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Abstract 
 

Background: First approaches in software effort 

prediction depended on regression based models, 

whereas later models investigated more sophisticated 

methods like machine learning algorithms. 

Discussion Points: Single methods or models can 

discover only a certain part of the high dimensional 

space of software effort data and a common practice 

to increase accuracy values is to combine multiple 

learners. However, merely comparing models over a 

single dataset on the basis of precision values is not a 

healthy practice, since each dataset may favor a 

certain method. Therefore, a solid statistical test is 

required for comparison.  Method: In this study, we 

adapt a previous study conducted by Khosgoftaar et. 

al. [1] in the field of software quality analysis to the 

field of software effort estimation and evaluate our 

results on the basis of statistical significance tests. 

Conclusions: Khosgoftaar et. al.’s work[1] was the 

first of its kind in software quality and we adapted 

their novel work to software effort prediction. We 

exploited 14 methods over 3 different software effort 

prediction datasets under 4 different scenarios and 

observed similar results to Khosgoftaar et. al., that is 

multiple learners induced on single dataset do not 

produce significantly better results. 

 

1. Introduction 
 

Effort prediction in software industry enables 

practitioners to predict the cost of a future project and 

thereby allows  them to allocate available resources 

to optimize the quality, budget and schedule  in 

projects. Furthermore effort prediction models serve 

to a number of purposes such as risk analysis, project 

planning and control as well as improving investment 

analysis [2]. Therefore, particularly after the 60s, 

topic of effort prediction in software projects became 

a point of focus for researchers [3]. Although a large 

number of approaches have been proposed over the 

years and many alternatives have been investigated, 

we can group those approaches under two main 

categories: 1) expert based and 2) model based effort 

prediction models [4]. Expert based models rely on 

the experience and judgment of human experts. On 

the other hand model based approaches make use of a 

certain type of algorithmic model and they try to 

predict the effort of a future project by analyzing a 

dataset of past projects’ effort data.  

 

Regardless of the method we exploit for software 

effort prediction, we need to bear in mind that each 

method and model make its own assumptions and 

come with its own bias [4]. Therefore, it is mostly 

recommended to complement the prediction of a 

model with the judgment of an expert [2].Moreover, 

effort prediction data is inherently a high dimensional 

data with a limited number of instances and a single 

method may fall short of fully exploring a high 

dimensional space. A common practice to address the 

problem is resorting to combination of multiple 

learners. This approach is referred as multi-learner or 

multi-expert system [15]. As Khoshgoftaar et. al. 

claimed [1], although combination of multiple 

learners with complementary biases may seem to 

offer a solution to increase predictive accuracy of a 

model, that does not always prove to be efficient in 

practice. Khoshgoftaar et. al. observed the validity of 

this fact in their extensive work [1] in the context of 

software quality and have come up with the 

suggestion that increasing the information content of 

training datasets for knowledge discovery is the key 

to increase the ultimate predictive accuracies 

[1,16,17]. In our study, we adapted the experimental 

settings proposed by Khoshgoftaar et. al. to an 

alternative context: Software effort prediction. 

Although we have used the same experimental 



settings in a different context, we reached similar 

conclusions, i.e. combination of learners do not 

significantly improve accuracy values and as it was 

the case for software quality. Similar to software 

quality, in  software effort prediction the volume and 

diversity of the data also need to be increased for 

better prediction performances. 

 

2. Related Work 
 

Exploiting software project data for effort prediction 

purposes has been extensively elaborated and a 

number of models have been developed. Among the 

parametric methods COCOMO[7], COCOMO II[8], 

COCOTS[8], and RUPS[18] can be given. However, 

parametric methods like COCOMO have their own 

drawbacks; for instance they can only be calibrated 

locally [10]. Machine learning approaches are good 

means to address local tuning related problems and a 

variety of machine learning approaches have been 

used for effort prediction purposes as well [10,19,20]. 

However, when dealing with software effort 

prediction, all of  these methods suffer from the large 

deviation problem and low accuracy values [4]. To 

address those problems, pre-processing methods such 

as PCA and wrapper have been combined with 

various types of learners. Among those methods,  

variable reduction (column pruning)  and  

stratification (row pruning using nearest neighbor) 

were reported to be most effective tuning methods 

[21]. Although single learners combined with row 

and/ or column selection methods have addressed the 

deviation problem to some extent, they are can not 

remove  the inductive bias inherent in each learner.  

In other words, each learner is based on its own 

premises and come with its own assumptions [16]. To 

address these problems, a combination of 

complementary learners seems to be a promising 

solution. Khoshgoftaar et. al. [1] investigated this in 

the software quality domain and  they exploited 17 

learners on 7 datasets for 4 different scenarios. 

Khoshgoftaar et. al.  have used voting to combine 

multiple learners. Their study is unique in terms of its 

content and application domain [1] and they came up 

with the conclusion that combination of learners 

induced on single datasets does not produce a 

significant increase in the accuracy values. In our 

study, we replicate their study in software effort 

estimation domain and we use 14 learners that are 

induced on 3 different datasets. The problem of 

Khoshgoftaar et. al. was a classification problem 

whereas in our case the problem is a regression type 

of a problem. Therefore, the algorithms used in two 

studies are not all the same. However, we also chose 

our algorithms from the same machine learning 

toolbox  (WEKA) [17]. We will provide more details 

regarding the algorithms and the methodology we 

adopted in Section 3.    

 

3. Learners and Adopted Methodology 
 

In our study, we follow the same base principles as 

Khoshgoftaar et. al., that is, we are using multiple 

experts induced on different datasets. As Alpaydin 

suggests [23], there is no point in combining multiple 

learners that always make similar decision. Hence, 

we selected 14 learners belonging to different 

families. All the selected learners can be found in 

WEKA data mining tool [17]. 

 

3.1 Selected Learners 
 

In Table 2, we give the brief descriptions of the 

learners we have used as well as their families in the 

same way as they were given in WEKA toolkit[17]. 

Furthermore, we also included the acronyms that are 

used for each algorithm in WEKA data mining tool 

[17]. The method we have used in our experiments 

while combining the learners was voting, as it was 

also used in the study of Khoshgoftaar et. al. We can 

regard voting as a regularizer, such that it  smoothes 

out the predictions of learners [23]. 

 

3.2 Adopted Methodology 
 

While applying learners on the datasets, we followed 

the same experimental design described in the work 

of Khoshgoftaar et. al., consisting of 4 different 

scenarios. Below, we give the fundamental idea 

laying behind each scenario. The experimental results 

of the scenarios will be provided in Section 5. 

 

Scenario 1 - Single Learner, Single Dataset: In this 

scenario, each single learner is trained and tested on 

each single datasets one by one. We have used ten-

fold cross validation in this scenario. Scenario 1 

yielded the results, which are given on Table 3. 

Scenario 2: Multi Learner, Single Dataset: The 

intuition in that scenario is to use one of the datasets 

for training and the remaining 2 for testing and 

making this for each dataset.  Furthermore, we do 

that for every learner and combine their predictions 

via voting.  
Scenario 3: Single Learner, Multi Dataset: Each 

learner is trained with 2 of the 3 datasets and is tested 

on the remaining dataset. This procedure is repeated 

for each dataset, so that each dataset is used as a test 

set at least for once. 

Scenario 4: Multi Learner, Multi Dataset: In the 

last scenario, each learner is trained on 2 datasets and 

is tested on the remaining dataset. Difference of 



scenario 4 from scenario 3 is that the predictions of 

learners are again combined via voting.  
 

 
Table 1. Selected Learners [17] 

Family Description Acronym 

Function Based 

Learners 

Gaussian Processes for regression without 

hyperparameter-tuning 

GaussianProcesses 

Uses backpropagation for prediction MultilayerPerceptron 

A normalized Gaussian radial basis function 

network. 

RBFNetwork 

Alex Smola and Bernhard Scholkopf's 

sequential minimal optimization algorithm for 

training a support vector regression model 

SMOReg 

Support vector machine for regression SVMReg 

Instance Based 

Learners 

K-nearest neighbours learners IBk 

Locally weighted learning LWL 

Meta Learner Uses bagging a learner to reduce variance Bagging (with fast decision tree learner) 

Meta learner that enhances the performance of 

a regression base classifier 

Additive Regression (with decision stump) 

Constructs a decision tree based learner to 

provide highest accuracy on training data while 

improving on generalization accuracy  

RandomSubSpace (with fast decision tree 

learner) 

Tree Based 

Learners 

Uses decision stump for learning DecisionStump 

M5 Base M5P 

Rule Based 

Learners 

Single conjunctive rule learner that can predict 

for numeric and nominal class labels 

ConjunctiveRule 

Builds and uses a simple decision table 

majority learner 

DecisionTable 

 

4. Dataset and Evaluation Criteria 

 

4.1 Dataset 
 

In our study, we used 3 different datasets: coc81, 

nasa93 and cocomonasa_v1. All of the three 

databases are publicly available in  PROMISE data 

repository [22] and all of them were collected in the 

form of COCOMO software cost model, where 

project efforts are measured in terms of calendar 

months [2] and is linearly correlated with software 

size.   
Table 2. Datasets 

 coc81 nasa93 cocomonasa_v1 

Number of 

Features 
17 17 17 

Number of 

Instances 
63 93 60 

 

4.2 Evaluation Criteria 
 

In evaluating the accuracy of a learner in the context 

of software effort prediction for COCOMO datasets, 

there are standardized criteria such as Pred(K) and 

MMRE [19]. MMRE stands for Mean Magnitude  

 

 

Relative Error and it is the average of the absolute 

error over all test instances. The formula of MMRE is 

given in Equation 1. 

 

𝑀𝑀𝑅𝐸

= 100 ∗ 
1

𝑁
∗   

|𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖 |

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

𝑁

𝑖=1
    (1) 

 

Pred(K) is another very commonly exploited 

evaluation criteria for software effort prediction. 

Pred(K) is the ratio of the number of test instances 

whose predicted cost is within ±K% range of the 

actual effort. K value may change from application to 

application, however K = 30 is a common choice [4] 

and so will we use K = 30 in our work. Equation 2 

describes how Pred(30) is calculated, where Ti30 is 

the i
th

 test instance whose accuracy is within 30 

percent and Tinot30 is the i
th

 instance whose accuracy 

is not within 30 percent. 

 

𝑃𝑟𝑒𝑑 30 =
  𝑇𝑖30𝑁

𝑖=1  

  𝑇𝑖30𝑁
𝑖=1 + 𝑇𝑖𝑛𝑜𝑡 30𝑀

𝑖=1  
       (2)  

 

Although MMRE and Pred(K) have been seriously 

condemned due to multiple reasons, they still remain 

extensively utilized and they do not have a strong 

replacement[20]. However, since MMRE is greatly 

influenced by noises in the dataset, we will heavily 



depend on Pred(30) values while evaluating  our 

experimental results.  

 

5. Experimental Results 
 

In Section 3.2 we have provided the methodology of 

our experiments as well as the possible scenarios, 

which would be investigated. In this section, we will 

provide the results elicited from each scenario. 

 

In Table 3, we provide our results of Scenario 1, 

where each single learner is tested on each one of the 

datasets. As we see in Table 3, application of single 

learners to each single dataset can yield pred(30) 

values as high as 50%. For ease of reading, we have 

written top 2 performing classifier’s pred(30) values 

in bold face in Table 3. From Table 4, we see that 

when we combine the predictions of multiple learners 

for each dataset, the accuracy is far from 

outperforming single learners. In Table 4, we also 

give Pred(30) value of the best performing single 

learner (inside parenthesis with bold face). When we 

also compare the MMRE values between Table 3 and 

Table 4, we see that combination of learners yields 

higher MMRE rates, which is not an improvement 

either. For the validity of our results that are 

proposed here, we applied ANOVA tests and the 

details  are provided in Section 6.  

 

The results of Scenario 3 and Scenario 4 are provided 

in Table 5 and Table 6 respectively. When the results 

of the 3
rd

 and the 4
th

 scenarios are compared to see 

whether combining multiple learners has provided a 

significant increase in the Pred(30), we see a situation 

that is similar to the comparison of Scenario 1 and 

Scenario 2; that is, for the multiple dataset case, we 

cannot observe a significant increase in the Pred(30) 

values as well.

 

Table 3. Scenario 1: Results for Single Learner, Single Dataset 

 coc81 nasa93 nasa_v1 

LEARNER pred(30) mmre pred(30) mmre pred(30) mmre 

Gaussian Process 15.71 669.92 22.09 454.75 20 295.33 

MultilayerPerceptron 15.47 667.5 23.78 511.91 36.67 228.62 

RBFNetwork 7.61 931.17 17.08 623.48 12 440.14 

SMOReg 18.57 484.18 49.48 332.53 48.33 157.04 

SVMReg 20.47 483.08 45.25 328.56 50 155.92 

IBk 17.38 756.5 33.49 619.3 41.67 273.87 

LWL 9.76 678.26 15.06 555.99 11 280.74 

Additive Regression 4.52 829.34 22.05 446.6 38.33 221.92 

Bagging 8.8 718.13 30.97 422.25 36.67 184.47 

RandomSubSpace 7.38 779.94 25.86 474.72 13.33 346.61 

DecisionStump 11.19 717.47 20.05 567.64 13.33 303.21 

M5P 20.95 516.62 35.84 346.85 50 158.31 

ConjunctiveRule 6.19 858.36 18.94 621.83 16.67 299.81 

DecisionTable 12.14 598.95 17.65 564.74 33.34 261.12 

 

Our findings after application of all 4 scenarios are 

similar to those of . Khoshgoftaar et. al. In their study 

[1], conducted on software quality, they found that 

combination of learners trained on single dataset does 

not improve the predictive accuracy when compared 

to that of single learner induced on a single dataset.  

Indeed, the observation which was found for software 

quality by Khoshgoftaar et. al. can be observed for 

software effort prediction data as well. From our 

findings, we can also suggest that predictive accuracy 

of multiple learners in terms of Pred(30) values do 

not increase significantly, when compared to the 

results of single learners both on single datasets and 

on multiple datasets.   

 



Table 4. Scenario 2: Results for Multiple Learners, 

Single Dataset 

coc81 nasa93 nasa_v1 

Pred 

(30) 
mmre 

Pred 

(30) 
mmre 

Pred 

(30) 
mmre 

13.55 

(20.95) 
705.06 

25.45 

(49.48) 
496.06 

26.3 

(50.00) 
338.08 

 

6. Threats to Validity 
 

We address the threats to validity in two areas: 1) 

Internal validity and 2) external validity. Internal 

validity deals with the extent to which cause and 

effect relationships between dependent and 

independent variables holds. For the internal validity 

of our results, we have applied one-way ANOVA 

(analysis of variance) tests. One-way ANOVA tests 

are applied to check whether two groups are 

statistically different from one another in terms of  

the measured quantity. Multiple learner-single dataset 

values are significantly different than the single 

learner-single dataset values with a p-value of 0.00. 

As for the external validity of our results, we need to 

see that results elicited from domain specific datasets 

do hold for other datasets coming from different 

domains. Since we adopted a similar experimental 

design from Khoshgoftaar et. al. and came up with 

similar results in a different domain, we can say that 

our study is an external validation of Khoshgoftaar et. 

al.’s study and vice versa. However, software effort 

datasets are very limited in number and trying the 

same experiments on more datasets can further 

improve external validity of this study. 

 
Table 5. Scenario 4: Results for Single Learner, 

Multiple Datasets 

coc81 nasa93 nasa_v1 

Pred 

(30) 
mmre 

Pred 

(30) 
mmre 

Pred 

(30) 
mmre 

13.41 705.06 25.45 496.06 34.36 250.25 

 

7. Conclusion 

 
In our work, we have adapted a previous novel work 

of Khoshgoftaar et. al. from software quality domain 

to software effort prediction domain and wanted to 

see whether the findings that came out of software 

quality data would hold for software effort prediction 

as well. Both in terms of selected learners and in 

terms of the number of datasets, we needed to make 

some changes, due to difference of domains as well 

as due to the nature of problems (i.e. software quality 

prediction is a classification problem, whereas 

software effort prediction is a regression one).  
 

 

 

Table 6. Scenario 3: Results for Single Learner, Multiple Datasets 

  coc81 nasa93 nasa_v1 

LEARNER pred(30) mmre pred(30) mmre pred(30) mmre 

Gaussian Process 11.905 747.63 27.205 494.04 25 345.905 

MultilayerPerceptron 11.905 1460.425 41.065 342.705 27.5 234.92 

RBFNetwork 10.315 778.355 13.81 594.32 13.335 522.58 

SMOReg 15.37 583.64 44.82 363.115 45 185.51 

SVMReg 13.735 581.31 43.06 364.68 46.665 187.865 

IBk 19.05 633.685 23.88 499.12 55.835 280.725 

LWL 13.74 615.435 15.275 505.47 16.665 288.74 

Additive Regression 16.165 702.425 24.1 705.88 18.565 491.74 

Bagging 16.165 563.405 28.07 416.14 28.33 222.385 

RandomSubSpace 12.25 589.645 19.54 521.345 14.165 403.07 

DecisionStump 11.905 665.48 14.625 548.83 16.67 424.245 

M5P 13.075 524.675 20.885 589.63 29.935 341.705 

ConjunctiveRule 10.28 711 16.875 554.13 10.67 503.38 

DecisionTable 11.89 713.85 23.125 445.5 19.885 300.35 

 



The empirical experimental results of the two studies 

point to the same direction, although their domains 

are different. Khoshgoftaar et. al. found that 

combination of learners in software quality does not 

significantly improve average predictive accuracy [1] 

and concluded that rather than trying to derive high 

accuracy values out of noisy or information content-

wise weak datasets, practitioners shall put more effort 

into information gathering. Also our findings suggest 

that utilization of complex machine learning 

algorithms do not necessarily result in higher 

prediction performances. Therefore the same 

conclusion is also valid for software effort 

estimation: the information content of a dataset has a 

more decisive role on the prediction accuracies than 

complex algorithms.  
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