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Abstract 
 

Decision making under uncertainty is a critical 

problem in the field of software engineering. 

Predicting the software quality or the cost/ effort 

requires high level expertise. AI based predictor 

models, on the other hand, are useful decision making 

tools that learn from past projects' data. In this study, 

we have built an effort estimation model for a 

multinational bank to predict the effort prior to 

projects' development lifecycle. We have collected 

process, product and resource metrics from past 

projects together with the effort values distributed 

among software life cycle phases, i.e. analysis & test, 

design & development. We have used Clustering 

approach to form consistent project groups and 

Support Vector Regression (SVR) to predict the effort. 

Our results validate the benefits of using AI methods 

in real life problems. We attain Pred(25) values as 

high as 78% in predicting future projects.  

 

1. Introduction 
One of the key challenges in software industry is the 

accurate estimation of the development effort, which is 

particularly important for risk evaluation, resource 

scheduling as well as progress monitoring [2]. 

Inaccuracies in estimations lead to problematic results; 

for instance, overestimation causes waste of resources, 

whereas underestimation results in approval of 

projects that will exceed their planned budgets [2].  

Various effort estimation models have been proposed 

to make reliable predictions to finish projects on time 

and within the budget. These models can be examined 

based on methodologies used: Expert-based, analogy-

based and regression-based. Expert based models 

depend on the expert knowledge to use past experience 

on software projects. Based on a comprehensive 

review [3], expert based estimation is one of the most 

frequently applied estimation strategy.  

Alternatively, regression-based methods use statistical 

techniques such as least square regression, in the sense 

that a set of independent variables explain the 

dependent variable with minimum error rate [4]. 

Mathematical models like Barry Boehm’s COCOMO 

[6] and COCOMO II [7] are widely investigated 

regression-based methods. Parameters of these models 

are calibrated according to the projects in a company. 

Thus, they have the drawback of requiring local 

calibration [2].  

To address these issues in regression-based models, AI 

techniques have been proposed such as step-wise 

regression, decision tree, artificial neural networks [8, 

9] and other rule-based methods [4]. When dealing 

with effort estimation, these methods also suffer from 

large deviations and low accuracies. Selecting a single 

algorithm would often be far from fulfilling the 

expectations of practitioners from the industry. 

Therefore, AI techniques should be selected carefully 

to build an effort estimation model that would best fit 

into the company needs.  

In this study, we have proposed an effort estimation 

model for the software development division of the 

Turkish subsidiary of a multinational bank (Bank). 

Bank has been developing their in-house banking 

application since 2000. They work with tight 

schedules due to severe competition in the banking 

industry. Software managers look for effective 

strategies to plan their schedule and effectively 

allocate their resources to meet budget constraints. To 

address this problem we have built a learning-based 

effort estimation model and validated the performance 

of our model using Bank data of completed projects as 

well as public datasets gathered from various 

organizations. We have used various AI techniques for 

feature selection, clustering and estimation. The 

results of our empirical study reveal that we 



successfully predicted 78% of projects’ effort with less 

than 30% error.  

2. Description of the model 
We can define five important phases twhen building 

an effort estimation model:  Data, Performance 

Measures, Feature Selection, Algorithm Selection and 

Model Construction. 

2.1. Software Data 
According to Fenton and Neil [10], traditional 

software metrics collection has not addressed the 

actual purpose of providing information to support 

quantitative decision making. Basically, each metric 

in effort estimation should correspond to process, 

product or resource to measure internal attributes of 

these categories. We have followed the same principle 

when collecting software metrics of Bank effort 

estimation data.  

Table 1. Datasets used in model construction 

 

Dataset # Features # Projects Content 

Bank 40 29 Banking applications 

Albrecht 7 24 Projects from IBM 

Deshernais 12 81 Canadian software 

projects 

SDR 22 24 Turkish software 

projects 

ISBSG 14 29 Banking projects only 

Cocomo81 17 63 Nasa projects 

Nasa93 17 93 Nasa projects 

 

Based on Boehm’s COCOMO survey [6], we have 

defined 22 questions most of which captures process 

(8) and resource (14) aspects of a software project. We 

have further used configuration management systems 

in Bank to derive 18 product metrics.  Furthermore, 

we have used 6 public effort estimation datasets. 

As an initial analysis, we have eliminated software 

metrics collected from Bank that are not predictable 

prior to the project startup.  We also observed the R-

Squared coefficient to analyze how well each feature 

approximates effort values with 95% significance. 

Figure 1 shows R-Squared coefficients for predictable 

project features. As it is seen, most of the features 

have values less than 0.3, which indicates that they are 

not explanatory to predict the project effort on their 

own. Therefore, we have adopted an algorithmic 

approach to find the best subset of features that would 

have a significant effect on the project effort. 

 

2.2. Performance Measures 
To assess the performance of our proposed model, we 

have used two popular performance measures in the 

field of effort estimation: Mean Magnitude of Relative 

Error (MMRE) and Pred(25) [12]. MMRE computes 

the average magnitude of relative error between the 

predicted and actual effort values of all projects. 

Despite criticism, it gives an overall view of the 

performance of a model using the formula [12]: 


N

=i (i)actual

(i)estimated(i)actual

N
=MMRE

1

||1  

 

In order to report the performance of the model for a 

particular success criteria, Pred(k) is used (in our case 

k = 25). The formula for calculating Pred(k) is as 

follows [12]: 
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Figure 1. R-Squared coefficients of a regression line for 25 

project features 

 

2.3. Feature Selection 
The feature selection techniques that we have used in 

this study can be summarized as Wrapper for feature 

selection [4], PCA-based weight assignment [14] and 

correlation based weight assignment [15].  

Firstly, we used Wrapper algorithm. Wrapper 

considers all possible combinations of features and 

selects a set of features that would result in the 

minimum error rate [4].  
 Secondly, PCA-based weighting heuristic is 
inspired from the popular statistical technique, 
Principal Components Analysis (PCA), which is used 
for dimensionality reduction. This heuristic, however, 
is proposed to assign weights to features by taking 
major principal components from PCA [14].  
Thirdly, correlation-based weighting heuristic 
investigates Pearson’s correlation coefficients to 
identify significant relations between project features 
and the effort. Initially all features have weights 1 
[15]. Based on this heuristic, weights of any feature 



whose correlation is significant with 95% confidence 
are doubled. Then, the same ML algorithm is applied 
to the modified dataset. 
  
Table 2. Results of feature selection techniques on Bank dataset 

 

Data Type Pred(25) 

All features 27.78% 

Predictable features only 29.41% 

Wrapper Selected Features 47.06% 

PCA Weighted Features 52.94% 

Correlation-Based Weighted Features 52.94% 

 
Table 2 presents Pred(K) with k=25 for three feature 
selection approaches. Results show that feature 
selection techniques applied on predictable features 
would improve the prediction accuracy. To ensure the 
statistical validity of these results, Wilcoxon rank sum 
tests are conducted on all data types.  

 

2.4. Algorithm Selection 
For deciding the best algorithm in terms of 

performance measures, we have tried out various AI 

techniques. They are single learners such as Linear 

Regression (LR), Support Vector Regression (SVR), 

Decision Tree (DT), k-Nearest Neighbor (k-NN) and 

Multilayer Perceptrons (MLP) and a Mixture of 

Experts (MOE) with all algorithms. These algorithms 

are selected based on two criteria: a) they are widely 

used techniques whose performances are validated on 

various datasets in effort estimation [4, 8, 17], and b) 

from the machine learning perspective, each algorithm 

can achieve strengths on different datasets based on 

their regression methodologies [1]. 

We have executed these algorithms on all datasets to 

see their overall performance. Our methodology for 

initial model construction can be summarized as 

follows: 

 Select an algorithm from the following set: {LR, 

SVR, DT, k-NN, MLP, MOE} 

 Select a dataset from Table 2. 

o Apply Wrapper with Exhaustive Search 

using k-NN algorithm (k=3) 

o Use Leave-One-Out strategy: 

 Apply the algorithm on dataset 

 Report MMRE, Pred(25) values 

 Apply non-parametric Friedman test to find 

statistical differences between algorithms [1]. 

This statistical test checks the null 

hypothesis:“H0: Performance differences among 

algorithms are random” against the alternative 

hypothesis: “H1: Performance differences among 

algorithms are not random.” 

If H0 is rejected, we apply Nemenyi’s multiple 

comparisons based on mean ranks [11].  

 

 
Figure 2. Mean ranks of multiple comparisons among algorithms. 

In y-axis, each number corresponds to an algorithm such that 

1:LR, 2: SVR, 3: MLP,4: k-NN, 5: DT, 6: MOE. Circles show the 

mean ranks of algorithms. Right end of each line shows from 

which mean rank onward, another algorithm is outperformed 

significantly 

  

The results of Nemenyi’s multiple comparisons [11] 

are presented with a graphical interpretation in Figure 

2. In Figure 2, when plotting the significance regions, 

each algorithm is represented with a line having a 

circle showing the mean rank. Right end of a line is 

an indicator for an algorithm A to count the number of 

algorithms, from the algorithm A onwards, that are 

significantly dominated by A. For instance, the 

prediction performance of the second line, which 

corresponds to SVR, is significantly different than 

other four algorithms, LR, k-NN, DT, MOE. Since it 

has the highest number of wins in terms of significant 

differences, we have decided to use SVR as the 

algorithm of our effort estimation model. The 

performance of SVR on all datasets can be seen in 

Table 3 for simplicity. Table 3 shows that we have still 

very high values for MMRE and values lower than 

70% for Pred(25). 

 

2.5. Model Construction 
Although we have invested a lot of effort in data 

quality and collection, some projects in Bank dataset 

are outliers and they degrade the performance of SVR. 

To overcome that, we have decided to form project 

groups that provide consistency in terms of metrics 

and effort values within themselves. Therefore, we 

have applied clustering before estimation. 



Table 3. Effort Estimation Accuracy with SVR 

Dataset MMRE Pred(25) 

Bank* 41% 47% 

Albrecht 126% 25% 

Deshernais 320% 18% 

SDR 275% 0% 

ISBSG 36% 42% 

Cocomo81 479% 9.5% 

Nasa93 154% 19% 

 
We have used Expectation Maximization algorithm to 
find clusters with similar project features and effort 
values. In Bank data, after selecting 7 project features 
as the best subset from Wrapper algorithm, we have 
applied SVR on each cluster. Each cluster has been 
trained only with the projects inside the cluster and 
tested on these projects using leave-one-out validation. 
Results are summarized in Table 4.  
 

Table 4. Effort estimation results with final model 

 Best Cluster 

Dataset Clusters Projects MMRE Pred(25) Pred(30) 

Bank 3 9 41% 67% 78% 

Cocomo81 3 16 20% 72% 83% 

Nasa93 6 15 25% 66% 73% 

 
The proposed model on all datasets is able to obtain 
Pred(30) values higher than 70% on the clusters with 
the best accuracy. Although there are still 
inconsistencies about the correctness of Bank data, we 
have managed to form a cluster, in which we can 
estimate 7 out of 9 projects with relative error less 
than 30%. Similarly, for NASA datasets, MMRE 
values are below 30% on the best cluster with 16 and 
15 projects on Cocomo81 and Nasa93. Therefore, we 
can conclude that AI approaches would significantly 
improve the estimation accuracy when accurate and 
consistent data is given.  

 
Figure 3. Experimental design of the model 

 
3. Conclusion  
In this study, we have built an effort estimation model 
to predict the project effort by using AI techniques. 
We have collected software metrics and actual effort 
values from 29 projects in Bank and used public 
datasets to externally validate our proposed model. 
Our results show that combinations of AI techniques 
provide significant improvements in estimation 
accuracy. Furthermore, we have done statistical tests 
to check the significance of these estimation results. 
Statistical tests show that SVR is the best among six 
algorithms. When used with clustering, the model 
performance increases significantly, from, on the 
average, 25% to 68% in terms of Pred(25) in three 
datasets.  
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