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Asymptotics for and against cross-validation 
BY M. STONE 

Department of Statistics and Computer Science, 
University College London 

SUMMARY 

The asymptotic consistency of cross-validatory assessment and the asymptotic efficiency 
of cross-validatory choice is investigated both in some generality and also in the context of 
particular applications. 

Some key words: Asymptotic consistency; Asymptotic efficiency; Cross-validatory choice and assessment. 

1. INTRODUCTION 

The question of the 'reliability' of cross-validatory assessment has been raised by A. P. 
Dawid in the discussion of Stone (1974 a). Dawid concludes his brief investigation by expressing 
the 'worrying feeling' that cross-validatory assessment may not be consistent in any reasonable 
sense, leading to the qualified advice that 

one should be wary of over-glib use of cross-validatory assessments, since they may be wide of 
the mark. 

This paper establishes that, within the context of 'one-item-out' cross-validation at least: 
(a) Dawid was broadly correct in his intuition concerning the possibility of asymptotic incon- 
sistency, even though his analysis requires important modifications; (b) such inconsistency is 
often inevitable in the cross-validatory context and indeed, without it, we would be able to 
construct procedures with performances known, on general theoretical grounds, to be un- 
attainably high; (c) for univariate estimation, the asymptotic inconsistency is often accom- 
panied by poor performance of estimators involving cross-validatory choice. 

For basic notation and definitions, see Stone (1974 a, b). 

2. ABSOLUTE ASSESSMENT 

While an investigation of cross-validatory asymptotics may be envisaged that remained 
'data-analytic' by postulating infinite data sequences with specified properties, it is easier to 
admit the convenient fictions of probability models and associated parameters. The minimum 
modelling we will require is: 

Model assumption I. Given x, the value of y for an item (x, y) has distribution Px; the y values 
of different items are independently distributed, given the x values. 

To analyze the case where L(y, y), the loss in predicting y by y, is quadratic, we need the 
following. 

Model assumption II. The previous assumption I with y real and 

y= 1i+e1, = E(y1Ixi), var(e1Ixi) = o2 (i = 1 ...,n). 
Implicit assumptions of finite expectations will be made wherever necessary. 
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A function of primary interest in judging the use of y(x; X, S), for prediction of y for item 
(x, y) based on data-base S = {(xi, yi) I i = 1, .. ., n}, is 

E[L{y, y(x; a, S)}|IS], (2 1 ) 

in which y is distributed according to Px. Unfortunately, no results of any generality have 
been found for (2.1); so we compromise by considering the definition 

1 n 
L(x, S) = - E E{L(i, fi) IS-i&}, (2.2) 

ni=1 Y 

where S_i denotes S with (xi, yi) removed, _-i denotes P(xi; x, &_i), and where -i is assigned 
the distribution PZ. 

The first connexion between CQ, S), our absolute assessment measure for a, given by 

I n 
Ccx, S) = - E L(yi, f-i) ni=l 

and L(c, S), which is not an observable statistic, is that under assumption I 

E[{C(c, S)-L(c, S)}Ixl, * * *, xnl = 0. 

A stronger connexion, holding under fairly weak conditions, is that as n - 00 

plim {C(a, S)-L(x, S)} = 0, (2.3) 

where the limit in probability is defined for the random variables Yl, Y2, ... corresponding to 
some fixed sequence of x values xl, X2, .... The interpretation and occurrence of (2.3) is best 
illustrated under II with L(y, y) = (y _ y)2, when we have 

CQx, S) = - I2e2- - _ - 27e ) + 
I 

Y_(9 -_i-)2, (2.4) n n n 

1 1 
L(L, S) = E+ -( ( 2 (2.5) n n 

For (2.3) we require as n ox 

plim- (e2. - a-) = 0, (2-6) n 

plim - Yei(9-ii) = 0. (2.7) n 

Condition (2-6) is a weak condition on the errors {ei} which is satisfied under homoscedasticity 
for example. In considering condition (2.7) we invoke a definition. 

Definition. We have mean square consistency of P(x; x, S) if as n -+o0 

plim-I(__ 7) 2 = 0. (2-8) 

Schwarz's inequality then shows that (2.7) obtains under the combination of mean square 
consistency and 

Z2/n = O(1). 

However the occurrence of (2-8) removes any interest we may have in (2.3) as a justification 
for looking at CQa, S). For (2.8) and (2.5) imply that L(a, S) is asymptotically not dependent on 
a; while C(a, S) is consistent for L(a, 5), the latter does not asymptotically depend on the 
choice of a; alternatively, we can describe the position by saying that C(a, S) is asymptotically 
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equivalent to Z2eO/n only. We will see later, by changing from absolute to comparative assess- 
ment, that something can be salvaged from this case. Meanwhile we observe that mean square 
consistency is not necessary for (2.7). To see this, consider the case where P(x; a, S) is the least 
squares predictor obtained by fitting the equation y = ,fic1(x)+ ... +,fpcp(x). Appendix 1 
establishes that (2.7) holds if 

n 2~~~~~~~~ 
E { a-i/(l - A,)12= o(n2), A ijAri Oj( _ = 0(n2), (2.9) 1 -Aii I-A11i 

where A is the symmetric matrix of orthogonal projection onto the subspace of Rn generated 
by c = {cj(xl), ...,.cj(xn)}' for j = 1, .. .,p and a = y-Ay is the vector deviation of the expecta- 
tion of (Yl ...,-YnY)' from this subspace. Conditions (2.9) are really quite weak since: (i) the 
idempotency of A implies 

j:j$i 

and (ii) 0 < Aii < 1 with tr (A) = A1l+ ... +Ann < p. Moreover, for this case, 

1 n ( A R _ A)) = E{iiie2 1 n 

so that we can usually expect not to have mean square consistency if as n -* oo 

lim infZ84/n > 0, (2.10) 

which condition is quite consistent with (2.9). For example, suppose x is real and we fit the 
equation y = /3l + /2x with y actually quadratic in x. With homoscedasticity in assumption II 
and x1, X2, ... chosen evenly from the interval (0, 1), we have (2-9), (2410) and therefore (2.3) 
holding, with L(x, S), and therefore C(x, S), informative about the usefulness of fitting a straight 
line to a model that is really quadratic. Our example is just a special case of the use of an 
approximating, but not exact, linear model. 

Condition (2 10) cannot be said to possess more than the minimal unrealism of any asymptotic 
condition. Keep taking observations for any imperfect linear model and one will surely have 
(2.10). Such imperfection is a characteristic of linear models that do not merely play safe with 
data but try to combine them in potentially useful ways. The condition of mean square con- 
sistency (2.8) can be regarded as a condition of asymptotic conventional good behaviour 
of y(x; a, S). Let us, for brevity, describe the latter as 'good' if it is mean square consistent 
and 'bad' if it is not. Asymptotic investigations in statistics are usually concerned only with 
'good' procedures; the statistical viewpoint that supports such a restriction is one that would 
describe mean square consistency as a weak, easily obtainable property and would require 
'asymptotics' to be directed at the search for 'optimal' predictors within some class of mean 
square consistent predictors. However, the underlying theme of the present study is the 
investigation of the asymptotic behaviour of a particular form of cross-validatory assessment 
and its possible usefulness in the comparison of different predictors for finite values of n. 
A sequence of n values tending to infinity is a theoretical artefact and we are not going to 
be able in practice to decide which are 'good' and which are 'bad' predictors. Thus the asymp- 
totic behaviour of 'bad' predictors is arguably of as great interest as that of 'good' predictors. 

3. COMPARATIVE ASSESSMENT 

Consider now situations where mean square consistency must be regarded as realistic, that 
is problems involving one or more ' good ' predictors. For these, we will now show how O(cc, S) 

2 ElM 64 
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may be used to provide an informative comparative, rather than absolute, assessment of 
performance. For two predictors, indexed by a and a2, define 

AC(S) = C(.1, S)-C(X2, S), AL(S) = L(xl, S)-L(a2, S), (3.1) 

P-il = 9(Xi; X1, S.-i), P-i2 = P(Xi; a2' S.-O) 

With model assumption II and quadratic L(y, 9), we have 

l n l n 
AL(S) = n E (9- l-ni)2-- E (P-i2 - )2s (3 2) 

ni=1 ni=1 

2 n 
AC(S) = AL(S)+- E ei(9_-2- 9-i) (3*3) 

ni=1 

The mixed situation involving the comparison of a 'good' and a 'bad' predictor is exempli- 
fied by the k group problem (Stone, 1974a) in which the 'good' predictor corresponds to the 
use of the appropriate group average while the 'bad' predictor corresponds to the use of the 
overall average only The special case of equally replicated groups can be conveniently treated 
as a special case of the following example. 

Example 341: nested symmetric linear models and the magic number 2. Suppose that, for two 
nested linear models, the conditions of symmetry, given by A1l(l) = ... = Ann(1) and 
A11(2) = ... = Ann(2), are satisfied for the two least squares predictors a, and a2 with pro- 
jection matrices A (1) and A (2) respectively. Then 

AC(S) = RSS, RSS2 34 
nC(I)-pn(pTn)2 n{1 -(p +q)/n}2' (34) 

where trA(1) = p, trA(2) = p + q and RsS1 and RSs2 are the respective residual sums of 
squares (Stone, 1974a, equation (3.22)). More revealingly, (3.4) can be reexpressed as 

AC(S) - ( s 2)2MS - ) (35) 

where MS = RSS2/(n -p - q) and F = (RSS1 - RSS2)/(qMS) is the customary F statistic for 
nested linear models. 

If condition (2.10) obtains for predictor a1 but not for 0C2, F will usually be Op(n) and AC(S) 
will be positive and stochastically bounded away from zero, whereas if, for predictor cc1, 
41 = 82 = ... = 0, AC(S) will usually be asymptotically zero. The cross-validatory choice of 
CG1 or a2 is seen to be determined by the sign of F-2-q/(n-p-q); if F > 2 +q/(n-p-q) 
we use aX2, but otherwise a,l. As n -> oo for fixed p and q, the magic number 2 emerges as the 
critical value of F. 

Leonard & Ord (1976) have also found the asymptotic critical value 2 for the klgroup problem 
by two quite different approaches, one classical, one Bayesian; they curiously describe the 
latter approach, based on an improper prior, as 'more sophisticated'. 

It is straightforward to verify that, for Example 341 with model assumption II and homo- 
scedasticity, if (2.10) obtains for ax but not a2 then AC(S) and AL(S) are each asymptotically 
X89/n, where = A (1) 

In the case of comparative assessment of two 'good' predictors, we find that we cannot, for 
very good reasons, have consistency. Rather than attempting a general treatment, it is 
probably as enlightening and certainly more interesting to work with a notorious example. 

Example 3a2: mean versus median. We consider model assumption II with x absent and 
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= ... = v,n that is, essentially the problem of univariate estimation. With a being the 
sample mean and a2 being the sample median, we find after some algebra with an even n = 2m 

nAL(S) = (e, )2 _ m(e2) - 2) - m(e2m+l) - 2), (3.6) 
(n -1)2 ()( 

E(i ~2m n 
nAC(S) = nAL(S) + 2 n + E e(i) (e(m+l) - e) + i -e()(e(m)- (3.7) 

where e(1) < ... < e(m) < e(m+,) <, . e(n) is the ordering of el, . .., en. Suppose that el, ...,en 
have a common distribution F with variance o.2. Under weak assumptions on F, nAL(S) will be 
asymptotically distributed as n(2 - e 2m)), while, after some algebra, we find that nAC(S) will 
be asymptotically distributed as 

2-2 - n(e(m)- -)2-E(i e i) n(e(m+l) -e(m)). (3.8) 

From the expression n(e2 - e2m)), we see why nAC(S) cannot even be expected to estimate 
consistently nAL(S), that is, why we cannot expect plim{nAC(S)-nnAL(S)} = 0. For, if it 
did, we would be able to ascertain asymptotically the sign of e2 - e2) and hence that of 
-2 _ (e(m) + le(m+l))2. That this must be impossible is clear for the case when F is normal when 
knowledge of the latter sign could be used to construct a better unbiased estimator of the mean 
of y than y, that is, y if AC(S) < 0 and J(Y(m) + Y(m+,)) otherwise. 

In the case of normal F, without loss of generality a-2 = 1, and (3 8) can be used to find the 
asymptotic probability that AC(S) < 0, that is, that cross-validatory choice will select x1, 
the sample mean. For then e and e(m) - e are independent, whence, as no- cx, 

E{-(e(m) - e)j = 0, E{n(e(m) - )2} = E(ne(2m)-E(nZ2) , 1, (3_9) 

so that, asymptotically, n(e(m) - -)2 is (j7T - 1) X2. Furthermore, it is intuitively ascertainable 
that ni(e(m) - e) and n(e(m+l) - e(m)) are asymptotically independently distributed; it is relatively 
easy to establish that they are asymptotically uncorrelated. As n-+ o, we find that 
n(e(m+l)-e(m)) is asymptotically distributed as (27T)4w, where w has a standard exponential 
distribution, while E( e I) = (2/7T)i. Then, for large n, assuming normality, 

pr{AC(S) < 0} pr{(jT- 1)X2+2w > 2} = 0X4992. (3-10) 

This probability is, surprisingly, less than i; cross-validation chooses the median in more than 
50 % of large normal samples. Note that the distribution of AC(S) must be skew because at the 
same time we find E{nAC(S)} 0-057. However the asymptotic efficiency of the cross- 
validatory estimator is 

im e2f(el,..., en) de,... den + n e(m)f(el, ..en) de,... den}. (3-11) 
n-- oo C(S) < 0 C(S) > 

Appendix 2 shows that this efficiency is 0-870, which compares with that of the median at 
2/or = 0 637, and that of a completely random procedure that selects the mean with probability 
0X4992, and otherwise the median, with efficiency 0X4992 + (1- 0.4992)2/or = 0-818. Sceptics 
of these asymptotic calculations may be reassured by the Monte Carlo results: for n = 300, 
the mean was selected on 1020, or 51 %, out of 2000 trials while (averaged squared error)-L 
was 0-871. 

Consider the effect of a change to L(y, y) = - . As a caution against drawing any general 
conclusions from these findings, it is shown in Appendix 3 that, if we merely change from 
quadrat ic t o modulus loss in Example 3I2, we obtain under normality pr {AC(S) <0O} 0A4327 
and the asymptotic efficiency of the cross-validatory estimator is 0A7 11. In this case, a com- 

2-2 
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pletely random procedure that selects the mean with probability 0-4327, and otherwise the 
median, has efficiency 0 794, superior to cross-validatory choice. 

Another asymptotic calculation that is even more adverse to cross-validatory choice con- 
cerns a case where the sample mean has zero asymptotic efficiency. 

Example 3-3: exponential error distribution. As for Example 3x2, consider model assumption 
II with x absent and q, = ... = In. However, instead of F normal, suppose that (a) the error 
density is f(e) = exp {- (e + 1)} for e > - 1 and f(e) = 0, otherwise, (b) the choice lies between 
a, - sample mean and a2 m + 1-1/n, where m = min (Yi, . . *, Yn). Note that the estimator a2 
is optimal for quadratic L in the class m + cn, where cn is a function of n only. Appendix 4 shows 
that, in this case, the mean is chosen with asymptotic probability 04157 and the resulting 
'choice' estimator has asymptotic mean squared error 0.574/n. The perversity of the 'choice' 
estimator is asymptotically that of an estimator that, even with the knowledge of e insisted 
on choosing a,, the sample mean, when e2 > 2 and a2 otherwise. 

Finally, note that Lunts & Brailovskiy (1967) consider the asymptotic behaviour of a 
measure very similar to C(a, S) - L(a, S), developed for the pattern recognition context. 

APPENDIX 1 

Proof of (2 9) 
From Stone (19T4a, p. 126), p_ = {9(xi; , S)- Ay}/(1 - Aii), whence the left-hand side 

of (2.7) is 

plimn q1j es eje-I 2ei( l- A)) (A 1) 

where qij = Aij{(1 - A1,)-1 + (1 - Aj)-1}. Both expressions in (A 1) have zero expectation while 
(2.9) states their respective variances, whence the result. 

APPENDIX 2 

Mean versus median: Squared loss 

Writing dF. = f(el, ..., en) de, ... den, the operand in (3.11) equals 

{ne(2m) dFn - n(e 2m) -2) dF., 
ac(s) < o 

whose first integral is asymptotically inr. Since normality implies the independence of e and 
{ej-e (i = 1, ..., n)} of which e m)- and AC(S) are functions, the second integral equals 

f| < n(e() - )2 dFn, 
ac(S)<O 

which is asymptotically 

(+- i4 xl2f(xy2) e-wdx2dw = 0-4215. 
Teaypoief n isenw(- ) 42 5 = 2W> 2 

The asymptotic efficiency is then (in - 0-4215)-l = 0-870. 
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APPENDIX 3 
Mean versus median: Modulus loss 

With modulus loss 
n 

en- - e-n nA\C(S)= 1 ei-n __ Ie(i)-e(m+l) E I e(i)-e(m)I, 

which, after some analysis, is found to have the same asymptotic distribution as 

Un V'n- (17T) I wn+ E( | e l),| 

where un = E sgn eilVn, vn = Jn (e(m) - e) and w. = n(e(m+l) - e(m))/(27T)i. Under normality we 
find that wn is asymptotically standard exponential, independent of (Un, Vn), which are 
asymptotically bivariate normal with means (0, 0), variances (1, lr - 1) and covariance 
(7T) - (2/7T)i. Straightforward calculation then gives pr{AC(S) < 0} = 0-4327, while 
n x (mean squared error of the 'choice' estimator) is asymptotically 

f 2 +LS2 dFn + ne(m) dFn - J| n(e(m) - e)2 dFn AC(S) < O AC(S) < O /C(S) < O 

= ir-f~Vflff)iWfl?(2Iff)I?2I~O _v~nf(un, vn, wn) dundvndwn 
UV,%- (Jin) w,,+ (2 /in) + (2/nr)k<0 

1-406 

on asymptotic evaluation. 

APPENDIX 4 

Exponential loss 
We find 

(n-I n)~ 2Yin)- 2 ___ i n-2 2\ 
nLAC(S) = 2n 12 _y(m _ y(2 )2 (y(2)- m)-n (y-m- 1) 

where m = Y(i) < ... < Y(n) is the ordering Of Y1' ., Yn, from which it follows that nzXC(S) is 
asymptotically 2-ne2 or 2_ z2, where z is N(0, 1). Then pr{AC(S) < 0} pr(Z2 > 2) = 0 157, 
while n x (mean squared error of the 'choice' estimator) is 

| ne2dFn + n (el)+ 1 --n-1)2dFn z20(z)dz - 0574. 
aC(s) < o aC(s)> o 
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