
AI-Based Models for Software Effort Estimation

Ekrem Kocaguneli, Ayse Tosun, Ayse Bener

Department of Computer Engineering

Bogazici University

Istanbul, Turkey

ekrem.kocaguneli@boun.edu.tr, ayse.tosun@boun.edu.tr, bener@boun.edu.tr

Abstract

Decision making under uncertainty is a critical

problem in the field of software engineering.

Predicting the software quality or the cost/ effort

requires high level expertise. AI based predictor

models, on the other hand, are useful decision making

tools that learn from past projects' data. In this study,

we have built an effort estimation model for a

multinational bank to predict the effort prior to

projects' development lifecycle. We have collected

process, product and resource metrics from past

projects together with the effort values distributed

among software life cycle phases, i.e. analysis & test,

design & development. We have used Clustering

approach to form consistent project groups and

Support Vector Regression (SVR) to predict the effort.

Our results validate the benefits of using AI methods

in real life problems. We attain Pred(25) values as

high as 78% in predicting future projects.

1. Introduction
One of the key challenges in software industry is the

accurate estimation of the development effort, which is

particularly important for risk evaluation, resource

scheduling as well as progress monitoring [2].

Inaccuracies in estimations lead to problematic results;

for instance, overestimation causes waste of resources,

whereas underestimation results in approval of

projects that will exceed their planned budgets [2].

Various effort estimation models have been proposed

to make reliable predictions to finish projects on time

and within the budget. These models can be examined

based on methodologies used: Expert-based, analogy-

based and regression-based. Expert based models

depend on the expert knowledge to use past experience

on software projects. Based on a comprehensive

review [3], expert based estimation is one of the most

frequently applied estimation strategy.

Alternatively, regression-based methods use statistical

techniques such as least square regression, in the sense

that a set of independent variables explain the

dependent variable with minimum error rate [4].

Mathematical models like Barry Boehm’s COCOMO

[6] and COCOMO II [7] are widely investigated

regression-based methods. Parameters of these models

are calibrated according to the projects in a company.

Thus, they have the drawback of requiring local

calibration [2].

To address these issues in regression-based models, AI

techniques have been proposed such as step-wise

regression, decision tree, artificial neural networks [8,

9] and other rule-based methods [4]. When dealing

with effort estimation, these methods also suffer from

large deviations and low accuracies. Selecting a single

algorithm would often be far from fulfilling the

expectations of practitioners from the industry.

Therefore, AI techniques should be selected carefully

to build an effort estimation model that would best fit

into the company needs.

In this study, we have proposed an effort estimation

model for the software development division of the

Turkish subsidiary of a multinational bank (Bank).

Bank has been developing their in-house banking

application since 2000. They work with tight

schedules due to severe competition in the banking

industry. Software managers look for effective

strategies to plan their schedule and effectively

allocate their resources to meet budget constraints. To

address this problem we have built a learning-based

effort estimation model and validated the performance

of our model using Bank data of completed projects as

well as public datasets gathered from various

organizations. We have used various AI techniques for

feature selection, clustering and estimation. The

results of our empirical study reveal that we

successfully predicted 78% of projects’ effort with less

than 30% error.

2. Description of the model
We can define five important phases twhen building

an effort estimation model: Data, Performance

Measures, Feature Selection, Algorithm Selection and

Model Construction.

2.1. Software Data
According to Fenton and Neil [10], traditional

software metrics collection has not addressed the

actual purpose of providing information to support

quantitative decision making. Basically, each metric

in effort estimation should correspond to process,

product or resource to measure internal attributes of

these categories. We have followed the same principle

when collecting software metrics of Bank effort

estimation data.

Table 1. Datasets used in model construction

Dataset # Features # Projects Content

Bank 40 29 Banking applications

Albrecht 7 24 Projects from IBM

Deshernais 12 81 Canadian software

projects

SDR 22 24 Turkish software

projects

ISBSG 14 29 Banking projects only

Cocomo81 17 63 Nasa projects

Nasa93 17 93 Nasa projects

Based on Boehm’s COCOMO survey [6], we have

defined 22 questions most of which captures process

(8) and resource (14) aspects of a software project. We

have further used configuration management systems

in Bank to derive 18 product metrics. Furthermore,

we have used 6 public effort estimation datasets.

As an initial analysis, we have eliminated software

metrics collected from Bank that are not predictable

prior to the project startup. We also observed the R-

Squared coefficient to analyze how well each feature

approximates effort values with 95% significance.

Figure 1 shows R-Squared coefficients for predictable

project features. As it is seen, most of the features

have values less than 0.3, which indicates that they are

not explanatory to predict the project effort on their

own. Therefore, we have adopted an algorithmic

approach to find the best subset of features that would

have a significant effect on the project effort.

2.2. Performance Measures
To assess the performance of our proposed model, we

have used two popular performance measures in the

field of effort estimation: Mean Magnitude of Relative

Error (MMRE) and Pred(25) [12]. MMRE computes

the average magnitude of relative error between the

predicted and actual effort values of all projects.

Despite criticism, it gives an overall view of the

performance of a model using the formula [12]:


N

=i (i)actual

(i)estimated(i)actual

N
=MMRE

1

||1

In order to report the performance of the model for a

particular success criteria, Pred(k) is used (in our case

k = 25). The formula for calculating Pred(k) is as

follows [12]:


 

 



N

i

k

N
ked

1

i

otherwise 0

)100/(MRE if 11
)(Pr

Figure 1. R-Squared coefficients of a regression line for 25

project features

2.3. Feature Selection
The feature selection techniques that we have used in

this study can be summarized as Wrapper for feature

selection [4], PCA-based weight assignment [14] and

correlation based weight assignment [15].

Firstly, we used Wrapper algorithm. Wrapper

considers all possible combinations of features and

selects a set of features that would result in the

minimum error rate [4].
 Secondly, PCA-based weighting heuristic is
inspired from the popular statistical technique,
Principal Components Analysis (PCA), which is used
for dimensionality reduction. This heuristic, however,
is proposed to assign weights to features by taking
major principal components from PCA [14].
Thirdly, correlation-based weighting heuristic
investigates Pearson’s correlation coefficients to
identify significant relations between project features
and the effort. Initially all features have weights 1
[15]. Based on this heuristic, weights of any feature

whose correlation is significant with 95% confidence
are doubled. Then, the same ML algorithm is applied
to the modified dataset.

Table 2. Results of feature selection techniques on Bank dataset

Data Type Pred(25)

All features 27.78%

Predictable features only 29.41%

Wrapper Selected Features 47.06%

PCA Weighted Features 52.94%

Correlation-Based Weighted Features 52.94%

Table 2 presents Pred(K) with k=25 for three feature
selection approaches. Results show that feature
selection techniques applied on predictable features
would improve the prediction accuracy. To ensure the
statistical validity of these results, Wilcoxon rank sum
tests are conducted on all data types.

2.4. Algorithm Selection
For deciding the best algorithm in terms of

performance measures, we have tried out various AI

techniques. They are single learners such as Linear

Regression (LR), Support Vector Regression (SVR),

Decision Tree (DT), k-Nearest Neighbor (k-NN) and

Multilayer Perceptrons (MLP) and a Mixture of

Experts (MOE) with all algorithms. These algorithms

are selected based on two criteria: a) they are widely

used techniques whose performances are validated on

various datasets in effort estimation [4, 8, 17], and b)

from the machine learning perspective, each algorithm

can achieve strengths on different datasets based on

their regression methodologies [1].

We have executed these algorithms on all datasets to

see their overall performance. Our methodology for

initial model construction can be summarized as

follows:

 Select an algorithm from the following set: {LR,

SVR, DT, k-NN, MLP, MOE}

 Select a dataset from Table 2.

o Apply Wrapper with Exhaustive Search

using k-NN algorithm (k=3)

o Use Leave-One-Out strategy:

 Apply the algorithm on dataset

 Report MMRE, Pred(25) values

 Apply non-parametric Friedman test to find

statistical differences between algorithms [1].

This statistical test checks the null

hypothesis:“H0: Performance differences among

algorithms are random” against the alternative

hypothesis: “H1: Performance differences among

algorithms are not random.”

If H0 is rejected, we apply Nemenyi’s multiple

comparisons based on mean ranks [11].

Figure 2. Mean ranks of multiple comparisons among algorithms.

In y-axis, each number corresponds to an algorithm such that

1:LR, 2: SVR, 3: MLP,4: k-NN, 5: DT, 6: MOE. Circles show the

mean ranks of algorithms. Right end of each line shows from

which mean rank onward, another algorithm is outperformed

significantly

The results of Nemenyi’s multiple comparisons [11]

are presented with a graphical interpretation in Figure

2. In Figure 2, when plotting the significance regions,

each algorithm is represented with a line having a

circle showing the mean rank. Right end of a line is

an indicator for an algorithm A to count the number of

algorithms, from the algorithm A onwards, that are

significantly dominated by A. For instance, the

prediction performance of the second line, which

corresponds to SVR, is significantly different than

other four algorithms, LR, k-NN, DT, MOE. Since it

has the highest number of wins in terms of significant

differences, we have decided to use SVR as the

algorithm of our effort estimation model. The

performance of SVR on all datasets can be seen in

Table 3 for simplicity. Table 3 shows that we have still

very high values for MMRE and values lower than

70% for Pred(25).

2.5. Model Construction
Although we have invested a lot of effort in data

quality and collection, some projects in Bank dataset

are outliers and they degrade the performance of SVR.

To overcome that, we have decided to form project

groups that provide consistency in terms of metrics

and effort values within themselves. Therefore, we

have applied clustering before estimation.

Table 3. Effort Estimation Accuracy with SVR

Dataset MMRE Pred(25)

Bank* 41% 47%

Albrecht 126% 25%

Deshernais 320% 18%

SDR 275% 0%

ISBSG 36% 42%

Cocomo81 479% 9.5%

Nasa93 154% 19%

We have used Expectation Maximization algorithm to
find clusters with similar project features and effort
values. In Bank data, after selecting 7 project features
as the best subset from Wrapper algorithm, we have
applied SVR on each cluster. Each cluster has been
trained only with the projects inside the cluster and
tested on these projects using leave-one-out validation.
Results are summarized in Table 4.

Table 4. Effort estimation results with final model

 Best Cluster

Dataset Clusters Projects MMRE Pred(25) Pred(30)

Bank 3 9 41% 67% 78%

Cocomo81 3 16 20% 72% 83%

Nasa93 6 15 25% 66% 73%

The proposed model on all datasets is able to obtain
Pred(30) values higher than 70% on the clusters with
the best accuracy. Although there are still
inconsistencies about the correctness of Bank data, we
have managed to form a cluster, in which we can
estimate 7 out of 9 projects with relative error less
than 30%. Similarly, for NASA datasets, MMRE
values are below 30% on the best cluster with 16 and
15 projects on Cocomo81 and Nasa93. Therefore, we
can conclude that AI approaches would significantly
improve the estimation accuracy when accurate and
consistent data is given.

Figure 3. Experimental design of the model

3. Conclusion
In this study, we have built an effort estimation model
to predict the project effort by using AI techniques.
We have collected software metrics and actual effort
values from 29 projects in Bank and used public
datasets to externally validate our proposed model.
Our results show that combinations of AI techniques
provide significant improvements in estimation
accuracy. Furthermore, we have done statistical tests
to check the significance of these estimation results.
Statistical tests show that SVR is the best among six
algorithms. When used with clustering, the model
performance increases significantly, from, on the
average, 25% to 68% in terms of Pred(25) in three
datasets.

4. Acknowledgements
This research is supported in part by Turkish

Scientific Research Council (TUBITAK) under grant

number EEEAG108E014 and IBTech Inc.

5. References
6. Alpaydın, E. 2004. Introduction to machine learning.

Cambridge: MIT Press.

7. Boehm, B., Abts, C., Chulani, S. 2000. Software development

cost estimation approaches: A survey. Annals of Software

Engineering (10): 177–205.

8. Jorgensen M. 2004. A review of studies on expert estimation of

software development effort. Journal of Systems and Software

(70): 37-60.

9. Menzies, T., Chen, Z., Hihn, J., & Lum, K. 2006. Selecting best

practices for effort estimation. IEEE Transactions on Software

Engineering (32): 883–895.

10. Li, J., Ruhe, G. 2007. Decision support analysis for software

effort estimation by analogy. In Proceedings of the Third

International Workshop on Predictor Models in Software

Engineering (PROMISE 2007). Minnesota, USA.

11. Boehm, B.W. 1981. Software Engineering Economics. Upper

Saddle River, NJ, USA: Prentice Hall PTR.

12. Boehm, B. W., Abts, C. Brown, A.W., Chulani, S., Clark, B. K.,

Horowitz, E., Madachy, R., Reifer, J.D., and Steece, B. 2000.

Software Cost Estimation with Cocomo II. Upper Saddle River,

NJ, USA: Prentice Hall PTR.

13. Shepperd M., Kadoda, G. 2001. Comparing software prediction

models using simulation. IEEE Transactions on Software

Engineering, 1014–1022.

14. Wittig, G., Finnie, G. 1997. Estimating Software Development

Effort with Connectionists Models. Information & Software

Technology (39): 469-476.

15. Fenton, N., Neil, M. 2000. Software Metrics: Roadmap, In

Proceedings of 22nd International Conference on Software

Engineering, ACM Press ISBN 1-58113-253-0, 357-370.

16. Demsar, J. 2006. Statistical Comparisons of Classifiers over

Multiple Data Sets. J. Machine Learning Research, (7): 1-30.

17. Port, D., Korte, M. 2008. Comparative Studies of the Model

Evaluation Criterions MMRE and PRED in Software Cost

Estimation Research. In ESEM 2008, 51-61.

