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Abstract

Designing a hypothesis test to determine the
best of two machine learning algorithms with
only a small data set available is not a sim-
ple task. Many popular tests suffer from
low power (5x2 cv [2]), or high Type I er-
ror (Weka’s 10x10 cross validation [11]). Fur-
thermore, many tests show a low level of
replicability, so that tests performed by dif-
ferent scientists with the same pair of algo-
rithms, the same data sets and the same hy-
pothesis test still may present different re-
sults. We show that 5x2 cv, resampling and
10 fold cv suffer from low replicability.

The main complication is due to the need
to use the data multiple times. As a conse-
quence, independence assumptions for most
hypothesis tests are violated. In this paper,
we pose the case that reuse of the same data
causes the effective degrees of freedom to be
much lower than theoretically expected. We
show how to calibrate the effective degrees of
freedom empirically for various tests. Some
tests are not calibratable, indicating another
flaw in the design. However the ones that
are calibratable all show very similar behav-
ior. Moreover, the Type I error of those tests
is on the mark for a wide range of circum-
stances, while they show a power and replica-
bility that is a considerably higher than cur-
rently popular hypothesis tests.

1. Introduction

Choosing between two learning algorithms given a sin-
gle dataset is not a trivial task [10]. The most straight-
forward approach is to use a hypothesis test of some
kind to decide whether we can reject the null hypoth-
esis that the two algorithms perform the same. How-
ever, because there is often just a limited amount of

data available, we have to reuse the data more than
once to get a number of samples z. Here x provides
an indication of the difference in accuracy of two algo-
rithms. We can use the values of = to calculate some
sort of statistic 7. For that statistic to be used in
a hypothesis test we normally assume that the sam-
ples x on which T is based are independent. However,
we know that they are not be completely independent
because they are based on partly the same data. In
practice, the result is that when performing a test the
Type I error differs considerably from the desired sig-
nificance level, as observed in previous work [2, 7].

One of the effects of having dependence between sam-
ples is that the estimated variance is lower than the
actual variance and a way to overcome this defect is
to compensate the variance estimate [7]. In this ar-
ticle, we look at he effect of the degrees of freedom
being lower than the theoretically expected number.
We can compensate for this by calibrating the degrees
of freedom.

In the following section, various well known hypothe-
sis tests and their variations are introduced in detail,
followed by tests based on repeated cross validation in
Section 3. Section 4 sets out the procedure for cali-
brating the hypothesis tests by measering the actual
degrees of freedom for the tests. In Section 5, we study
empirically the behavior of the various tests by varying
parameters of the environment in which the tests are
applied. We finish with some concluding remarks, rec-
ommendations and some pointers to further research.

2. Hypothesis tests

First, we describe hypothesis tests based on k-fold
cross validation, resampling and corrected resampling.
The 5x2 cross validation test [2] was not considered
because of the undesirable low replicability (see Table
5), making it hard to justify the extra work involved in
setting up experiments. We make the degrees of free-
dom explicit in the formulas (usually indicate by df),
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so that it is clear what changes when the df is fixed to
a value that differs from the default one.

2.1. k-fold cross validation

In k-fold cross validation, the data is split in k approx-
imately equal parts and the algorithms are trained on
all data but one fold for each fold. The accuracy is esti-
mated by using the data of the fold left out as test set.
This gives k accuracy estimates for algorithms A and
B, denoted P4,; and Pp,; where i (1 < ¢ < k) is the
fold left out. Let x; be the difference x; = P4 ; — Pp,
then the mean of z; is normally distributed if the al-
gorithms are the same and the folds are sufficiently
large (at least containing 30 cases) [6]. The mean z
is simply estimated using x = %Zle x; and an un-
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biased estimate of the variance is 6° = —
We have a statistic approximating the t distribution
with df = k — 1 degrees of freedom
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Dietterich [2] demonstrated empirically that the k-fold
cross validation test has slightly elevated Type 1 error
when using the default degrees of freedom. In Section
4, we will calibrate the test by using a range of values
for df and selecting the one that gives the desired Type
I error.

2.2. Resampling and corrected resampling

Resampling is repeatedly splitting the training data
randomly in two, training on the first fraction and
testing on the remaining section and applying a paired
t-test. This used to be a popular way to determine al-
gorithm performance before it was demonstrated to
have unacceptable high Type I error [2].

Let P4 ; and Pp ; be the accuracy of algorithm A and
algorithm B measured on run j (1 < j < n) and ;
the difference z; = P4 ; — Pp ;. The mean m of z;
is estimated by m = 5377, x;, and the variance is
first estimated using 62 = E;;l(xj —m)2. To get an
unbiased estimate, this is multiplied with ﬁ

Nadeau and Bengio [7] observe that the high Type I is
due to an underestimation of the variance because the
samples are not independent. They propose to make a
correction to the estimate of the variance, and multiply
&2 with % + 72 where n; is the fraction of the data

used for training and no the fraction used for testing.
Altogether, this gives a statistic approximating the t

distribution with df = n — 1 degrees of freedom:
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for resampling, and
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for corrected resampling.

3. Multiple run k-fold cross validation

As our experiments will demonstrate, tests from the
previous section suffer from low replicability. This
means that the result of one researcher may differ from
another doing the same experiment with the same data
and same hypothesis test but with different random
splits of the data. Higher replicability can be expected
for hypothesis tests that utilize multiple runs of k-fold
cross validation. There are various ways to get the
most out of the data, and we will describe them with
the help of Figure 1.! The figure illustrates the re-
sults of a 3 run 3-fold cross validation experiment in-
side the box at the left half, though in practice a ten
run 10-fold cross validation is more appropriate. Each
cell contains the difference in accuracy between two
algorithms trained on data from all but one folds and
measured with the data in the single fold that was left
out as test data.

The use all data approach is a naive way to use this
data. It considers the 100 outcomes as independent
samples. The mean folds test first averages the cells
for a single 10-fold cross validation experiment and
considers these averages as samples. In Figure 1 this
test would use the numbers in the most right column.
These averages are known to be better estimates of
the accuracy [5]. The mean runs test averages over
the cells with the same fold number, that is, the num-
bers in the last row of the top matrix in Figure 1. A
better way seem to be to sort the folds before averag-
ing. Sorting the numbers in each of the folds gives the
matrix at the bottom of Figure 1. The mean sorted
runs test then uses the averages over the runs of the
sorted folds.

The mean folds average var test uses an alternative
way to estimate the variance from the mean folds test.
Instead of estimating the variance directly from these
numbers, a more accurate estimate of the variance may

LA more formal description and elaborated motivation
of these tests can be found in [1].



Figure 1. Example illustrating the data used for averaging over folds, over runs and over sorted runs.
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Table 1. Overview of hypothesis tests based on multiple run k-fold cv.

Test mean m variance 62 df Z
Zf: S (wiy—m)? m
Use all data % El 17 —1 Lij L k{ril kr—1 W
" T 5—m 2
folds ” 2(7) r—1 ’
folds averaged var K 1 Z =1 o r—1 K
N2
runs ” z:k(mflm) k-1 7
runs averaged var K . Zle 52 k-1 K
" To(ijy—m 2
sorted runs 7 Z:(s% k—1 ?
sorted runs averaged var K 7 Zz 1 AQ( ) k— 1 K
_ 1 _
folds averaged T Qi1 \/W df=k —
runs averaged T =z Zz 1 \/W df=r
sorted runs averaged T h ZZ 1 W df=r —1

be obtained by averaging variances obtained from the
data of each of the 10-fold cv experiments. The same
idea can be extended to the mean run and mean sorted
run test, giving rise to the mean run averaged var and
mean sorted run averaged var tests.

The mean folds average T test uses a similar idea as the
mean folds averaged var test, but instead of averaging
just the variances, it averages over the test statistic
that would be obtained from each individual 10 fold
experiment. This idea can be extended to the mean
run and mean sorted run tests as well, giving the mean
run averaged T and mean sorted run averaged T tests.

More formally, let there be r runs (r > 1) and & folds
(k > 1) and two learning schemes A and B that have
accuracy a;; and b;; for fold i (1 < ¢ < k) and run j
(1 <35 <r). Let x be the difference between those
accuracies, x;; = a;; — b;;. We use short notation
x; for %Zle x;; and wx; for %Z;Zl x;;. Further,
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we use the short notation 6%- for P

62 for Zjlfniwlm For the test that use sorting,
1et (i, j) be an ordering such that zg(;;) < Zg((i41);)-
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Then we use 62 (6) for — . Table 1 gives
an overview of the various tests and the way they are
calculated. For many of the tests, the mean m and
variance 62 of x are estimated with which the test
statistic Z is calculated. As evident from Table 1, the
averaged T tests have a slightly different approach.

4. Calibrating the tests

The tests are calibrated on the Type I error by gen-
erating 1000 random data sets with mututal indepen-
dent binary variables. The class probability is set to
50%, a value that typically generates the highest Type
I error [2]. On each of the training sets, two learning
algorithms are used, naive Bayes [4] and C4.5 [8] as im-
plemented in Weka [11]. The nature of the data sets
ensures that none can be outperformed by the other.
So, whenever a test indicates a difference between the
two algorithms, this contributes to the Type I error.
Each test is run with degrees of freedom ranging from
2 to 100. The degrees of freedom at which the Type
I error measured is closest and less than or equal to
the significance level is chosen as the calibrated value.



Figure 2. Degrees of freedom (left) and Type I error in percentage (right) that coincide with significance level of a = 0.05

and 10 folds for various numbers of runs.
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Figure 3. Legend for Figure 2 and 4.
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Note that in our experiments we use stratification for
the different runs. Stratification ensures that class val-
ues are evenly distributed over the various folds, and
tends to result in more accurate accuracy estimates [5].

The left half of Figure 2 shows the degrees of freedom
thus obtained for 5, 10, 15, 20, 25, 30, 40, 50, 60, 70,
80, 90 and 100 runs. A 5% significance level? and 10
folds where chosen to calibrate because these values
are fairly often found in the literature. The right half
of Figure 2 shows the corresponding Type I error and
Figure 3 shows the legend.

The following can be observed from Figure 2:

e The calibrated degrees of freedom for resampling

Refer to the technical report [1] for full numeric details
and results at 1% and 10% significance level as well.
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and corrected resampling consistently increases
with increasing number of runs r, and they are
the only tests doing so.

The df for resampling is up to 90% lower than the
expected r — 1 while the df for corrected resam-
pling is circa 10% lower than the expected r — 1.
This indicates that the variance correction applied
to corrected resampling is almost right, but cali-
bration helps a bit more.

The df for 10 fold cross validation is constant over
runs, because it does not vary for different runs.
The calibrated df is consistently 33% lower than
expected for the various significant levels and the
Type I error is close to the mark.

Comparing results for 1%, 5% and 10% signifi-
cance levels, the df for all other tests are constant
for different significance level (mostly within 1 dif-
ference) which can be attributed to sample varia-
tions.

The df for all other tests varies most for 5 and
10 runs but is constant over higher numbers of
runs (within 1 difference). This is explained by
having a look at the Type I error: with lower
numbers of runs there is little choice in values for
the calibrated df. Due to variation in the data,
no df may be available for which a Type I error
close to the desirer value may be available.

The df for mean folds is very low (at most 7) and
is far below the expected r—1. This indicates that
the degrees of freedom is not the main issue with
this test, but variance underestimation probably
is.



e The mean runs is very low, (except for a glitch at
r = 5 runs). Further, there are a few dfs found
as zeros, indicating that for none of the values of
df the Type I error does not exceed the expected
value. Again, this all indicates that the value of
df is not the issue with this test.

e The df for sorted runs averaged var and average
T is very low.

e The df’s for ”use all data”, ”"folds wvarT”,
7folds meanT”, ”"runs varT”, "runs meanT”, and
”sorted runs” are all constantly circa 11. For
those tests, the Type I error is mostly on the mark
indicating that calibration of df may have fixed
invalid independence assumptions.

A number of tests will not be considered further since
the low or erratic values for the calibrated df indicate
that the df is not the main issue with those tests (ex-
amining the results in the following experiments con-
firm this, however for clarity of presentation they are
omitted here). These tests are mean folds, mean runs,
sorted runs averaged var, and sorted runs averaged T.

5. Empirical performance

In this section, we study the behavior of the various
tests empirically by measuring Type I error for varying
class probability, number of runs and significance level.
Also Type II error and replicability are measured and
some other learning algorithms are considered.

5.1. Vary class probabilities

Table 2 shows the Type I error measured using cal-
ibrated tests on 1000 syntetic datases with 10 inde-
pendent binary variables and a class probability in the
range 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. So, there are a
total of 1000 x 6 = 6000 data sets with 300 instances
each. Naive Bayes and C4.5 was trained on each of
those data sets. The number in the table indicates the
number of data sets on which the test indicates that
the performance of the algorithms differs. Ten run ten-
fold cross validation data was used at 0.05 significance
level.

Except for the averaged T tests, none of the tests have
a Type I error exceeding the expected level. In fact,
the Type I error tends to be considerably lower with
the lower class probabilities.

5.2. Vary number of runs

In this and the following sections, four randomly gen-
erated Bayesian networks were used to generate 1000

Table 2. Type 1 error for a range of class probabilities (in
percentages)

test 0.05 01]02]03|04]|0.5
Resampling 0000 |04]08]32] 4.3
Cor-resampling 000004083142
k-fold cv 0000|0004 26|25
Use all data 000004 |10]|38] 50

folds averaged var 00|00 |02]0.7]| 35| 4.8
folds averaged T 00]00|02]08]|38]| 54
runs averaged var 000004 |08]|39]5.1
runs averaged T 00|00 |03]09]|40]6.0
sorted runs 0.0 00|06 | 1.0 | 4.0 | 4.7

Table 3. Average accuracies on test data by training on the
1000 data sets (in percentages).

Algorithm Set 1 | Set 2 | Set 3 | Set 4
Naive Bayes: | 50.0 | 87.84 | 71.92 | 81.96
C4.5: 50.0 | 90.61 | 77.74 | 93.23
Difference 0.0 2.77 | 583 | 11.27

data sets with 300 instances each (see [1] for details)
resulting in different performances of naive Bayes and
C4.5. Table 3 shows the properties of these data sets
when learned on the data sets and measured on a sin-
gle 10.000 instances test set. Set 1 is the set used for
calibrating the tests.

Figure 4 shows the Type I error for various numbers
of runs of 10 folds cross validation at 0.05 significance
level. Since the tests were calibrated on this data set,
it comes as no surprise that the Type I error is close
and below the targeted 50.

The power of the tests was measured on data sets
where C4.5 outperforms naive Bayes with an increas-
ing margin (see Table 3). Figure 4 also shows the
power of the tests for data sets 2, 3, and 4.

Some observations:

e Note that the k-fold cv test does not vary with
increasing numbers of runs since conceptually it
only uses the first run and ignores the others.

e The power of resampling and corrected resam-
pling tests increases with increasing the number
of runs. With increased runs the amount of dat-
apoints used increases, which results in better
power.

e Interestingly, all other calibrated tests that use all
data have a power that is rather close to the other
tests. This is a good indication that the calibra-
tion does its job: compensating for dependency of
items used in the test.



Figure 4. Result for multiple runs in percentages (see Figure 3 for legend).
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e Those tests show very little sensitivity to the num-
ber of runs, though the power decreases slightly
with increasing number of runs. This may be due
to the small variability of the calibrated df.

5.3. Vary significance level

Datasets 1 to 4 were used to measure the sensitivity
of the tests on the significance level. The tests are for
10 run and 10 folds. Table 4 shows the Type I error
for significance levels 1%, 2.5%, 5%, and 10%. Not
surprisingly, the Type I error is close and below the
expected levels, since the tests were calibrated on this
set.

Some observations:

e Increasing the significance level increases the
power, but this comes of course at the cost of in-
creased Type I error.

e There is a large gap between the resampled, cor-
rected resampled and k-fold cv test on the one
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hand and the other tests on the other hand. The
tests that use all data of the 10x10 folds have con-
siderably better power

e The runs averaged T test is almost always best
and always in the top 3 of the tests listed. How-
ever, it also has a slightly elevated Type I error at
10% significance level (10.5%).

e The use all data test is always in the top 3 of the
tests listed.

e Overall, all tests (except the first three) have a
power® that is mutually close, an indication that
the calibration compensates appropriately for de-
pendence between samples.

5.4. Measuring replicability

This section shows results for measuring replicability.
Each test was run ten times for each data set with dif-

3Refer [1] for measurements of the power on Set 2, 3
and 4.



Table 4. Performance at various significance levels (in per-
centages).

Type 1 error (using Set 1)

test 1% | 2.5% | 5% | 10%
Resampling 1.1 2.1 1] 44| 101
Cor-resampling 1.5 22|44 9.2
k-fold cv 0.4 1.1 33| 6.7
Use all data 0.6 2.0 | 4.6 9.6

folds averaged var | 0.6 1.9 1 42| 92
folds averaged T 0.6 1.8 | 4.3 | 10.2
runs averaged var | 0.8 2.0 | 4.6 9.8
runs averaged T 1.0 2.1 | 4.8 | 10.5
sorted runs 0.5 2.0 4.3 9.7

ferent random splits. Table 5 shows the overall repli-
cability, defined as the number of times the ten tests
all reject or all not reject the null hypothesis. Also,
the minimum for the four data sets is listed, which is
meaningful because the location where replicability is
lowest is typically the area in which decisions need to
be made which are not completely obvious.

Table 6 shows the minimum columns as calculated for
Table 5 for significance levels 0.01, 0.025, 0.05 and
0.10.

Some observations:

e Again, there is a big difference between the first
three tests and the rest. The tests using all
data from the 10x10 folds show better replicabil-
ity overall.

e Judging from the last column of Table 5, use all
data has highest replicability overall.

e There is little variance between the replicability
of the tests that use all data from the 10x10 folds.

Table 5. Replicability defined as fraction of tests having
the same outcome 10 times on 10 different partitionings
(in percentages). All tests calibrated except 5 x 2 cv.

Set 1 | Set 2 | Set 3 | Set 4 | min.
Resampling 72.5 48.5 30.1 42.0 | 30.1
Cor-resampling 73.2 48.8 30.3 414 | 30.3
k-fold cv 81.8 71.3 | 42.6 51.9 | 42.6
5x2cv 72.3 71.2 63.5 16.9 | 16.9
Use all data 92.8 80.9 76.6 98.5 | 76.6
folds averaged var 92.9 81.9 75.2 98.1 | 75.2
folds averaged T 91.6 80.3 74.2 98.3 | 74.2
runs averaged var 92.2 80.0 76.5 98.7 | 76.5
runs averaged T 91.2 78.2 73.2 98.6 | 73.2
sorted runs 92.5 81.7 75.0 98.3 | 75.0

Table 6. Replicability defined as fraction of tests (in per-
centages) having the same outcome 10 times on 10 different
partitionings for different significance levels.

test 0.01 | 0.025 | 0.05 | 0.10
Resampling 9.8 20.7 | 30.1 | 21.0
Cor-resampling 10.2 22.4 | 30.3 | 20.6
k-fold cv 12.8 23.6 | 42.6 | 33.6
Use all data 78.3 75.5 | 76.6 | 78.0
folds averaged var | 77.8 76.0 | 75.2 | 78.1
folds averaged T 75.6 73.1 | 74.2 | 76.4
runs averaged var | 76.8 75.3 | 76.5 | 77.0
runs averaged T 74.1 73.3 | 73.2 | 74.8
sorted runs 77.6 76.1 | 75.0 | 77.4

Again, this indicates that calibrating compensates
appropriately for the dependence between sam-
ples.

e As Table 6 shows, the significance level does not
have a major impact on the replicability of tests
that use all data of the 10x10 folds, while the first
three tests are considerably affected.

The 5x2 cv test has a particular low replicability, which
appears clearly for set 4. The conservative nature of
the test makes set 4 the set on which the outcome is not
always clear (unlike the more powerful tests where set
3 has this role). The reason for the low replicability
is that the outcome of the test is dominated by an
accuracy estimate based on one outcome of a single run
of a 2¢cv experiment, which can vary greatly (as Table
5 shows). Calibration cannot repair this problem.

5.5. Other learning algorithms

Naive Bayes and C4.5 were chosen for calibration be-
cause these algorithms are based on completely differ-
ent principles so that dependence of learning algorithm
influences a test minimally. Further, these algorithms
are sufficiently fast to perform a large number of ex-
periments. To see how well tests calibrated on those
two algorithm perform on other algorithms, we com-
pared nearest neighbor, tree augmented naive Bayes
and voted perceptron with default settings as imple-

Table 7. Type 1 error (in percentage) on set 1 for various
algorithms with the 10x10 cv use all data test.

Binary C4.5 | nb | nn | tan
naive Bayes (nb) 5.0
nearest neighbor (nn) 2.0 3.8
tree augmnt. nb (tan) 43| 1.7 | 2.7
voted perceptron 14104101 0.6




mented in Weka [11]. Table 7 shows the Type 1 error at
5% significance level for the 10 run 10 fold use all data
test. This table is fairly representative for the other
10x10 fold cv based tests: these tests have a Type 1
error that differs less than 1% in absolute value from
that in Table 7. Overall, the Type 1 errors are accept-
able, suggesting that the calibrated test can be used
on a wider range of algorithms.

6. Conclusions

We studied calibrating the degrees of freedom of hy-
pothesis tests as a way to compensate for the difference
between the desired Type I error and the true Type I
error. Empirical results show that some tests are not
calibratable. However, the ones that are calibratable
show surprisingly similar behavior when varying pa-
rameters such as the number of runs and significance
level, which is an indication that an incorrect numer of
degrees of freedom indeed is the cause of a difference
in observed and theoretical Type I error.

Furthermore, the calibrated tests show a pleasently
high replicability in particular compared to 5x2 cross
validation [2], (corrected) resampling [7] and k-fold
cross validation.

For choosing between two algorithms, we recommend
using the 10 time repeated 10 fold cross validation test
where all 100 individual accuracies are used to esti-
mate the mean and variance and with 10 degrees of
freedom for binary data. This is conceptually the sim-
plest test and has the same properties as the other
calibrated repeated k-fold cross validation tests. Fur-
thermore, it empirically outperforms 5x2 cross valida-
tion, (corrected) resampling and k-fold cross validation
on power and replicability. Further emperical research
is required to confirm whether this test performs well
on non-binary data.

There are many ways the techniques presented in this
article can be generalized. For example, when there is
not sufficient data in the data set to justify the nor-
mality assumption used for a t-test, a sign test may
be applicable. The benefit of sign tests is that no as-
sumptions need to be made about the distribution of
the variable sampled, which is the difference between
accuracies in our case. Calibrated tests could be used
for this purpose.

The main limitation of the pairwise approach is that
a choise between only two algorithms can be made.
However, in practice multiple algorithms will be avail-
able to choose from. This gives rise to the so called
multiple comparison problems [3] in choosing learning
algorithms. Suppose that all algorithms perform the

same on the domain, then the probability that one of
those algorithms seem to outperform the others sig-
nificantly increases, just like flipping a coin multiple
times increases the change of throwing head 5 times
in a row. Similar issues arise when comparing two al-
gorithms on multiple data sets, or multiple algorithms
on multiple data sets.
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