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1 IntroductionRecent years have seen much work in learning multiple models for the purpose of reducingclassi�cation error.1 Studies involving the use of multiple models typically learn a set ofmodels from one set of training examples. This ensemble makes classi�cations by combiningthe classi�cations of its constituents. The error rate of this ensemble is usually compared tothat of a special, single model that results from using a deterministic learning procedure onthe same training examples. Most of the empirical work on multiple models has shown thatthe ensemble is able to achieve more accurate classi�cations than the single model.Besides the impressive empirical evidence that shows that classi�cation error rates canbe reduced by learning and using multiple models, there are also relevant theoretical results.Breiman (submitted) shows for regression that the expected mean square error (MSE) ofthe ensemble must be lower than the average MSE of its constitutents. Hansen & Salamon(1990) show that if the models make errors independently, and if they all have the same errorrate and if that error rate is less than 0.5, then the expected error rate of the ensemble willdecrease monotonically as a function of the number of classi�ers in the ensemble. Perrone &Cooper (1993) have the strongest result: they show for regression, that if the models all areunbiased2 and all make errors completely independently, then the mean square error (MSE)of the ensemble will equal the average MSE of the constitutents divided by the number ofmodels! Buntine (1990) applies Bayesian probability theory (e.g. Bernardo & Smith, 1994)to classi�cation and shows that the expected posterior probability of a class given a testexample can be computed by combining the posterior probabilities of all the hypotheses inthe hypothesis space. Empirical results (Buntine, 1990; Ali & Pazzani, 1995; Oliver & Hand,1995) use a small set of highly probable models to approximate the result of combining theposterior probabilities over the entire hypothesis space and show that the ensemble achievesa lower error rate than the special single model.In our earlier work (Ali & Pazzani, submitted) we demonstrated that using an ensemble itwas possible to achieve an error-rate just one-seventh that of the single model error-rate. Thiswas accomplished on the wine domain from the UCI repository (Murphy & Aha, 1992) usingan ensemble consisting of eleven rule-set models. However, our results and those of Breiman(submitted) indicate that the amount of error reduction varies greatly. For some domains(e.g. Iris, Breast Cancer) the multiple models approach does not lead to any reduction inerror.1Some examples are:Decision trees: Kwok & Carter, 1990; Buntine, 1990; Oliver & Hand, 1995; Breiman, 1994.Rules: Kononenko & Kovacic, 1992; Kovacic, 1994; Smyth et al., 1990.Rule sets: Gams, 1989; Ali & Pazzani, 1995.Neural networks: Hansen & Salamon, 1990; Perrone & Cooper, 1993; and many others.Bayesian networks: Madigan & York, 1993.Regression: Perrone & Cooper, 1993; Breiman, submitted.2In regression, this has a precise de�nition. It means that the expected value predicted by the classi�ershould equal the true expected value. 1



This leads to the main question addressed in this paper: \What inuences the amountof error reduction?" In particular, we are interested in exploring the widely held belief(articulated by Hansen & Salamon (1990)) that error is most reduced for domains for whichthe errors made by the models are made in an independent manner. This is also echoed inKong & Dietterich (1995) in which they hypothesize that error-correcting output codes areable to reduce error because they rely on learning several functions (models) that vote tomake a classi�cation and that those functions make errors in an uncorrelated manner. Thevalidation of this hypothesized link between independence (uncorrelatedness) of individualmodel errors and overall error reduction is the main goal of this paper.The rest of the paper is organized as follows: Section 2 de�nes our measures of corre-latedness and degree of error reduction. The next section presents our method for learningensembles and the following section presents our methods for combining ensembles. Section 5presents our three main results.2 Error reduction and error correlationNow we present precise de�nitions of the degree of error reduction (Er) and the degree oferror correlatedness (�e). Two obvious measures comparing the error of the ensemble (Ee) tothe error of the single model (Es) are error di�erence (Es�Ee) and error ratio (Er = Ee=Es).We use error ratio because it reects the fact that it becomes increasingly di�cult to obtainreductions in error as the error of the single model approaches zero. Error ratios less than 1indicate that multiple models approach was able to obtain a lower error rate than the singlemodel approach. The lower the error ratio, the greater the error reduction and the betterthe situation.Let the ensemble F consist of the models ff̂1:::f̂Tg and let the true, target function bedenoted by f . Therefore, f(x) = y means that example x belongs to class y. In order tode�ne \the degree of error correlatedness," let p(f̂i(x) = f̂j(x); f̂i(x) 6= f(x)) denote theprobability that models f̂i and f̂j make the same kind of error. �e is then just the average ofthe probability of making the same kind of error taken over all pairs in the ensemble. Thatis, �e(F) = 1T (T � 1) TXi=1 TXj 6=i p(f̂i(x) = f̂j(x); f̂i(x) 6= f(x)) (1)The higher the values of �e, the more correlated the errors made by members of the ensemble.The values of �e for the data sets presented in Table 2 were estimated on the test set ofexamples. Therefore, they cannot be used by the learning algorithm but provide us with anunderstanding of why error is reduced more in some data sets.There is an intimate link between making uncorrelated errors and making errors in astatistically independent manner. Let C denote the number of classes and let �� denote the2



Table 1: Relationship between correlatedness and statistical independence.�e > �� Positively correlated Dependent errors�e = �� Uncorrelated Independent errors�e < �� Negatively correlated Dependent errorsfollowing special value of �e:��(F) = TXi=1 TXj 6=i CXk=1 p(f(x) = k) � 24Xl6=k p(f̂i(x) = ljf(x) = k)� p(f̂j(x) = ljf(x) = k)35 (2)This is the value of �e that would be obtained if all the members of the ensemble made errorsin a pairwise, statistically independent manner for each class in the data. This value is usedto de�ne the meaning of \negatively correlated" as shown in Table 1.Some authors (Hansen & Salamon, 1990; Perrone, 1993) have demonstrated that makingerrors in an uncorrelated (independent) manner leads to a lower error rate for the ensembleand produces some desirable results relating to error reduction. Kong & Dietterich (1995)attribute the success of their error-correcting output code method to its ability to learnfunctions that make uncorrelated errors. However, our analysis above suggests that because�� is not the lowest possible value obtainable, one should aim to learn ensembles whosemodels make errors in an \negatively correlated" manner. In Section 5.3 we present furtherarguments for the hypothesis that ensembles whose members make errors in an negativelycorrelated manner will have lower ensemble error rates than ensembles whose members makeerrors in an uncorrelated (independent) manner.3 Learning decision tree ensemblesWe use the method of top-down induction of decision trees (ID3: Quinlan, 1986) with 1-steplookahead with respect to entropy minimization to learn a single tree. Pruning is not used inthis section because we do not want the error reductions to be confounded with the pruningmethod. Section 6 however shows that even if pruning is used, there is still a correlationbetween the degree of error reduction and the degree to which models make uncorrelatederrors. Unknown attribute values are handled by the method of token averaging (Quinlan,1986).Stochastic search is used to generate multiple trees. We consider all decision tree splitswhose resultant entropy (Quinlan, 1986) is within some factor � of the entropy of the splitwith the lowest entropy. For our experiments, we set this factor to 1.25. The probabilityof choosing a split from this set is proportional to 1/Entropy.3 We have not experimented3To prevent zero values for Entropy, we used the Laplace approximation for the probabilities involvedin the Entropy expression. Briey, the Laplace approximation for the probability of some discrete random3



with other values of � - future work should check if the negative correlation between degreeof error reduction and correlatedness of errors holds for other values.4 Evidence combinationThe only other decision one needs to make in making a stochastic version of an algorithmis how to combine evidence and classi�cations of the learned models in order to make anoverall classi�cation by the ensemble. We consider four evidence combination functions todemonstrate that our results on the relation between error reduction and the tendency tomake correlated errors is not sensitive to the type of combination function.� Uniform Voting - The classi�cation predicted by each tree is noted and the class thatis predicted most frequently is used as the prediction of the ensemble. For the othercombination functions, each tree must provide a measure of con�dence in addition toits classi�cation.� Distribution Summation (Clark & Boswell, 1991) - This method assocates a C-componentvector (the distribution) with each leaf. C denotes the number of classes. The vectorrecords the numbers of training examples that reached that leaf. In order to produce aclassi�cation for the ensemble for a test example, that example is �ltered to the leaf ofeach decision tree. Then, a component-wise summation of the vectors associated withthose leaves is done. The prediction of the ensemble corresponds to the class with thegreatest value in the summed vector.� Likelihood Combination (Duda at al., 1979) - This method associates a \degree oflogical su�ciency" (LS) for each class i with each leaf j. In the context of classi�cation,the LS of a leaf j for Classi is de�ned byp(x 2 ext(j)jx 2 Classi)p(x 2 ext(j)jx 62 Classi)where ext(j) denotes the set of examples that �lter to leaf j and where x is a randomexample. These LS's are combined using the odds form (the odds of a proposition withprobability p are p=(1 � p)) of Bayes rule:O(ClassijM) / O(Classi)�Yj O(ClassijMj)whereM is the set of learned decision trees and Mj is the j-th tree. O(Classi) denotesthe prior odds of the i-th class. For model j, O(ClassijMj) is set to the LS of classi stored at leaf j. Finally, the test example is assigned to the class with the highestvariable which has been observed to occur in f of T trials is f+1T+k where k denotes the number of possiblevalues for the variable. 4



posterior odds, O(ClassijM). Likelihood Combination only works with two classes butthis is consistent with our framework because with respect to any given class, all theother classes are treated as a single \negative" class.� Bayesian Combination (Buntine, 1990) - According to Bayesian probability theory, weshould assign test example x to the class c with the maximum expectation for p(cjx; ~x)taken over T , the hypothesis space of all possible decision trees over the chosen set ofattributes: ET (p(cjx; ~x)) = XT2T p(cjx; T )� p(T j~x)(~x denotes the set of training examples.) The posterior probability of a tree T , p(T j~x),is calculated as in (Buntine, 1990). For the \degree of endorsement," p(cjx; T ), madeby tree T for class c for example x, we use a Laplace estimate from the training data(see Ali & Pazzani (1995) for details).5 Experimental resultsFor our experiments we chose domains from the UCI repository of machine learning databases(Murphy & Aha, 1992) ensuring that at least one domain from each of the major groups(molecular biology, medical diagnosis ...) was chosen. These include molecular-biologydomains (2), medical diagnosis domains (7), relational domains (6 variants of the King-Rook-King (KRK) domain, Muggleton et al., 1989), a chess domain with a \small disjunctsproblem" (KRKP; Holte et al., 1989), and attribute-value domains (4 LED variants and thetic-tac-toe problem).For most of the domains tested here, we used thirty independent trials, each time trainingon two-thirds of the data and testing on the remaining one-third. The exceptions to this arethe DNA promoters domain for which leave-one-out testing has traditionally been used andwe follow this tradition to allow comparability. Whenever possible we tried to test learnedmodels on noise-free examples (including noisy variants of the KRK and LED domains) butfor the natural domains we tested on possibly noisy examples. The \large" variant of theSoybean data set (Murphy & Aha, 1992) was used and the 5-class Heart data set variantwas used.5.1 Link between error reduction and error correlationTable 2 presents results using 29 data sets from 21 domains. (We distinguish the terms\data set" and \domain" in that a data set also involves speci�ying parameters such astraining set size, level of class noise etc.) For 72% of the data sets in Table 2 there is asigni�cant reduction in error rate when classi�cations are made using an ensemble of eleventrees (combined using Uniform Voting). Signi�cant reductions in error are labeled by \{";signi�cant increases by \+." No signi�cant change in error occurs on the remaining datasets. Hence, the ensemble approach never signi�cantly increases error rate.5



Table 2: Comparison of errors made by single decision tree and an ensemble consistingof eleven stochastically-learned decision trees combined with the Uniform Voting function.Su�xes: i: number of irrelevant attributes; e: number of training examples; a: level ofattribute noise; c: level of class noise.Domain Base Number 1 Dec. Tree 11 Dec. TreesError Training Error Uniform VotingRate Examples Rate Error RateLed 8i 90.0% 30 13.1% 9.4%Led 17i 90.0% 30 20.9% 12.3% {Tic-tac-toe 34.7% 670 15.9% 5.2% {Krkp 48.0% 200 5.8% 5.2%Krk 100e 33.4% 100 3.8% 4.4%Krk 200e 33.4% 200 1.8% 1.7%Krk 160e 5a 33.4% 160 8.6% 8.6%Krk 320e 5a 33.4% 320 5.7% 5.7%Krk 160e 20c 33.4% 160 12.9% 11.8%Krk 320e 20c 33.4% 320 9.4% 9.6%Led 20a 90.0% 30 10.0% 10.0%Led 40a 90.0% 30 26.0% 21.7% {DNA 50.0% 105 17.0% 6.4% {Splice 46.6% 200 24.6% 12.2% {Mushroom 50.0% 100 1.6% 1.2%Hypothyroid 5.0% 200 2.3% 1.9%BC-Wisconsin 34.5% 200 6.5% 4.4% {Voting 38.0% 100 6.5% 6.4%Wine 60.2% 118 6.5% 2.8% {Iris 66.7% 50 5.4% 5.3%Soybean 85.4% 290 13.9% 11.9% {Horse-colic 36.6% 245 17.0% 14.0% {Hepatitis 20.4% 103 25.2% 20.4% {Lymph. 45.3% 110 25.0% 26.5%Audiology 74.7% 145 21.6% 22.3%Diabetes 34.9% 200 31.5% 27.0% {B.Cancer 29.8% 190 36.6% 35.6%Heart 45.9% 200 49.9% 45.3% {Primary-tumor 75.3% 225 64.0% 59.8% {However, the main point of this paper is not to demonstrate that error is reduced due tothe multiple models approach. Rather, we seek to explain the amount of error reduction asa function of the tendency to make correlated errors, �e. The linear correlation coe�cient(rEr ;�e) between error correlation (�e) and error ratio (Er) can be used to measure how well�e linearly models error ratio. If the error ratios and �e values for the 19 data sets for whichthere was a statistically signi�cant degree of error reduction are plotted in a scatter-plotand a least mean-squares linear �t is done, it can be determined that the tendency to makecorrelated errors explains 60% of the variance in the error ratio variable (r2Er ;�e = 0:60).This is empirical evidence for the hypothesis that there is a negative correlation betweenthe degree to which error is reduced and the degree to which individual model errors in theensemble are made in an correlated manner. However, it is better to conduct several trialsto estimate the statistic r2Er;�e so we conducted 10 trials. Within each of these \meta-trials,"30 trials per data set were run. For the i-th meta-trial we decided to use i � 10% of thetraining data. So, for example, on the Tic-Tac-Toe domain, the original training set size was670 training examples so this was augmented by 30 trials at 67 examples, 30 trials at 134training examples etc. 6
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y = 0.73309 + 0.74323x   R^2 = 0.314Figure 1: The �gures above illustrate that greatest error reduction is obtained for ensembleswhich make less correlated errors (have lower values of �e). One point represents one dataset - a combination of a domain and a speci�c training set size.Figure 1 shows that under the UniformVoting combination function (top left of Figure 1),49% of the variance in amount of error reduction is explained by the tendency to make thesame correlated errors. This value is more reliable than the 60% value for r2 mentioned earlierbecause it uses approximately ten times as many data sets. The �gure also shows that forthe other three combination functions the degree to which error is reduced is negativelycorrelated with the degree to which constituents in the ensemble make individual errors inan correlated manner.Because r is distributed normally for samples of large (greater than 30) size we canapply a signi�cance test to see what the probability of achieving a r of 0.70 (r2 = 0:49)under the null hypothesis, H0, would be for 162 degrees of freedom. In this case, the nullhypothesis would be that the population correlation, �, between Er and �e, given that thereis a signi�cant degree of error reduction is 0. For each of the four combination functions, theprobability of attaining the observed r values under H0, is less than 0.0005 (120 degrees offreedom were used). Therefore, we can con�dently say that the perceived linear correlationbetween �e and Er is very unlikely to arise by chance. The 95% con�dence intervals aroundr2 are [38%; 60%] for Uniform Voting, [20%; 44%] for Bayesian combination, [28%; 49%] forDistribution Summation and [32%; 56%] for Likelihood Combination.That we can empirically discover the negative correlation between amount of error re-7



duction and tendency to make correlated errors is quite encouraging given that the data setsvary widely in optimal Bayes error and along other dimensions. Secondly, �e is a pairwisemeasure, whereas what the error rate under Uniform Voting counts is the proportion of thetest examples on which at least six models made an error (assuming an ensemble size ofeleven). Another limitation of �e is that it assumes all models have equal voting weight.This is only true under the Uniform Voting combination function and that is why the r2under that function is higher than under other functions.In other experiments, we calcuated r2Ee;�e within each domain. Note that this is between�e and error rate, not error ratio. This within-domain experiment factors out the inuenceof optimal Bayes error rate which may vary from domain to domain. For the within-domainexperiments, a separate value for �e is calculated per trial, rather than averaging over 30trials. In these experiments, we obtained very high values for r2Ee;�e for most domains; up to96.8% for tic-tac-toe.In order to gain insight into why �e explains so much of the variance in error ratio considerthe simpler problem of modeling variation in error rate within a given domain. Assume thatthe simplest evidence combination method (Uniform Voting) is used and that the data setcontains two classes and that the ensemble contains just two models. In this situation, anensemble error occurs if both the models make an error or if the models disagree and the tieis broken so as to cause an error. Assume that ties occur on a negligible proportion of thecases. Under these assumptions, �e is an exact measure of ensemble error (Ee). As �e is apairwise measure, how well it models within-dataset ensemble error depends on the size ofthe ensemble.To summarize: our results provide an explanation of why the multiple models approachleads to great error reduction in some domains but hardly any in other domains. The resultsshow that there is a negative correlation between the amount of error reduction and theamount of correlatedness of errors - the less correlated the individual model errors, thebetter the ensemble is at reducing error.5.2 Gain TiesThe amount of error correlation provides a post-hoc way of understanding the degree of errorreduction. Now we want to predict during learning the expected amount of error reduction.We seek to understand why the stochastic learning algorithm produces models that makeless correlated errors in some data sets.The motivation for postulating this hypothesis is the observation that each time thestochastic generation method is run, it uses the same training data. However, it is able togenerate di�erent descriptions because it randomly picks from the decision tree nodes whosegain is within some factor � (� 2 (1;1)) of the entropy of the best node. If there aremany such nodes then the possibility for syntactic variation from description to descriptionis greater. It is our hypothesis that greater syntactic variety leads to descriptions that makeless correlated errors. Hence, if we can measure (during learning) the amount of potentialsyntactic diversity, we can estimate the degree to which the resulting models will make8
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Table 3: An arbitrary arrangement of individual model errors on 100 test examples. A \X"indicates an individual model error. An ensemble error occurs for test examples (columns)in which there are more than 2 individual model errors.Eg1 Eg2 Eg99 Eg100Model1 X X XModel2 X XModel3 X ... XModel4 X XModel5 Xa signi�cantly better estimation of error reduction. Other measures that counted \near gain-ties" or gain ties weighted by the number of examples at that node also did not yield a betterestimate of error reduction.5.3 Negatively Correlated ErrorsIn this section we consider whether making errors in a negatively-correlated manner leadsto lower values of error reduction than if the errors are made in an uncorrelated manner.Consider what an optimimal arrangement of errors (that minimizes ensemble error rates)would look like. We cannot vary each model's error rate but we can permute the exampleson which it makes errors.Consider an arbitrary pattern of errors as shown in Table 3 for 5 learned models and100 test examples. Assume that Uniform Voting is used so an ensemble error occurs if thereare more than 2 errors for any example. Therefore, in order to minimize the ensemble errorrate, the models should make errors in a pattern that minimizes the number of columns inwhich more than 2 errors are made.Now, because we are able to rearrange the errors but we are not able to modify the errorrates it follows that we can permute each row. The ensemble error minimization procedureoperates by ordering the models - most error-prone �rst. Then the errors of the second modelare permuted so that as many of them as possible occur on examples that were correctlyclassi�ed by the �rst model. That is, the models should make errors on disjoint subsets (toas great a degree as possible) rather than on independently drawn subsets. This processcontinues so that for each model we arrange for the mistakes to be made on examples onwhich the fewest mistakes have been made by previous models. However, once the numberof errors on an example exceeds bT2 c (T is the number of models) then an ensemble error isconceded on that example. Then in order to keep minimizing ensemble error rate, it is bestto arrange for subsequent models to make their errors on such \conceded" examples. Fromthis analysis it becomes clear that in order to minimize the number of ensemble errors, itis better for the constituent models to make errors in a dependent but negatively correlatedway rather than in an independent (uncorrelated) way.10



�e is a perfect measure of ensemble error rate within a domain given that only twomodels are in the ensemble, the domain only contains two classes and that ties occur ona negligible proportion of the examples. However, for ensembles of larger sizes, considerhow the arrangement of errors such as that in Table 3 impacts the ability of �e to measureensemble error rate. The number of ensemble errors simply counts the number of columnsin the table on which more than bT2 c errors occurred. Therefore, any rearrangement in thepattern of errors on the columns in which bT2 c or fewer errors occurred has no bearing on thenumber of ensemble errors as long as the rearrangement does not cause more than bT2 c errorto occur in any given column. But these rearrangements do have an impact on �e which issimply a pairwise (2nd order) measure. This explains why �e does not do a perfect job ofmodeling error rate within data sets or of modeling error ratio between data sets.6 Results with PruningIt may be that the multiplemodels approach is able to provide such signi�cant error reductionbecause non-pruned decision trees are being used. To check this, we use �2-pruned decisiontrees (Quinlan, 1986) at the 99% con�dence level. Using UniformVoting, 53% of the variancein error ratio can be explained by variance in correlatedness of errors. For other evidencecombination methods, the results are 39% (Likelihood Combination), 30% (DistributionSummation) and 25% (Bayesian Combination). These results are not as good as those forUniform Voting because �e does not allow for the fact that some models may have greatervoting weight than others.7 Related workOur work is related to the recent work of Breiman (1994, submitted) which explains that\unstable" algorithms bene�t from ensemble-type combination. An algorithm is unstable ifsmall changes in the training data lead to a great proportion of changes in classi�cationson test examples. The nearest neighbor algorithm (e.g. Aha, 1990) is given as an exampleof an algorithm that is not unstable whereas decision-tree algorithms and neural-networkalgorithms are presumably unstable since forming ensembles for such algorithms lead tolower error rates. Breiman does not give a de�nition for unstability.Kwok & Carter (1990) have also done related work showing that decision tree ensembleswhose trees' root nodes were varied led to better results than ensembles whose trees hadvariations further down the tree. Their conclusion (using two domains) was that greatersyntactic diversity led to lower ensemble error rates. Our gain ties measure is an attemptto quantitatively measure the potential for syntactic diversity. However, it would be bestto measure diversity in the functional space. Work in functional diversity has been done byPerrone & Cooper (1993) although they do not incorporate the goal of functional diversityinto their learning algorithm or o�er an explanation of why it is possible to learn functionallymore diverse ensembles on some domains.Our work on correlation is also related to that of Kong & Dietterich (1995) in which theyattribute the power of the Error-Correcting Output Codes (ECOC) approach to the fact that11



it involves learning several approximations of the target function f and then voting amongthose approximations. Kong and Dietterich hypothesize that the ECOC approach worksbecause the approximations make uncorrelated errors. However, they use \uncorrelated" tomean \non-identical" and their work is not concerned with a quantitative measure of errorcorrelation or with explaining the amount of error reduction.Finally, our work is related to the concept boosting work of Schapire (1990) and adaptiveboosting (Freund & Schapire, 1995). His boosting algorithm is the only learning algorithmwhich incorporates the goal of minimizing correlated errors into the learning mechanism.However, the number of training examples needed by that algorithm increases as a functionof the accuracy of the learned models and could not be used on the modest sized trainingsets used in this paper. Adaptive boosting is constructed to require fewer training examplesthan boosting. However, adaptive boosting relies on the assumption that the data is notover�tted. If the �rst model achieves 100% accuracy over the training set, the adaptiveboosting algorithm terminates having just learned a single, over�tted model.8 ConclusionsThe paper provides an understanding of why the multiple models approach leads to strikingreductions in error on some domains whilst on other domains there is no reduction in error.Our �nding is that the amount of error reduction is negatively correlated with the degree towhich the models in the ensemble make errors in a correlated manner. We use quantitativede�nitions for error reduction and the degree to which models make errors in a correlatedmanner to empirically show that there is a linear relationship between these two variables.The results are based on experiments using 260 data sets from 20 domains crossed with fourevidence combination methods. Although this paper only presents results for decision trees,our earlier work (Ali & Pazzani, submitted) shows that the linear relationship between errorreduction and amount of error correlation also holds for models consisting of rule sets.But why does stochastic learning produce models in one domain whose errors are uncor-related whilst in another domain it produces models with highly correlated errors? This isanswered by the second result of the paper: in domains in which many ties in gain are expe-rienced, the errors of the resulting models are relatively uncorrelated and so the reductionin error is relatively large. Although this simple measure - gain-ties - has limitations, it isas useful in predicting error reduction as some of its more complex variants.The third result of the paper is that our analysis predicts that ensembles whose modelsmake errors in a dependent but \negatively correlated" manner should have lower ensem-ble error rates than ensembles whose models make errors in an independent (uncorrelated)manner. This supersedes previous beliefs that one of the goals of multiple models learningis to learn models that make errors in an independent (uncorrelated) manner.Acknowledgements- We would like to acknowledge the help of Wray Buntine andDavid Wolpert in reading early versions of this paper and the support of NSF grant #IRI-9310413. 12
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