. al. for instance

shows that MRE can be misleding, if used as the only performance criterion [?]. There-

fore, a study willing to have construct validity should not merely rely on MRE-based

measures. To measure what we really intend to measure, we make use of win-tie-loss

measures apart from MMRE and MdMRE. Of course all these criteria have their in-

herent weaknesses and strenghts. Our aim in combining these measures is to use them

in a complementary manner. For example strenght of MMRE as well as MdMRE is

that they give a general picture of per instance-based evaluation. However, mean and

median error measures become too general when averaged over 20 runs and we do not

have much knowledge regarding individual runs. Win-tie-loss measures on the other

hand compare each method with one-another for each run and allow us to have a bet-

ter opinion concerning individual runs. Furthermore, MMRE and MdMRE show us the

difference between two methods in terms of MRE. But this difference may not always



26

have statistical significance. To ensure the statistical validity of our results we make

use of Mann-Whitney U test at a significance level of 95% in win-tie-loss calculations.

Therefore, our use of different performance measures such as MMRE, MdMRE as well

as win-tie-loss, provides different perspectives of the results and lets us know if the

results have statistical significance.

7 Conclusions

In this research we tried kernel density estimation as a weighting strategy for WABE.

We conducted extensive experiments with various kernels and observed the perfor-

mance variations between ABE0 and WABE. For the datasets used in our research

(Cocomo81, Nasa93 and Desharnais) there was not a single case where WABE out-

performed ABE0. Unlike previous studies that use single kernel and report improved

accuracy values [?, ?], we did not observe such an effect on software effort datasets.

The reason for different results between previous research and our research may lie in

the different characteristics of the datasets used in different studies. For instance none

of the previous studies we searched through uses software effort datasets and the used

datasets are much more densely populated than software effort datasets.

The literature is doubtful about the ability to make model rankings as offered in

this paper between ABE0 and WABE [?,?,?]. For example Foss et. al. comments that

“...is futile to search for the Holy Grail: A single, simple-to-use, universal goodness-of-

fit kind of metric, which can be applied with ease to compare (different methods)” [?].

The evidence offered in literature that such rankings may change is based on:

– the random selection of data,

– the dataset used,

– the evaluation metric used for comparison.

However, a convincing counter example to this scenario would be to show that method

A is better than method B over multiple datasets, over multiple random selections of

train/test data and over multiple evaluation criteria. In this research:

– we used 3 of the most commonly utilized public datasets,

– we adopted leave-one-out method in which every instance is considered as a test

instance once,

– covered 330 different settings,

– evaluated our results w.r.t. to 3 different evaluation criteria that have different

inherent assumptions.

Therefore, we believe our results point to the conclusion that in terms of estimation

accuracy it is possible to rank ABE0 methods better than kernel weighted WABE

methods in software effort estimation.

7.1 Answers To Research Questions

In this section we map the evaluation of our results to particular research questions

that guided us in this research.
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RQ1 Is there any evidence that weighting improves the performance of ABE?

In our experiments we do not see a single case in which weighting improved ABE.

On the contrary, for all settings ABE0 yields much better results than WABE.

Therefore, the evidence suggests that weighting decreases estimation accuracy in

ABE systems.

RQ2 What is the effect of different kernels for weighting ABE?

We observe inconsistent and extremely limited effect due to change of kernels. There

are only slight variations in performance when different kernels are used. However,

performance variations do not follow a definite pattern and they are far from being

considerable.

RQ3 What is the effect of different bandwidths when used for weighting ABE?

Change of bandwidths shows a very limited and random effect on the accuracy

values too. Therefore, we cannot say that applying different bandwidths has a

certain effect on WABE performance.

RQ4 How do the characteristics of software effort datasets influence the performance of

kernel weighting for ABE?

In this paper we reported different results than the previous studies that used kernel

estimation on different data types. This fact can be attributed to the particular

characteristics of software effort datasets. Effort datasets are much smaller than

most of the datasets in different domains. The dependent variable (effort value of

a completed project) is highly variable. Furthermore, the attribute values are very

open to personal judgment and error. All these factors suggest that non-parametric

methods may be failing due to inherent characteristics of software effort data.

RQ5 Which parameters among kernel, bandwidth and selected analogy number matter

the most in terms of estimation accuracy?

Our results showed that in a WABE model with kernel density estimation nei-

ther kernel nor the bandwidth matters. However, the selected number of analogies

(k) matters greatly. Unlike change of kernel and bandwidth that did not provide

any noticable change in terms of accuracy values, k value influenced performance

measures considerably and we always observed higher accuracies for lower k values.

8 Future Work

We can identify 3 main domains in which this study may be extended:

1. Dataset: In this research we used 3 commonly used software effort datasets. How-

ever, this study may be replicated on other software effort datasets as well. Further-

more, ABE is not restricted to software effort estimation domain. Kernel density

estimation may be experimented on other ABE-applicable datasets as well.

2. Weighting Strategy: Weighting strategy in a WABE method may be completely

different than kernel density estimation. Another future direction can be experi-

mentation on different weighting strategies that are preferably based on different

assumptions.

3. Kernel Type: We used 5 kernels (including IRWM) as weighting strategies in our

research. But the ones used in this research are obviously not the only kernel

types. It may be the case that other particular kernels will perform differently than

the ones used here. Therefore, one future direction to this research would be the

investigation of different kernels for better performance.
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The experiments shown in this research took three months to research, design,

execute, then write up. It turns out that we could have spent the time more productively

on other issues. Our pre-experimental intuition that the right selection of kernel could

compensate for scarce data in effort estimation data sets turned out to be incorrect.

We suggest researchers willing to follow future directions to bear these facts in mind

as well.
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