
Combining Multiple Learners Induced on Multiple
Datasets for Software Effort Prediction

Ekrem Kocaguneli
Bogazici University

Computer Engineering
34342, Bebek, Istanbul,

Turkey
+90 542 660 19 56

ekrem.kocaguneli@boun
.edu.tr

Yigit Kultur
Bogazici University

Computer Engineering
34342, Bebek, Istanbul,

Turkey
+90 212 359 72 27

yigit.kultur@boun.edu.tr

Ayse Basar Bener
Bogazici University

Computer Engineering
34342, Bebek, Istanbul,

Turkey
+90 212 359 72 26

bener@boun.edu.tr

Abstract

Background: First approaches in software effort

prediction depended on regression based models,

whereas later models investigated more sophisticated

methods like machine learning algorithms.

Discussion Points: Single methods or models can

discover only a certain part of the high dimensional

space of software effort data and a common practice

to increase accuracy values is to combine multiple

learners. However, merely comparing models over a

single dataset on the basis of precision values is not a

healthy practice, since each dataset may favor a

certain method. Therefore, a solid statistical test is

required for comparison. Method: In this study, we

adapt a previous study conducted by Khosgoftaar et.

al. [1] in the field of software quality analysis to the

field of software effort estimation and evaluate our

results on the basis of statistical significance tests.

Conclusions: Khosgoftaar et. al.’s work[1] was the

first of its kind in software quality and we adapted

their novel work to software effort prediction. We

exploited 14 methods over 3 different software effort

prediction datasets under 4 different scenarios and

observed similar results to Khosgoftaar et. al., that is

multiple learners induced on single dataset do not

produce significantly better results.

1. Introduction

Effort prediction in software industry enables

practitioners to predict the cost of a future project and

thereby allows them to allocate available resources

to optimize the quality, budget and schedule in

projects. Furthermore effort prediction models serve

to a number of purposes such as risk analysis, project

planning and control as well as improving investment

analysis [2]. Therefore, particularly after the 60s,

topic of effort prediction in software projects became

a point of focus for researchers [3]. Although a large

number of approaches have been proposed over the

years and many alternatives have been investigated,

we can group those approaches under two main

categories: 1) expert based and 2) model based effort

prediction models [4]. Expert based models rely on

the experience and judgment of human experts. On

the other hand model based approaches make use of a

certain type of algorithmic model and they try to

predict the effort of a future project by analyzing a

dataset of past projects’ effort data.

Regardless of the method we exploit for software

effort prediction, we need to bear in mind that each

method and model make its own assumptions and

come with its own bias [4]. Therefore, it is mostly

recommended to complement the prediction of a

model with the judgment of an expert [2].Moreover,

effort prediction data is inherently a high dimensional

data with a limited number of instances and a single

method may fall short of fully exploring a high

dimensional space. A common practice to address the

problem is resorting to combination of multiple

learners. This approach is referred as multi-learner or

multi-expert system [15]. As Khoshgoftaar et. al.

claimed [1], although combination of multiple

learners with complementary biases may seem to

offer a solution to increase predictive accuracy of a

model, that does not always prove to be efficient in

practice. Khoshgoftaar et. al. observed the validity of

this fact in their extensive work [1] in the context of

software quality and have come up with the

suggestion that increasing the information content of

training datasets for knowledge discovery is the key

to increase the ultimate predictive accuracies

[1,16,17]. In our study, we adapted the experimental

settings proposed by Khoshgoftaar et. al. to an

alternative context: Software effort prediction.

Although we have used the same experimental

settings in a different context, we reached similar

conclusions, i.e. combination of learners do not

significantly improve accuracy values and as it was

the case for software quality. Similar to software

quality, in software effort prediction the volume and

diversity of the data also need to be increased for

better prediction performances.

2. Related Work

Exploiting software project data for effort prediction

purposes has been extensively elaborated and a

number of models have been developed. Among the

parametric methods COCOMO[7], COCOMO II[8],

COCOTS[8], and RUPS[18] can be given. However,

parametric methods like COCOMO have their own

drawbacks; for instance they can only be calibrated

locally [10]. Machine learning approaches are good

means to address local tuning related problems and a

variety of machine learning approaches have been

used for effort prediction purposes as well [10,19,20].

However, when dealing with software effort

prediction, all of these methods suffer from the large

deviation problem and low accuracy values [4]. To

address those problems, pre-processing methods such

as PCA and wrapper have been combined with

various types of learners. Among those methods,

variable reduction (column pruning) and

stratification (row pruning using nearest neighbor)

were reported to be most effective tuning methods

[21]. Although single learners combined with row

and/ or column selection methods have addressed the

deviation problem to some extent, they are can not

remove the inductive bias inherent in each learner.

In other words, each learner is based on its own

premises and come with its own assumptions [16]. To

address these problems, a combination of

complementary learners seems to be a promising

solution. Khoshgoftaar et. al. [1] investigated this in

the software quality domain and they exploited 17

learners on 7 datasets for 4 different scenarios.

Khoshgoftaar et. al. have used voting to combine

multiple learners. Their study is unique in terms of its

content and application domain [1] and they came up

with the conclusion that combination of learners

induced on single datasets does not produce a

significant increase in the accuracy values. In our

study, we replicate their study in software effort

estimation domain and we use 14 learners that are

induced on 3 different datasets. The problem of

Khoshgoftaar et. al. was a classification problem

whereas in our case the problem is a regression type

of a problem. Therefore, the algorithms used in two

studies are not all the same. However, we also chose

our algorithms from the same machine learning

toolbox (WEKA) [17]. We will provide more details

regarding the algorithms and the methodology we

adopted in Section 3.

3. Learners and Adopted Methodology

In our study, we follow the same base principles as

Khoshgoftaar et. al., that is, we are using multiple

experts induced on different datasets. As Alpaydin

suggests [23], there is no point in combining multiple

learners that always make similar decision. Hence,

we selected 14 learners belonging to different

families. All the selected learners can be found in

WEKA data mining tool [17].

3.1 Selected Learners

In Table 2, we give the brief descriptions of the

learners we have used as well as their families in the

same way as they were given in WEKA toolkit[17].

Furthermore, we also included the acronyms that are

used for each algorithm in WEKA data mining tool

[17]. The method we have used in our experiments

while combining the learners was voting, as it was

also used in the study of Khoshgoftaar et. al. We can

regard voting as a regularizer, such that it smoothes

out the predictions of learners [23].

3.2 Adopted Methodology

While applying learners on the datasets, we followed

the same experimental design described in the work

of Khoshgoftaar et. al., consisting of 4 different

scenarios. Below, we give the fundamental idea

laying behind each scenario. The experimental results

of the scenarios will be provided in Section 5.

Scenario 1 - Single Learner, Single Dataset: In this

scenario, each single learner is trained and tested on

each single datasets one by one. We have used ten-

fold cross validation in this scenario. Scenario 1

yielded the results, which are given on Table 3.

Scenario 2: Multi Learner, Single Dataset: The

intuition in that scenario is to use one of the datasets

for training and the remaining 2 for testing and

making this for each dataset. Furthermore, we do

that for every learner and combine their predictions

via voting.
Scenario 3: Single Learner, Multi Dataset: Each

learner is trained with 2 of the 3 datasets and is tested

on the remaining dataset. This procedure is repeated

for each dataset, so that each dataset is used as a test

set at least for once.

Scenario 4: Multi Learner, Multi Dataset: In the

last scenario, each learner is trained on 2 datasets and

is tested on the remaining dataset. Difference of

scenario 4 from scenario 3 is that the predictions of

learners are again combined via voting.

Table 1. Selected Learners [17]

Family Description Acronym

Function Based

Learners

Gaussian Processes for regression without

hyperparameter-tuning

GaussianProcesses

Uses backpropagation for prediction MultilayerPerceptron

A normalized Gaussian radial basis function

network.

RBFNetwork

Alex Smola and Bernhard Scholkopf's

sequential minimal optimization algorithm for

training a support vector regression model

SMOReg

Support vector machine for regression SVMReg

Instance Based

Learners

K-nearest neighbours learners IBk

Locally weighted learning LWL

Meta Learner Uses bagging a learner to reduce variance Bagging (with fast decision tree learner)

Meta learner that enhances the performance of

a regression base classifier

Additive Regression (with decision stump)

Constructs a decision tree based learner to

provide highest accuracy on training data while

improving on generalization accuracy

RandomSubSpace (with fast decision tree

learner)

Tree Based

Learners

Uses decision stump for learning DecisionStump

M5 Base M5P

Rule Based

Learners

Single conjunctive rule learner that can predict

for numeric and nominal class labels

ConjunctiveRule

Builds and uses a simple decision table

majority learner

DecisionTable

4. Dataset and Evaluation Criteria

4.1 Dataset

In our study, we used 3 different datasets: coc81,

nasa93 and cocomonasa_v1. All of the three

databases are publicly available in PROMISE data

repository [22] and all of them were collected in the

form of COCOMO software cost model, where

project efforts are measured in terms of calendar

months [2] and is linearly correlated with software

size.
Table 2. Datasets

 coc81 nasa93 cocomonasa_v1

Number of

Features
17 17 17

Number of

Instances
63 93 60

4.2 Evaluation Criteria

In evaluating the accuracy of a learner in the context

of software effort prediction for COCOMO datasets,

there are standardized criteria such as Pred(K) and

MMRE [19]. MMRE stands for Mean Magnitude

Relative Error and it is the average of the absolute

error over all test instances. The formula of MMRE is

given in Equation 1.

𝑀𝑀𝑅𝐸

= 100 ∗
1

𝑁
∗

|𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 |

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

𝑁

𝑖=1
 (1)

Pred(K) is another very commonly exploited

evaluation criteria for software effort prediction.

Pred(K) is the ratio of the number of test instances

whose predicted cost is within ±K% range of the

actual effort. K value may change from application to

application, however K = 30 is a common choice [4]

and so will we use K = 30 in our work. Equation 2

describes how Pred(30) is calculated, where Ti30 is

the i
th

 test instance whose accuracy is within 30

percent and Tinot30 is the i
th

 instance whose accuracy

is not within 30 percent.

𝑃𝑟𝑒𝑑 30 =
 𝑇𝑖30𝑁

𝑖=1

 𝑇𝑖30𝑁
𝑖=1 + 𝑇𝑖𝑛𝑜𝑡 30𝑀

𝑖=1
 (2)

Although MMRE and Pred(K) have been seriously

condemned due to multiple reasons, they still remain

extensively utilized and they do not have a strong

replacement[20]. However, since MMRE is greatly

influenced by noises in the dataset, we will heavily

depend on Pred(30) values while evaluating our

experimental results.

5. Experimental Results

In Section 3.2 we have provided the methodology of

our experiments as well as the possible scenarios,

which would be investigated. In this section, we will

provide the results elicited from each scenario.

In Table 3, we provide our results of Scenario 1,

where each single learner is tested on each one of the

datasets. As we see in Table 3, application of single

learners to each single dataset can yield pred(30)

values as high as 50%. For ease of reading, we have

written top 2 performing classifier’s pred(30) values

in bold face in Table 3. From Table 4, we see that

when we combine the predictions of multiple learners

for each dataset, the accuracy is far from

outperforming single learners. In Table 4, we also

give Pred(30) value of the best performing single

learner (inside parenthesis with bold face). When we

also compare the MMRE values between Table 3 and

Table 4, we see that combination of learners yields

higher MMRE rates, which is not an improvement

either. For the validity of our results that are

proposed here, we applied ANOVA tests and the

details are provided in Section 6.

The results of Scenario 3 and Scenario 4 are provided

in Table 5 and Table 6 respectively. When the results

of the 3
rd

 and the 4
th

 scenarios are compared to see

whether combining multiple learners has provided a

significant increase in the Pred(30), we see a situation

that is similar to the comparison of Scenario 1 and

Scenario 2; that is, for the multiple dataset case, we

cannot observe a significant increase in the Pred(30)

values as well.

Table 3. Scenario 1: Results for Single Learner, Single Dataset

 coc81 nasa93 nasa_v1

LEARNER pred(30) mmre pred(30) mmre pred(30) mmre

Gaussian Process 15.71 669.92 22.09 454.75 20 295.33

MultilayerPerceptron 15.47 667.5 23.78 511.91 36.67 228.62

RBFNetwork 7.61 931.17 17.08 623.48 12 440.14

SMOReg 18.57 484.18 49.48 332.53 48.33 157.04

SVMReg 20.47 483.08 45.25 328.56 50 155.92

IBk 17.38 756.5 33.49 619.3 41.67 273.87

LWL 9.76 678.26 15.06 555.99 11 280.74

Additive Regression 4.52 829.34 22.05 446.6 38.33 221.92

Bagging 8.8 718.13 30.97 422.25 36.67 184.47

RandomSubSpace 7.38 779.94 25.86 474.72 13.33 346.61

DecisionStump 11.19 717.47 20.05 567.64 13.33 303.21

M5P 20.95 516.62 35.84 346.85 50 158.31

ConjunctiveRule 6.19 858.36 18.94 621.83 16.67 299.81

DecisionTable 12.14 598.95 17.65 564.74 33.34 261.12

Our findings after application of all 4 scenarios are

similar to those of . Khoshgoftaar et. al. In their study

[1], conducted on software quality, they found that

combination of learners trained on single dataset does

not improve the predictive accuracy when compared

to that of single learner induced on a single dataset.

Indeed, the observation which was found for software

quality by Khoshgoftaar et. al. can be observed for

software effort prediction data as well. From our

findings, we can also suggest that predictive accuracy

of multiple learners in terms of Pred(30) values do

not increase significantly, when compared to the

results of single learners both on single datasets and

on multiple datasets.

Table 4. Scenario 2: Results for Multiple Learners,

Single Dataset

coc81 nasa93 nasa_v1

Pred

(30)
mmre

Pred

(30)
mmre

Pred

(30)
mmre

13.55

(20.95)
705.06

25.45

(49.48)
496.06

26.3

(50.00)
338.08

6. Threats to Validity

We address the threats to validity in two areas: 1)

Internal validity and 2) external validity. Internal

validity deals with the extent to which cause and

effect relationships between dependent and

independent variables holds. For the internal validity

of our results, we have applied one-way ANOVA

(analysis of variance) tests. One-way ANOVA tests

are applied to check whether two groups are

statistically different from one another in terms of

the measured quantity. Multiple learner-single dataset

values are significantly different than the single

learner-single dataset values with a p-value of 0.00.

As for the external validity of our results, we need to

see that results elicited from domain specific datasets

do hold for other datasets coming from different

domains. Since we adopted a similar experimental

design from Khoshgoftaar et. al. and came up with

similar results in a different domain, we can say that

our study is an external validation of Khoshgoftaar et.

al.’s study and vice versa. However, software effort

datasets are very limited in number and trying the

same experiments on more datasets can further

improve external validity of this study.

Table 5. Scenario 4: Results for Single Learner,

Multiple Datasets

coc81 nasa93 nasa_v1

Pred

(30)
mmre

Pred

(30)
mmre

Pred

(30)
mmre

13.41 705.06 25.45 496.06 34.36 250.25

7. Conclusion

In our work, we have adapted a previous novel work

of Khoshgoftaar et. al. from software quality domain

to software effort prediction domain and wanted to

see whether the findings that came out of software

quality data would hold for software effort prediction

as well. Both in terms of selected learners and in

terms of the number of datasets, we needed to make

some changes, due to difference of domains as well

as due to the nature of problems (i.e. software quality

prediction is a classification problem, whereas

software effort prediction is a regression one).

Table 6. Scenario 3: Results for Single Learner, Multiple Datasets

 coc81 nasa93 nasa_v1

LEARNER pred(30) mmre pred(30) mmre pred(30) mmre

Gaussian Process 11.905 747.63 27.205 494.04 25 345.905

MultilayerPerceptron 11.905 1460.425 41.065 342.705 27.5 234.92

RBFNetwork 10.315 778.355 13.81 594.32 13.335 522.58

SMOReg 15.37 583.64 44.82 363.115 45 185.51

SVMReg 13.735 581.31 43.06 364.68 46.665 187.865

IBk 19.05 633.685 23.88 499.12 55.835 280.725

LWL 13.74 615.435 15.275 505.47 16.665 288.74

Additive Regression 16.165 702.425 24.1 705.88 18.565 491.74

Bagging 16.165 563.405 28.07 416.14 28.33 222.385

RandomSubSpace 12.25 589.645 19.54 521.345 14.165 403.07

DecisionStump 11.905 665.48 14.625 548.83 16.67 424.245

M5P 13.075 524.675 20.885 589.63 29.935 341.705

ConjunctiveRule 10.28 711 16.875 554.13 10.67 503.38

DecisionTable 11.89 713.85 23.125 445.5 19.885 300.35

The empirical experimental results of the two studies

point to the same direction, although their domains

are different. Khoshgoftaar et. al. found that

combination of learners in software quality does not

significantly improve average predictive accuracy [1]

and concluded that rather than trying to derive high

accuracy values out of noisy or information content-

wise weak datasets, practitioners shall put more effort

into information gathering. Also our findings suggest

that utilization of complex machine learning

algorithms do not necessarily result in higher

prediction performances. Therefore the same

conclusion is also valid for software effort

estimation: the information content of a dataset has a

more decisive role on the prediction accuracies than

complex algorithms.

Acknowledgement
This research is supported in part by Tubitak under

grant number EEEAG108E014, and in part by Ibtech

A.Ş.

8. References

[1] Khoshgoftaar, T. M., Rebours, P., and Seliya, N. 2009.

Software quality analysis by combining multiple

projects and learners.Software Quality Control 17, 1

(Mar.2009),25-49.

DOI=http://dx.doi.org/10.1007/s11219-008-9058-3

[2] B. Boehm, C. Abts and S. Chulani, Software

development cost estimation approaches––a

survey. Annals of Software Engineering 10 (2000), pp.

177–205.

[3] Chrysler, E. 1978. Some basic determinants of

computer programming productivity. Commun.

ACM 21, 6 (Jun. 1978), 472-483. DOI=

http://doi.acm.org/10.1145/359511.359523

[4] T. Menzies, Z. Chen, J. Hihn, and K. Lum. Selecting
best practices for effort estimation. IEEE Transactions
on Soft-ware Engineering, 32:883–895, 2006.

[5] M. Jørgensen, A review of studies on expert

estimation of software development effort, Journal of

Systems and Software 70 (1–2) (2004), pp. 37–60.

[6] Rowe, G., Wright, G., 2001. Expert opinions in

forecasting: The role of the Delphi process. In:

Armstrong, J.S. (Ed.), Principles of Forecasting: A

Handbook for Researchers and Practitioners. Kluwer

Academic Publishers, Boston, pp. 125–144.
[7] B. Boehm. Software Engineering Economics. Prantice

Hall, 1981.

[8] B. W. Boehm, Clark, Horowitz, Brown, Reifer,
Chulani, R. Madachy, and B. Steece. Software Cost
Estimation with Cocomo II. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2000.

[9] L. C. Briand. A pattern recognition approach for
software engineering data analysis. IEEE Transactions
on Software Engineering, 18:931–942, 1992.

[10] Y. Kultur, B. Turhan, and A. B. Bener. Enna: software

effort estimation using ensemble of neural networks

with associa-tive memory. In SIGSOFT ’08/FSE-16:

Proceedings of the 16th ACM SIGSOFT International

Symposium on Founda-tions of software engineering,

pages 330–338, New York, NY, USA, 2008.

[11] B. Stewart. Predicting project delivery rates using the

naive-bayes classifier. Journal of Software

Maintenance and Evolution: Research and Practice,

14:161–179, May 2002

[12] Jalali, O., Menzies, T., Baker, D., and Hihn, J. 2007.

Column Pruning Beats Stratification in Effort

Estimation. In Proceedings of the Third international

Workshop on Predictor Models in Software

Engineering (May 20 - 26, 2007). International

Conference on Software Engineering. IEEE Computer

Society, Washington, DC, 7. DOI=

http://dx.doi.org/10.1109/PROMISE.2007.3

[13] Chen, Z., Menzies, T., Port, D., and Boehm, B. 2005.

Feature subset selection can improve software cost

estimation accuracy. In Proceedings of the 2005

Workshop on Predictor Models in Software

Engineering (St. Louis, Missouri, May 15 - 15, 2005).

PROMISE '05. ACM, New York, NY, 1-6. DOI=

http://doi.acm.org/10.1145/1083165.1083171

[14] Kohavi, R. and John, G. H. 1997. Wrappers for feature

subset selection. Artif. Intell. 97, 1-2 (Dec. 1997), 273-

324. DOI= http://dx.doi.org/10.1016/S0004-

3702(97)00043-X

[15] Gamberger, D., Lavrac, N., and Dzeroski, S. 1996.

Noise Elimination in Inductive Concept Learning: A

Case Study in Medical Diagnosois. In Proceedings of

the 7th international Workshop on Algorithmic

Learning theory (October 23 - 25, 1996). S. Arikawa

and A. Sharma, Eds. Lecture Notes In Computer

Science, vol. 1160. Springer-Verlag, London, 199-

212.

[16] E. Alpaydın, 2004. Introduction to Machine Learning,

MIT Press, 2004

[17] Witten, I. H., & Frank, E. (2000). Data mining,

practical machine learning tools and techniques with

Java implementations. San Francisco, CA: Morgan

Kaufmann.

[18] P. Kruchten. The Rational Unified Process: An

introduction. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1999.

[19] Burgess, C. J. and Lefley, M., 2001. Can genetic

programming improve software effort estimation? A

comparative evaluation”, Information and Software

Technology 43, pp 863-873

[20] Srinivasan, K. and Fisher, D., 1995. Machine Learning

Approaches to Estimating Software Development

Effort, IEEE Transactions on Software Engineering,

Vol. 21, No. 2 , 1995, pp (126-137)

[21] K. Lum, T. Menzies, and D. Baker. 2cee, a twenty
first cen-tury effort estimation methodology. ISPA /
SCEA, pages 12 – 14, 2008.

[22] G. Boetticher, T. Menzies, and T. Ostrand. The
PROMISE Repository of Empirical Software
Engineering Data, 2007.
http://promisedata.org/repository.

http://doi.acm.org/10.1145/359511.359523
http://dx.doi.org/10.1109/PROMISE.2007.3
http://doi.acm.org/10.1145/1083165.1083171
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://dx.doi.org/10.1016/S0004-3702(97)00043-X
http://promisedata.org/repository

[23] Alpaydin, E. (1998). Techniques for combining
multiple learners. In E. Alpaydin (Ed.), Proceedings of
engineering of intelligent systems conference (Vol. 2
of 6–12). ICSC Press.

