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Abstract Analogy based estimation (ABE) generates an effort estimate for a new

software project through adaptation of similar past projects (a.k.a. analogies). Majority

of ABE methods follow uniform weighting in adaptation procedure. In this research

we investigated non-uniform weighting through kernel density estimation. After an

extensive experimentation of 19 datasets, 3 evaluation criteria, 5 kernels, 5 bandwidth

values and a total of 2090 ABE variants, we found that: 1) non-uniform weighting

through kernel methods cannot outperform uniform weighting ABE and 2) kernel type

and bandwidth parameters do not produce a definite effect on estimation performance.

Hence, -provided that similar experimental settings are adopted- we discourage the use

of kernel methods as a weighting strategy in ABE.

Keywords Effort estimation, data mining, kernel function, bandwidth

1 Introduction

If a researcher or an industrial practitioner reads the literature on software effort esti-

mation, they will encounter a dauntingly large number of different estimation methods.

For example, the following is a partial list of some of the methods currently being used:

– Boehm uses linear regression [6].

– Shepperd prefers analogy-based methods [51].

– Auer et al. [3] uses extensive search to find weights for project features.

– Pendharkar et al. used Bayesian Network (BN) for effort estimation and incorpo-

rated BN into decision making procedure against risks [44].

– Mendes and Mosley used a data-driven Bayes net for web effort estimation [34].

– Li et al. combine feature weighting with instance selection [32].

This list is hardly complete. Elsewhere [28,38], we have studied all the different kinds

of Analogy-Based Estimation (hereafter, ABE) methods in the literature:

– ABE generates estimates by sampling the neighborhood of some test instance.

Address(es) of author(s) should be given
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– The exact sampling method is controlled by the kernel method which we divide into

uniform and non-uniform (here after U-ABE and N-ABE, respectively).

– Uniform methods treat all items in the local neighborhood in the same way.

– Non-uniform methods weight those neighbors in different ways.

Our list of ABE variants is presented in the next section: we can find over 17,000

different ways to configure ABE-style estimators. How we select the right method from

this large menagerie of possibilities? One way is to try many options, then see what

works best on the local data. Baker then Menzies et al., used exhaustive search through

all project features, learners and other variables [4, 37]. The CPU intensive nature of

that approach begs the question: is there a simpler way?

There is indirect evidence that there must be a simpler way. If we look at the size

of the training data available for effort estimation, it is usually only a few dozen (or

less) instances. For example:

– The data accessible to researchers in four recent publications [3, 4, 32, 36] have

median size of 13, 15, 33, 52, respectively.

– Later in this paper we list the 19 data sets used in this study: they vary in size

from 10 to 93 with a median of 28.

Given that the size of these data sets is so small, it seems unreasonable to believe

that (e.g.) complex multi-dimensional partitioning schemes can find more than more

simplistic methods such as “take the median of the variables in the local region”.

This is indeed the case. The experiments of this paper show that, for ABE, the

simplest kernel schemes are most often as good as anything else. This is an important

result since it means that future researchers have less to explore (at least, in the field

of ABE). Hopefully, if more researchers critically reviewed the space of options for

their tools, then we will arrive at a much smaller and much more manageable set of

candidate effort estimation methods.

The rest of the paper is organized as follows. To focus the paper, we will answer

the following research questions:

RQ1 Is there evidence that non-uniform weighting improves the performance of ABE?

RQ2 What is the effect of different kernels for non-uniform weighting in ABE?

RQ3 What is the effect of different bandwidths?

RQ4 How do the characteristics of software effort datasets influence the performance of

kernel weighting in N-ABE?

To do so, Section 2 summarizes our motivation of this story. Section 3 talks about the

value of negative results. In Section 4 we provide background information regarding

related work. Section 5 explains the adopted experimental methodology. In Section 6

results are presented. Section 7 is a discussion section and in Section 8 the threats to

the validity of the results are presented. In Section 9 we summarize our conclusions

and answer the research questions. Finally in Section 10 we list future directions of

this research.

Note that, for reasons of space, our results will be presented in a summary format.

For the full results, see http://goo.gl/qpQiD.

2 Motivation

This work is part of an on-going investigation into effort estimation. Effort estimation is

important since, those estimates are often wrong by a factor of four [6] or even more [19].
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As a result, the allocated funds may be inadequate to develop the required project. In

the worst case, over-running projects are canceled and the entire development effort is

wasted.

We study analogy-based estimation (ABE), for several reasons:

– It is a widely studied approach [3, 18,20,21,23,24,29–32,50,51,54].

– It works even if the domain data is sparse [42].

– Unlike other predictors, it makes no assumptions about data distributions or an

underlying model.

– When the local data does not support standard algorithmic/parametric models like

COCOMO, ABE can still be applied.

Based on a literature review of just one sub-section of the field [38], we have found at

least eight dimensions that distinguish different ABE methods:

A : The distance measure used to compute similarity;

B : The “neighborhood” function that decides what is a “near” neighbor;

C : The method used to summarize the nearest neighbors;

D : The instance selection mechanism;

E : The feature weighting mechanism;

F : The method for handling numerics, e.g. logging, discretization, etc.

That review found in the literature three to nine variants of A,B,C,D,E, F (which

combine to a total over 17,000 variants). Some of these variants can be ruled out,

straight away. For example, for ABE that reasons only about the single nearest neigh-

bor, then all the summarization mechanisms return the same result. Also, not all the

feature weighting techniques require discretization, thereby further decreasing the space

of options. However, even after discarding some combinations, there are still thousands

of possibilities to explore.

In our view, it is unacceptable that researchers continually extend effort estimation

methods without trying to prune away the less useful variants. To that end, in previous

work, we have tried to rank and prune estimation methods based on model selection [38]

or feature weighting [37] or instance selection [28].

We have had much recent success in pruning different variants:

– For COCOMO-style data [6], only four variants were demonstrably better than the

another 154 variants [38].

– Also, in non-COCOMO data, we have found 13 variants that perform better than

77 others [22].

This paper is our first exploration of kernel methods. Kernel methods are important

since they comment on many of the options within A,B,C,D,E, F listed above:

– Simpler kernel methods mean simple neighborhood and summarization methods.

– In theory, better estimates could be generated by a smarter sampling of the neigh-

borhood. For example, an intelligent selection of the kernel might compensate for

data scarcity.

We study kernel estimation since, if the effort data corresponds to a particular distri-

bution, then it would seem wise to bias that sampling by that distribution. Also, at

least one other research team in the field of effort estimation have also begun exploring

different kinds of kernel methods [35,36].

Despite the potential of kernel methods to improve effort estimation, it is an un-

explored area. For the most part, researchers in this area propose kernel methods with
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minimal motivation or experimentation [8, 14, 35, 36]. Hence, prior to performing the

experiments of this paper, we believed that kernel methods would be a rich source of

future insights into effort estimation:

– The space of sampling and weighting schemes seen in the SE literature is much

smaller than that seen in other fields (see for example the literature from data

mining or signal processing [13,15,43]).

– Hence, it seemed to us that a rigorous exploration of this under-explored area might

be a worthy topic of research, perhaps applying methods not yet used in the SE

literature.

This paper presents that rigorous exploration and leads to the the negative result

summarized in the conclusion (that simple kernel methods do as well as anything else,

at least for ABE).

3 On the Value of Negative Results

While it would have been gratifying to have found a positive result (e.g. that some

kernel method was very much better), it is important to report such negative results

as well. A very thorough discussion on the value of negative results can be found in [9].

The fundamental question is whether a negative result poses a positive knowledge.

Positive knowledge is defined by Browman et al. to be the ability of being certain, not

being either right or wrong [9]. However, not all certain conclusions are knowledge per

se. Common concerns are:

i. is the topic/hypothesis plausible,

ii. are the experiments sound,

iii. do the results propose “negative evidence” or “non-conclusive search” and

iv. will the reported results be valuable to future research.

As for i., research on weighting methods in ABE is quite plausible, see weighting

method proposed earlier by Mendes et al. [35,36]. In that respect, our evidence of neg-

ative results serve the purpose of guiding research away from conclusions (such as kernel

weighting can improve ABE performance) that would otherwise seem reasonable [9].

When presenting negative evidence it is crucially important to have sound and

extensive experimentation (condition ii.). This report rigorously investigates kernel

weighting on 19 datasets subject to 3 performance measures through appropriate sta-

tistical tests.

The idea behind condition iii. is that “one should disvalue inconclusive results” [9],

i.e. negative conclusions are more meaningful than uncertainty. The kernel weighting

experiments of this paper on a wide range of ABE variants are negative evidence to

conclude that it does not improve ABE performance, thereby satisfying iii. Finally

condition iv. questions the benefit of results to future research. After years of research,

effort estimation still suffers from conclusion instability. For stable conclusions, retiring

a considerable portion of search space is as important as the discovery of successful

applications. The contribution of this work is through retirement of 2090 of ABE

variants.
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4 Background

4.1 Software Effort Estimation

We can divide software effort estimation into at least two groups [48]: expert judgment

and model-based techniques. Expert judgment methods depend on consolidation of ex-

pert opinions regarding the cost of a new project and are widely used in software effort

estimation practices [16]. Expert judgment can be applied either explicitly (following a

method like Delphi [5]) or implicitly (informal meetings among experts). Unlike expert-

based methods, model-based techniques do not rely heavily on human judgment. Model

based techniques are products of:

1) Algorithmic and parametric approaches or

2) Induced prediction systems.

The first approach is the adaptation of an expert-proposed model to local data. A

widely known example to such an approach is Boehm’s COCOMO method [6]. The

second approach is particularly useful in the case where local data does not conform

to the specifications of the expert’s method. A few examples of induced prediction

systems are linear regression, neural nets, model trees and analogy based estimation [37,

49]. There are also successful applications where expert and model based techniques

are integrated to complement one another [7, 27]. In particular when such estimation

practices are employed iteratively over time, the estimation accuracy can significantly

be improved. For example in [53], an integrated approach called CoBRA was applied

in an iterative manner and accuracy was improved from 120% error down to 14%.

Analogy based estimation (ABE) or estimation by analogy (EBA) is a form of case

based reasoning (CBR) and it is grouped together with induced prediction systems.

ABE generates its estimate for a new project by gathering evidence from similar past

projects. When we analyze the previous research of experts on the domain of ABE

such as Shepperd et al. [51], Mendes et al. [36] and Li et al. [32], we can see a baseline

technique lying under all ABE methodologies. The baseline technique is composed of

the following steps:

– Form a table (training set) whose rows are completed past projects and whose

columns are independent variables (the features that define projects) and a depen-

dent variable (the recorded effort value).

– Decide on the number of similar projects (analogies) to use from the training set,

i.e k -value.

– For each test instance, select k analogies out of the training set.

– While selecting analogies, use a similarity measure (for example the Euclidean

distance).

– Before calculating similarity, apply a scaling measure on independent features

to equalize their influence on this similarity measure.

– Use a feature weighting scheme to reduce the effect of less informative features.

– Adapt the effort values of the k nearest analogies to come up with an effort estimate.

Following the steps of this baseline technique, we define a framework called ABE0.

ABE0 uses the Euclidean distance as a similarity measure, whose formula is given in

Equation 1. In Equation 1, wi corresponds to feature weights applied to independent

features. ABE0 framework does not favor any features over the others, therefore each

feature has equal importance in ABE0, i.e. wi = 1.



6

Distance =

√√√√ n∑
i=1

wi(xi − yi)2 (1)

The next step is deciding on how to adapt project costs. There is a wide variety

of adaptation strategies in the literature [33]. Using effort value of the nearest neigh-

bor [8], taking mean [41] or median [2] of closest analogies, inverse distance and inverse

rank weighted mean of closest analogies are among the commonly used adaptation

methods [33]. Angelis et al. suggest that as the number of the closest projects increase,

median is a robust solution [2]. They have found that taking median instead of mean

decreases the estimation error. We want the estimates of ABE0 framework to represent

the majority of selected instances and not greatly affected by extreme values. There-

fore, ABE0 returns the median effort values of the k nearest analogies. Since ABE0

implicitly assigns equal weights to k nearest analogies, it turns out to be an U-ABE

method.

In this research we will compare the results of ABE0 framework with different

non-uniform weighting strategies, i.e. with different N-ABE methods. Note that since

ABE0 is a framework for U-ABE methods, in the rest of the paper the two terms will

be used interchangeably. N-ABE methods have been previously addressed in literature.

For example inverse rank weighted mean (IRWM) was proposed by Mendes et al. [36].

IRWM method enables higher ranked analogies to have greater influence than the lower

ones. Assuming that we have 3 analogies, the closest analogy (CA) gets a weight of
3∑3

i=1
i
, the second closest (SC) gets a weight of 2∑3

i=1
i

and the last analogy (LA) gets

1∑3

i=1
i
.

4.2 Kernel Density Estimation

The kernel function is usually chosen to be unimodal and symmetric about zero [55],

such as a probability distribution function. In a kernel estimation method, the center

of the kernel is placed right on each data point and the influence of data points is

distributed to the overall neighborhood. To reach the final density function, contribu-

tions coming from all data points are summed up. For example, note how individual

Gaussian curves add up to generate the final density estimate in Figure 1 (one kernel

is added for each observation along the x-axis [46]).

Kernel density estimation has been successfully used for different type of datasets.

For instance Palpanas et al. use kernel density estimation to address the problem of

deviation detection in environment of sensor networks [43]. Frank et al. use kernel

estimation for locally weighting the attributes of Naive Bayes [13]. Furthermore John

et al. use kernel estimation to tackle the normality assumption regarding continuous

datasets [15].

The kernels we use in our research are: Uniform, triangular, Epanechnikov and

Gaussian. We can use a generic formula for some kernels, which is given in Equation

2, where 1(|x|<1) is the indicator function. Furthermore, Equation 3 and Equation 4

explain for the calculation of other functions in Equation 2. Depending on the value

of p in Equation 2, we can derive different kernels. For example for p = 0 we elicit the

uniform kernel, for p = 1 we elicit Epanechnikov kernel etc.
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Fig. 1: We see a Gaussian kernel density estimate built on individual data points. Each

point is in the center of a kernel and its effect is distributed to its neighborhood. The

sum of all kernels make up the final Gaussian kernel density estimate.

K(x, p) =

(
1− x2

)p
22p+1B (p+ 1, p+ 1)

1(|x|<1) (2)

B (p+ 1, p+ 1) =
Γ (a)Γ (b)

Γ (a+ b)
(3)

Γ (n) = (n− 1)! (4)

This paper explores the kernels of Figure 2 as well as IRWM [35,36]. IRWM is not

actually proposed as a kernel method and it does not fully conform to the definition of

standard kernel methods. However, due to the weighting strategy it proposes we can

read it as an expert proposed kernel.

A literature review revealed that the selection of bandwidth (h) for kernels is more

influential than the kernel types [10,47]. Bandwidth h is fundamentally a scaling factor

Kernel Type Formula

Uniform Kernel K(ρ) = 1
2
1(|ρ|<1)

Triangular Kernel K(ρ) = (1− |ρ|) 1(|ρ|<1)

Epanechnikov Kernel K(ρ) = 3
4

(
1− ρ2

)
1(|ρ|<1)

Gaussian Kernel K(ρ) = 1√
2π
e(
−1
2 ρ

2)

IRWM Kernel —

Fig. 2: The formulas for different kernels used in this study. In formulas ρ = x−Xi
h .

Note that IRWM kernel has different characteristics and its calculation details were

provided in Section 4.1.
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that controls how wide probability density function will spread, i.e. appropriate choice

of h is critical to avoid under and over-smoothing [46, 55]. To avoid both under and

over-smoothing conditions we used various bandwidth values. One of the bandwidths

we used is suggested by John et al., which is h = 1/
√
n where h is the bandwidth and

n is the size of dataset [15]. The other bandwidth values we used are: 2, 4, 8 and 16.

5 Methodology

5.1 Weighting Method

Assume that our dataset is divided into two sets: A = {x1, ..., xk} (selected Anologies)

and R = {t1, ..., tn−k} (Rest of the dataset). We build the kernel density estimation

on R and evaluate the resulting function at instances of A. Equation 5 shows the

probability calculation with kernel density estimation. In Equation 5 the kernel K is

built on training data ti ∈ R and is evaluated at kth analogy (xk) for a bandwidth of

h. After scaling these probability values to 0-1 interval according to Equation 6, we use

them as weights for analogies. After calculating weightxi for each analogy, we update

their actual effort values according to Equation 7.

f(xk, h) =
1

nh

∑
ti∈R

K
(
xk − ti
h

)
(5)

weightxi =
f(xi, h)−max(f(xk, h))

max(f(xk, h))−min(f(xk, h))
(6)

updatedEffortxi = actualEffortxi ∗ weightxi (7)

5.1.1 Uniform vs. Non-Uniform Weighting

The fundamental difference between N-ABE and U-ABE methods is that in U-ABE

analogies are given uniform weights and their actual effort values are used in an as is

manner, whereas in N-ABE analogies are assigned different weights and their actual

effort values are multiplied by these weight values. As for U-ABE, we defined a base

method that we call ABE0 and for N-ABE we use 5 different kernel methods.

One point that needs further clarification is the use of uniform kernel as a N-ABE

method. Figure 3 succinctly illustrates the difference between uniform kernel being a

N-ABE method and ABE0 being a U-ABE method. ABE0 assumes equal importance

of all instances and assigns equal probabilities. A uniform kernel would assign equal

non-zero probabilities to only a certain portion of the instances, whereas the rest of

the instances would be assigned a weight of zero (i.e. they would be ignored).

5.2 Data

In our research, we have used 19 datasets, most of which are heavily used in software

effort estimation research: Nasa93, the original Cocomo81 [6], Desharnais [11] and so on.

Note that 4 projects in Desharnais dataset has missing entries, we used imputation [1]

to handle them. The details regarding these datasets can be found in Figure 4.
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Fig. 3: In the case of ABE0 all instances are given equal probability values, hence equal

weights. However, uniform kernel prefers some instances over the others: Only a certain

portion of the instances are given equal non-zero weights.

Dataset F
e
a
t
u
r
e
s

S
iz

e

Description Units
Cocomo81 17 63 NASA projects months

Cocomo81e 17 28 Cocomo81 embedded projects months
Cocomo81o 17 24 Cocomo81 organic projects months
Cocomo81s 17 11 Cocomo81 semi-detached projects months

Nasa93 17 93 NASA projects months
Nasa93 center 1 17 12 Nasa93 projects from center 1 months
Nasa93 center 2 17 37 Nasa93 projects from center 2 months
Nasa93 center 5 17 40 Nasa93 projects from center 5 months

Desharnais 12 81 Canadian software projects hours
DesharnaisL1 11 46 Desharnais projects using Language1 hours
DesharnaisL2 11 25 Desharnais projects using Language2 hours
DesharnaisL3 11 10 Desharnais projects using Language3 hours

SDR 22 24 Turkish software projects months
Albrecht 7 24 Projects from IBM months
Finnish 8 38 Finland projects hours
Kemerer 7 15 Large business applications months
Maxwell 27 62 Projects from commercial banks in Finland hours
Miyazaki94 8 48 Japanese COBOL projects months
Telecom 3 18 Maintenance projects for telecom companies months

Total 699

Fig. 4: We used 699 projects coming from 19 datasets. Datasets have different charac-

teristics in terms of the number of attributes as well as the measures of these attributes.

5.3 Experiments

Our experimental settings aim at comparing the performance of standard U-ABE

(ABE0) to that of N-ABE. To separate train and test sets we use leave-one-out method,

which entails selecting 1 instance out of a dataset of size n as the test set and using

the remaining n− 1 instances as the training set. For each test instance, we run ABE0

and N-ABE separately and store their estimates. As the analogy number is reported to

play a critical role in estimation accuracy [18], both for U-ABE and N-ABE methods,

we tried different k values. Furthermore, to hinder any particular bias that would come

from the settings of a single experiment, we repeated the afore mentioned procedure

20 times.
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We use 2 forms of ABE methods (uniform and non-uniform weighting) induced

on 19 datasets for 5 different k values. The k values we used in our research are:

k ∈ {3, 5, 7, 9, best}. best is a pseudo-best k value that is selected for each individual

test instance through a process, in which we randomly pick up 10 instances from the

training set and select the lowest error yielding k value as the best. Note that k > 1

for ∀k, because for k = 1 U-ABE and N-ABE would be equivalent. In addition, we use

5 different kernels (Uniform, Triangular, Epanechnikov, Gaussian and IRWM) with 5

bandwidth values in N-ABE experiments. To further explore field of software effort

estimation, we investigate a total of 2090 different settings in this research:

– U-ABE Experiments: 95 settings

– 19 datasets * 5 k values = 95

– N-ABE Experiments: 1995 settings

– Standard Kernels: 19 datasets * 5 k values * 4 kernels * 5 bandwidths = 1900

– IRWM: 19 datasets * 5 k values = 95

5.4 Performance Criteria

Performance measures comment on the success of a prediction. For example, mean

absolute residual (MAR) is the mean of absolute residuals (the difference between the

predicted and the actual):

MAR = mean(ARi = |actuali − predictedi|) (8)

Magnitude of relative error (MRE) is one of the most commonly used performance

criterion for assessing the performance of competing software effort estimation meth-

ods [8, 12,40].

MRE =
|actuali − predictedi|

actuali
(9)

Median MRE (MdMRE) has emerged as the de facto standard evaluation criterion

for cost estimation models [52]. Median also gives information about central tendency

and is less sensitive to extreme MRE values. MdMRE formula is given in Equation 10,

where n is the test set size.

MdMRE = median(MRE1,MRE2, ...,MREn) (10)

Another alternative performance measure is PRED(25), which is reported to be

one of the most commonly used accuracy statistics [26]. It is defined as the percentage

of predictions falling within 25% of the actual values [34]:

PRED(25) =
100

N

N∑
i=1

{
1 if MREi ≤ 25

100
0 otherwise

(11)

For example, PRED(25)=50% implies that half of the estimates are failing within 25%

of the actual values [50].

If performance measures are used as a stand-alone evaluation criteria (i.e. not com-

bined with appropriate statistical tests), results may lead to biased or even false con-

clusions [12]. Therefore, we use the so called win, tie, loss statistics, whose pseudocode
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if Mann-Whitney(Pi, Pj , 95) says they are the same then
tiei = tiei + 1;
tiej = tiej + 1;

else
if better( median(Pi), median(Pj)) then
wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 5: Comparing algorithms (i,j ) on performance (Pi,Pj). The “better” predicate

changes according to P . For error measures like MRE, “better” means lower medians.

However, for PRED(25), “better” means higher medians.

is given in Figure 5. In Figure 5, we first check if two distributions i, j are statisti-

cally different (Mann-Whitney rank-sum test, 95% confidence); otherwise we increment

tiei and tiej . If the distributions are statistically different, we update wini, winj and

lossi, lossj after comparing the performance measures so as to see which one is better.

6 Results

To see the effect of kernel weighting, we studied 19 datasets and 3 different perfor-

mance measures. For each performance measure we tried 4 different kernels subject

to 5 different bandwidths, plus the IRWM kernel (which does not have a bandwidth

concept) and reported associated win, tie, loss statistics.

Figure 6 shows a sample of our results. It reports the win, tie, loss statistics of

Desharnais dataset for ABE0 and N-ABE through Gaussian kernel. For each dataset

we have 4 such tables (one for each kernel), so for all datasets there are 19 Datasets ×
4 tables = 76 tables. For the IRWM kernel there will be another 19 datasets × 1 kernel

= 19 tables. Hence, in total, our results comprise 76 + 19 = 95 tables to report. All

these tables are available on line at http://goo.gl/qpQiD. However, for space reasons,

we summarize those tables as follows.

In Figure 6 we see that each row reports win, tie, loss statistics of ABE0 methods

(k=3,5,7,9,best) as well as N-ABE methods (k=[3,5,7,9,best]+kern where kern stands

for kernel weighting) subject to a particular performance measure. Similarly, each col-

umn shows the win, tie, loss statistics associated with a particular bandwidth value.

As can be seen in Figure 6, for Desharnais dataset ABE0 methods always have higher

win values and always have a loss value of 0, meaning that they never lose against

N-ABE methods. That is, by summarizing each row/column intersection we can see

that the performance of ABE0 is never improved by N-ABE.

Figure 7 and Figure 8 repeat that summarization process for all 19 datasets and

all kernel/bandwidth combination:

– Each row of these summary figures shows the comparison of ABE0 performance to

that of N-ABE subject to 3 different performance measures.

– Every kernel/bandwidth intersection in Figure 7 and Figure 8 has 3 symbols cor-

responding to MdMRE, MAR and Pred(25) comparisons from left to right.

– Each of these 3 symbols can have 3 values: −,+, o.
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Fig. 6: Desharnais dataset win, tie, loss statistics for ABE0 and N-ABE through Gaus-

sian kernel. For each dataset we have 4 of these tables (one for each kernel). In total it

amounts to 19 Datasets × 4 tables = 76 tables. In addition we have another 19 datasets

× 1 kernel = 19 tables from IRWM kernel. It is infeasible to include all the tables in this

paper, therefore an executive summary of 76 + 19 = 95 tables is provided in Figure 7.

Furthermore, we provide all 95 tables in excel format at http://goo.gl/qpQiD.
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Dataset Kernel h=1/sqrt(size) h = 2 h = 4 h = 8 h = 16

C
o
c
8
1

Uniform ooo ooo ooo ooo ooo
Triangular ooo ooo ooo ooo ooo
Epanechnikov ooo ooo ooo ooo ooo
Gaussian ooo ooo ooo ooo ooo

C
o
c
8
1
e Uniform ooo ooo ooo ooo ooo

Triangular ooo ooo ooo ooo ooo
Epanechnikov ooo ooo ooo ooo ooo
Gaussian ooo ooo ooo ooo ooo

C
o
c
8
1
o Uniform −o− −oo −oo −oo −oo

Triangular ooo ooo ooo ooo ooo
Epanechnikov −−− ooo ooo ooo ooo
Gaussian −o− ooo ooo ooo ooo

C
o
c
8
1
s Uniform ooo ooo ooo ooo ooo

Triangular ooo ooo ooo ooo ooo
Epanechnikov ooo ooo ooo ooo ooo
Gaussian ooo ooo ooo ooo ooo

N
s9

3

Uniform −o− −o− −o− −o− −o−
Triangular −o− −o− −o− −o− −o−
Epanechnikov −o− ooo ooo ooo ooo
Gaussian −o− ooo ooo ooo ooo

N
s9

3
c
1

Uniform −−− −−− −−− −−− −−−
Triangular −−− −o− −o− −o− −o−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −o− −o− −o− −o− −o−

N
s9

3
c
2

Uniform ooo −o− −o− −o− −o−
Triangular −o− ooo ooo ooo ooo
Epanechnikov −o− ooo ooo ooo ooo
Gaussian ooo ooo ooo ooo ooo

N
s9

3
c
5

Uniform −−− −o− −o− −o− −o−
Triangular −−− ooo ooo ooo ooo
Epanechnikov −−− ooo ooo ooo ooo
Gaussian −−− ooo ooo ooo ooo

Fig. 7: Nine data sets comparing ABE0 to N-ABE. For every row in each cell, there are

three symbols indicating the effect of N-ABE w.r.t. 3 different error measures. From left

to right, the first symbol stands for N-ABE effect w.r.t. MdMRE, the second symbol

w.r.t. MAR and the third one w.r.t. Pred(25). A “+” indicates that for majority of k

values (at least 3 out of 5 k values), N-ABE improved ABE0 in terms of win − loss
values. “−” indicates that N-ABE decreased the performance of ABE0 in the majority

case. If the former conditions do not satisfy, then a “o” symbol is assigned. Note that

dataset order here is the same as Figure 4, yet the dataset names are abbreviated to 3

to 5 letters due to space constraints.

– “−” means that N-ABE decreased the accuracy of ABE0;

– “o” means ABE0 and N-ABE are statistically same;

– “+” shows that ABE0 accuracy was improved through kernel weighting (i.e.

N-ABE has a better performance than ABE0).

We assign the symbols “+” or “−” if the performance associated with the majority

of the k-values (at least 3 out of 5) are improved or degraded by N-ABE (in terms of

win− loss). If there is no change, we assign a “o” symbol to that setting.

Observe that in all these summaries:

– There is only one dataset (SDR in Figure 8) where N-ABE provides a performance

improvement in certain cases. Even for that dataset there are 15 “+” symbols and

21 “−” symbols, meaning that most of the time N-ABE is still destructive.

– In 18 other datasets, which is 18
19 = 95% of all the datasets, there is not a single

case where N-ABE improves the performance of ABE0.
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Dataset Kernel h=1/sqrt(size) h = 2 h = 4 h = 8 h = 16

D
e
s

Uniform −−− −−− −−− −−− −−−
Triangular ooo −−− −−− −−− −−−
Epanechnikov −−− −−− −−− −−− −−−
Gaussian −−− −−− −−− −−− −−−

D
e
sL

1

Uniform −−− −−− −−− −−− −−−
Triangular ooo −o− −o− −o− −o−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

D
e
sL

2

Uniform −−− −−− −−− −−− −−−
Triangular ooo −−− −−− −−− −−−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

D
e
sL

3

Uniform −o− −o− −o− −o− −o−
Triangular −o− ooo ooo ooo ooo
Epanechnikov −o− ooo ooo ooo ooo
Gaussian −o− ooo ooo ooo ooo

S
D

R

Uniform −o− −o− −o− −o− −o−
Triangular + +− +o− +o− +o− +o−
Epanechnikov −+− + +− + +− + +− + +−
Gaussian

A
lb

r

Uniform −−− −−− −−− −−− −−−
Triangular −−− −o− −o− −o− −o−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

F
in

n

Uniform −−− −−− −−− −−− −−−
Triangular ooo −−− −−− −−− −−−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

K
e
m

Uniform −o− −o− −o− −o− −o−
Triangular −−− ooo ooo ooo ooo
Epanechnikov −−− ooo ooo ooo ooo
Gaussian −−− ooo ooo ooo ooo

M
a
x
w

Uniform −−− −−− −−− −−− −−−
Triangular −−− ooo ooo ooo ooo
Epanechnikov −−− ooo ooo ooo ooo
Gaussian −−− ooo ooo ooo ooo

M
iy

9
4

Uniform −−− −−− −−− −−− −−−
Triangular −−− −−− −−− −−− −−−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

T
e
l

Uniform −−− −−− −−− −−− −−−
Triangular −o− −o− −o− −o− −o−
Epanechnikov −−− −o− −o− −o− −o−
Gaussian −−− −o− −o− −o− −o−

Fig. 8: Ten more data sets comparing ABE0 to N-ABE. Same format as Figure 7.

Note that these summary tables contain results from different performance criteria

(MdMRE, MAR, Pred(25)) as well as kernels and bandwidths. Therefore, our conclu-

sion from Figure 7 and Figure 8 is that that “non-uniform weighting through standard

kernel methods does not improve the performance of ABE” holds in the majority case

across different datasets and error measures.

Another summary table is given in Figure 9. Figure 9 is very similar to Figure 7 in

the sense that it summarizes the performance of N-ABE over 19 datasets w.r.t. three

different performance measures. The difference is that Figure 7 summarizes the results

of standard kernel methods, whereas in Figure 9 we see the N-ABE performance under

an expert-based kernel, i.e. IRWM. Although there are important differences between

standard and expert-based kernels (IRWM has no bandwidth parameter), the results

seen in Figure 9 is quite similar to those of Figure 7. As can be seen in Figure 9, there

is not a single case where N-ABE (under IRWM kernel) improves the performance of
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Dataset Improvement
MdMRE MAR Pred(25)

Cocomo81 − o −
Cocomo8e o o o
Cocomo8o − − −
Cocomo8s o o o
Nasa93 − − −
Nasa93 center 1 − − −
Nasa93 center 2 − o −
Nasa93 center 5 − − −
Desharnais − − −
DesharnaisL1 − − −
DesharnaisL2 − − −
DesharnaisL3 − o −
SDR − o −
Albrecht − − −
Finnish − − −
Kemerer − − −
Maxwell − − −
Miyazaki94 − − −
Telecom − − −

Fig. 9: The comparison of ABE0 to N-ABE under IRWM kernel. Similar to Figure 7

three symbols indicate the effect of N-ABE w.r.t. 3 different error measures and “+”

indicates that for majority of k values N-ABE improved ABE0 in terms of win− loss
values. A “−” symbol indicates a decrease and a “o” symbol indicates neither decrease

nor increase. Notice that subject to IRWM kernel, N-ABE fails to improve ABE0 w.r.t.

3 different performance measures.

ABE0. Furthermore, the amount of “−” symbols is much more than “o”, meaning that

N-ABE decreases the performance of ABE0 most of the time.

7 Discussion

Our pre-experimental intuition was that non-uniform weighting could end up perform-

ing no better and perhaps even worse than simple uniform weighting for effort esti-

mation datasets. A simple example for such a negative intuition is provided in Figure

10.

Analogies P1 P2 P3

Effort Values 10.0 20.0 60.0
Probabilities 0.1 0.3 0.5
Weights 0.0 0.5 1.0

Uniform Weighting Estimate 20.0
Non-Uniform Weighting Estimate 35.0

Fig. 10: An intuitive example. In a 3 analogy case, there is a 75% change for a hypo-

thetical test project between uniform and non-uniform weighting.

Assume that for a test project in Figure 10, 3 analogies are chosen (P1, P2, P3) with

effort values of 10.0, 20.0 and 60.0. Also assume that a kernel assigned the probabilities

of 0.1, 0.3 and 0.5 to these analogies respectively. When these probability values are

normalized, the weights assigned to P1, P2, P3 become 0.0, 0.5 and 1.0. The estima-

tion (i.e. median of analogies) for uniform weighting case would be 20.0, whereas the
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estimation for non-uniform weighting case would be 35.0. A shift from an estimate of

20.0 to 35.0 is a dramatic change of 75% rather than a slight correction. Therefore,

our intuition was that non-uniform weighting in software effort estimation could be

disruptive rather than constructive.

Then the most likely question to be raised is “Why do other fields [13,15,43] benefit

from weighting, whereas effort estimation does not?”. Our belief is that the answer is

partially hidden behind the low sample sizes of effort datasets. Scarcity of the samples

means that the weighting observes a signal being broadcast from a very small number of

points in the neighborhood. In Figure 11 we simulate 50, 100 and 1000 samples coming

from two Gaussian probability distribution functions (PDFs): N(20, 5) and N(35, 5).

Then we use kernel density estimation technique with a Gaussian kernel to estimate

the density at discrete values of x in [0-55] interval with a step-size of 1.

In Figure 11, closest estimates require:

– Optimum bandwidth (here h = 1). Too small bandwidth (h = 0.001) assigns most

probability values (hence weights) to zero, whereas too big of a bandwidth (h = 10)

results in over-smoothing.

– Considerable sample size. Note how optimum fit is achieved for a sample size of

1000.

In case of signal processing the sample sizes are closer to Figure 11(c) and as we

see from the simulation example, kernel estimates can successfully model such densely

populated datasets. However, software effort datasets used in our research are similar

to Figure 11(a) and Figure 11(b). When we observe behavior of kernel estimates for

low sample sizes in those figures, it is somewhat expected to see lower performance

values in sparsely populated data sets like software effort data sets.

8 Threats to Validity

We will address the threats to validity of this research under 3 categories: Internal

validity, external validity and construct validity.

Internal validity asks to what extent the cause-effect relationship between depen-

dent and independent variables holds [1]. We use leave-one-out method for all treat-

ments to address internal validity issues. Leave-one-out selection enables us to separate

the training and test sets completely in each experiment, thereby making the test sets

completely new situations for the training sets.

External validity questions the ability to generalize the results [39]. To observe

the generalizability of our results, we perform extensive experiments on 19 datasets.

The datasets are widely used in software effort estimation community and have very

different characteristics in terms of various criteria such as size, number of features,

types of features and measurement method. However, to have full confidence in our

claims, our study needs to be replicated by future studies.

Construct validity (i.e. face validity) makes sure that we in fact measure what we

intend to measure [45]. Kitchenham et al. notes that different performance measures

evaluate different aspects of prediction accuracy [26]. So as to assess N-ABE and ABE0

comparison from different standpoints, we made use of MAR, MdMRE and Pred(25)

in our study. However, as Kitchenham et al. points out in [25], it is wrong to solely use

the performance measures without a statistical test. Therefore, we also use win-tie-loss

measures, where we make use of Mann-Whitney U test at a significance level of 95%.



17

(a) 50 Sample Points: Note the bad fit due to low sample size.

(b) 100 Sample Points: Note the better fit due to increased sample size.

(c) 1000 Sample Points: Note the optimum fit due to high sample size.

Fig. 11: The effect of sample size and bandwidth on kernel density estimation. The

choice of optimum bandwidth (h value) is important. However, even with the optimum

bandwidth, one still needs enough number of samples for successful estimation. Sample

size of 50 appears to be too small and when we increase it to 100, we get a better fit.

Yet, for a very close fit, we need to go up to 1000 sample points.
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9 Conclusions

In this research we tried kernel density estimation as a non-uniform weighting strategy

for ABE. We conducted experiments with various kernels as well as bandwidths. For

the datasets and performance measures used in our research there was hardly any cases

where N-ABE methods outperformed ABE0. We hesitate to discourage further research

with different experimental settings or with different datasets. However, if similar use

of kernels is to be adopted, we do not recommend the use of kernel methods as a

weighting strategy in ABE.

Unlike studies in different domains that use kernel methods and report improved

accuracy values [15, 43], we do not observe such an effect on software effort datasets.

The reason for different results may lie in different dataset characteristics. For instance

the datasets used in other domains are much more densely populated than software

effort datasets.

9.1 Answers To Research Questions

RQ1. Is there evidence that non-uniform weighting improves the performance of ABE?

The results of our experiments do not show such an evidence. On the contrary, for all

settings ABE0 yields much better results than N-ABE methods.

RQ2. What is the effect of different kernels for non-uniform weighting in ABE?

There are only slight variations in performance when different kernels are used. How-

ever, these variations do not follow a definite pattern and they are far from being

considerable.

RQ3. What is the effect of different bandwidths? Change of bandwidths shows a

random and insignificant effect, which is very similar to that of kernel change effect.

Therefore, we cannot say that applying different bandwidths has a certain effect on

N-ABE performance.

RQ4. How do the characteristics of software effort datasets influence the perfor-

mance of kernel weighting in N-ABE? Effort datasets are much smaller than most of

the datasets in different domains. The dependent variable (effort value of a completed

project) is highly variable. Furthermore, the attribute values are very open to personal

judgment and error. All these factors suggest that non-parametric methods may be

failing due to inherent characteristics of software effort data.

10 Future Work

We can identify 3 main domains in which this study may be extended:

1. Dataset: In this research we used 19 software effort datasets. However, this study

may be replicated on other software effort datasets as well.

2. Weighting Strategy: Another future direction can be experimentation on different

non-uniform weighting strategies that are preferably based on different assump-

tions.

3. Customization: Experimentation in this paper is based on publicly available datasets.

Our knowledge about the context and assumptions of these datasets are limited to

their documentation. One further direction to this research could be customizing
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this work for a particular company and derive the actual problems associated with

non-uniform weighting schemes.

The experiments shown in this research took three months to research, design,

execute, then write up. It turns out that we could have spent the time more productively

on other issues. Our pre-experimental intuition that “non-uniform weighting in the

data sparse domain of software effort estimation may not provide an improvement in

estimation accuracy” turned out to be correct. We want to remind researchers, who

want to follow afore mentioned future directions that those future directions may as

well end up in negative results.
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Replies to reviewer comments

Thank you for your detailed reviews on the previous version. They were most helpful.

Replies to comments are below.

Editor

The empirical study produces a negative result - which is generally quite welcome. How-

ever, the reviewers (and I) question the generality of your conclusions! Does your result

mean that “Kernel density estimation” must not be investigated any further, or...

We completely agree with your concerns- the empirical basis of the prior draft was

too restrictive for us. In this version, we repeated our study on 19 data sets (not the 3

we saw before) and the same result holds.

Also, we were somewhat too adamant in the previous draft. We made our sugges-

tion/conclusion more clear in this version. The last sentence of Abstract reads:

“Hence, -provided that similar experimental settings are adopted- we discourage

the use of kernel methods as a weighting strategy in ABE. ”

Also the last sentences of the 1st paragraph in Section 9 states:

“We hesitate to discourage further research with different experimental settings

or with different datasets. However, if similar use of kernels is to be adopted, we

do not recommend the use of kernel methods as a weighting strategy in ABE.”

This makes it clear that we are only talking about ABE for effort estimation and not

(as might be read in the previous draft), kernel methods for all SE applications.

If you think that you can accommodate these concerns (especially the concern of

Reviewer 2), please submit a major revision”.

We highly value your invitation for a re-submit after a major revision. Therefore,

we paid particular attention to address every comment of reviewers. After following

through the invaluable comments of reviewers, this study has become much more sound

and to the point. Furthermore, we improved the study with further experiments: Pre-

vious version used 3 datasets evaluated with 2 performance measures, whereas this

version makes use of 19 datasets evaluated with 3 error measures; previous version

used 330 ABE variants, whereas this version reports 2090 variants. We believe that it

is now ready for a re-review. Below is a list of our replies to every individual comment.

Reviewer 1:

The article describes an analysis of a specific type of analogy-based estimation, i.e.,

kernel-density estimation for non-uniform weights of analogies. The article is very well

written and structured. It is easy to read.

Thank you very much, we are very pleased with your comments.

Although the article focuses on an important topic, I have several concerns:

We fully agree with all your concerns. We went through all your comments one by

one and restructured our work accordingly. Following is a list of our replies.



23

The motivation why kernel-density estimation was chosen as object of study is quite

weak and not convincing to me as motivation for performing a comprehensive study.

The more obvious reason that the technique could be specifically suited for software

engineering projects and data is not addressed.

The previous paper was, as you say, very weak on motivation. To repair that, we

have added new motivation section (Section 2) that explains why we performed this

study.

The statement “ABE methods are never enhanced by a particular kernel method”

seems to be based on some kind of proof. However, it could also stem from your obser-

vations. I recommend to describe in more detail what the (potentially empirical basis)

for this statement is.

You are right, we should have made that statement more clear. Our claim depends

on empirical evaluation of 2090 ABE variants (it was 330 in the previous draft) ac-

cording to various performance criteria such as MdMRE, Pred(25) and win-tie-loss

values. Furthermore, in this version we included MAR criterion in accordance with the

feedback we received from another reviewer. We explain this claim very early, now the

last two sentence of Abstract reads as:

After an extensive experimentation of 19 datasets, 3 evaluation criteria, 5 ker-

nels, 5 bandwidth values and a total of 2090 ABE variants, we found that:

1) non-uniform weighting through kernel methods cannot outperform uniform

weighting ABE and 2) kernel type and bandwidth parameters do not produce

a definite effect on estimation performance. Hence, -provided that similar ex-

perimental settings are adopted- we discourage the use of kernel methods as a

weighting strategy in ABE.

Section 2.1 I recommend to also integrate hybrid methods (i.e., methods based on

data *and* expert judgment such as CoBRA. I also recommend to include some studies

that show that the accuracy can be significantly improved by maintaining the estimation

model over time. It would be nice for the reader if such kind of concept is also part of

your work.

Thank you very much for reminding us an important background work. We happily

included CoBRA like integrated approaches and their iterative applications. Now the

last sentences of the first paragraph in Section 4.1 is:

There are also successful applications where expert and model based techniques

are integrated to complement one another [7,21]. In particular when such es-

timation practices are employed iteratively over time, the estimation accuracy

can significantly be improved. For example in [40], an integrated approach called

CoBRA was applied in an iterative manner and estimation accuracy was im-

proved from 120% error down to 14%.

The so-called “experiments” are mainly data analyses of existing repositories. This

seems to be reasonable to a certain extend. However, it is quite a weak evaluation due

to a lack of knowledge about context and assumptions. I recommend for future work to

do a customization for a specific company and to derive real problems afterwards.

We agree that analysis in a company setting where we would tackle with a real

problem would be a very interesting future direction. Therefore, we included it as the
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third element of our Future Work Section. Now the third future direction in the paper

is:

3. Customization: Experimentation in this paper is based on publicly available

datasets. Our knowledge about the context and assumptions of these datasets

are limited to their documentation. One further direction to this research could

be customizing this work for a particular company and derive the actual prob-

lems associated with non-uniform weighting schemes.

Overall, the scope (technique, purposes, domain) is very limited and probably only

of minor interest for most of the EMSE journal readers.

We agree with the reviewer that this paper will be of interest only to those working

in the effort estimation area.

However, those researchers do publish in EMSE. Jorgensen and Shepperd [17] re-

port that of the 76 journals that published effort estimation results, this journal is

ranked in the top four (they list a dozen EMSE publications related to effort esti-

mation). Also, this query “http://www.springerlink.com/content/1382-3256/?k=

cost+estimation&o=10” yields dozens of papers relating to cost/effort estimation in

this journal.

Reviewer 2:

First of all I would like to applaud the authors’ candor about the negative results rather

than trying to dress them up in some way.

Thank you very much for your positive feedback.

Nevertheless, I do have some serious problems.

Thanks to your and other reviewers’ comments, we re-structured our paper and

enriched it with further experiments: Previous draft was reporting 330 ABE variants

evaluated on 3 datasets, whereas this version of the paper reports 2090 ABE variants

evaluated on 19 datasets. Below is the list of your comments and our replies to them.

First, though we need to deal with a potential publication bias against negative

results, the work still needs to be interesting.

That was also the concern of other reviewers and we are thankful for that comment,

we should have stated our motivation more explicitly. In the new version of our paper,

we included a whole section about our motivation (Section 2) after the Introduction.

There’s an excellent discussion of these kind of issues in [1].

We are grateful for that reference. We went through all 5 short papers in that

reference and positioned our paper in the context of negative results according to our

summary of these papers. We devoted a whole section (Section 3) concerning this issue

and its relation to our paper. Section 3 reads:

While it would have been gratifying to have found a positive result (e.g. that

some kernel method was very much better), it is important to report such

negative results as well. A very thorough discussion on the value of negative

results can be found in [9]. The fundamental question is whether a negative
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result poses a positive knowledge. Positive knowledge is defined by Browman

et al. to be the ability of being certain, not being either right or wrong [9].

However, not all certain conclusions are knowledge per se. Common concerns

are:

i. is the topic/hypothesis plausible,

ii. are the experiments sound,

iii. do the results propose “negative evidence” or “non-conclusive search” and

iv. will the reported results be valuable to future research.

As for i., research on weighting methods in ABE is quite plausible, see weighting

method proposed earlier by Mendes et al. [35,36]. In that respect, our evidence

of negative results serve the purpose of guiding research away from conclusions

(such as kernel weighting can improve ABE performance) that would otherwise

seem reasonable [9].

When presenting negative evidence it is crucially important to have sound and

extensive experimentation (condition ii.). This report rigorously investigates

kernel weighting on 19 datasets subject to 3 performance measures through

appropriate statistical tests.

The idea behind condition iii. is that “one should disvalue inconclusive re-

sults” [9], i.e. negative conclusions are more meaningful than uncertainty. The

kernel weighting experiments of this paper on a wide range of ABE variants

are negative evidence to conclude that it does not improve ABE performance,

thereby satisfying iii. Finally condition iv. questions the benefit of results to

future research. After years of research, effort estimation still suffers from con-

clusion instability. For stable conclusions, retiring a considerable portion of

search space is as important as the discovery of successful applications. The

contribution of this work is through retirement of 2090 of ABE variants.

The situation we have is: “Another possibility is that a novel hypothesis occurs to

a scientist. This scientist proceeds to test. his bright idea only to discover that it is

mistaken. Might he or she publish these findings to ward off other scientists who might

be tempted to pursue this dead end?” The answer revolves around how interesting the

results to which I’d answer not that interesting. My suggestion is a short note of perhaps

20% of the length of this paper.

Thanks to your valuable feedback. As an aside, we do mention that we have been

talking to Briand and Basili about a fast abstracts section of ESE containing very small

papers that need not have (e.g.) extensive background notes. To date, they have not

been responsive so we are stuck with the current norms in scientific publishing; i.e. as

much as possible, each paper has to be a stand-alone unit.

Nevertheless, we have significantly pruned this paper, from 29 pages to 21. And

that is with new experiments (MAR performance measure is included) and much more

data (the dataset number is increased from 3 to 19) and corrections.

The second problem is the paper isn’t very well written - it reads like an early draft

as it’s often note like or lacks articles etc etc (below I’ve identified a few typos but there

are a lot more).

We are sorry for that, we corrected all the below and did our best to present you

a much better draft this time.
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More seriously it’s just hard to follow and a lot of irrelevant information is included

eg in the intro why discuss feature selection when the paper is about analogy weighting

and selection.

We removed that claim together with other less-relevant explanations.

Nor I do get any sense of why analogy weighting is an important and hard problem.

We wrote a new section (Section 2) so as to explain the motivation behind tackling

the problem of analogy weighting.

Section 2 is weak eg why have 2 different taxonomies of related work – one will do!

We completely agree, we integrated these 2 sub-sections into 1 and included new

references.

The discussion and Eqn 2 (for inverse rank weighting) seems unnecessary – it’s

pretty obvious.

You are right, we removed the discussion as well as the equation.

Your discussion implies k >1 since k=1 → U-ABE equiv N-ABE

That is very true, thanks for reminding us to explicitly state that. The 4th sentence

of the second paragraph in Section 5.3 states:

Note that k > 1 for ∀k, because for k = 1 U-ABE and N-ABE would be equiv-

alent.

p12 Much as I appreciate the work of Kitchenham and her co-workers this new

definition of dataset quality seems desperately over-simplistic.

We dropped that claim.

MMRE? Given the authors are aware of its limitations why not do the statistical

tests on absolute residuals? Why pred(25)?

Quite correct- we included absolute residual experiments in this version. However,

we elected to add the one you suggest rather than delete the ones you depreciate since

(as the reviewer might appreciate), other commenters on this paper might complain

“why did they not use standard measures in wide use in the literature”? As for Pred(25)

we made a small note in Section 5.4:

Another alternative performance measure is PRED(25), which is reported to

be one of the most commonly used accuracy statistics [26].

Minor points: p4, l36: problem explicitly addressed by Delphi where individual esti-

mates are kept anonymous.

We removed that sentence.

p6, l22: a a

Corrected.

p6, final sentence: meaning is unclear.

We corrected this sentence as follows:
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We want to remind researchers, who want to follow afore mentioned future di-

rections that those future directions may as well end up in negative results.

p7, l27: statistical algorithms?

It is removed from the paper.

p9, l45: started

It is removed from the paper.

p17, l42: what were the imputed values (so the work could be replicated?)

The “best-k” approach is a pseudo-best k and it changes for different test instances,

i.e. since we select ten random test instances and choose the lowest error yielding k

value as the so called “best”, the values are somewhat random. We are repeating ex-

periments 20 times for each setting and we are reporting that we do 20 runs to remove

possible bias issues. Therefore, we reported our methodology instead of fixed best-k

values, which might change for the next set of runs when another researcher is repli-

cating our work.

p24, l37: does hardly let??

It is removed from the paper.

p26, l46: the choice of performance measure is not an open issue. See Kitchenham

et al. [2]. The only issue is what characteristic of accuracy you are actually interested

in, normally spread of residuals (error-proneness) and central tendency (bias) would be

sufficient.

We dropped that claim.

REFERENCES: [1] H. Browman, ”Negative results,” Marine Ecology Progress Se-

ries, vol. 191, pp. 301-309, 1999. [2] B. A. Kitchenham, S. G. MacDonell, L. Pickard,

and M. J. Shepperd, ”What accuracy statistics really measure,” IEE Proceedings - Soft-

ware Engineering, vol. 148, pp. 81-85, 2001.

Thank you very much for these references, they were most helpful. We included

them into the paper.


