Noname manuscript No.
(will be inserted by the editor)

A Ranking Stability Indicator for Selecting the Best Effort
Estimator in Software Cost Estimation

Jacky Keung - Ekrem Kocaguneli -
Tim Menzies

Received: 2011 / Accepted: 20XX
Springer Science+Business Media, LLC 2011

Abstract There is no universal agreement on the “best” effort estimation approach. This is
largely due to the “ranking instability” problem, which is highly contingent on the evalua-
tion criteria and the subset of the data used in the investigation. Unless we can reasonably
determine stable rankings of different estimators, we cannot determine the most suitable
estimator for effort estimation.

This paper reports an empirical study using 90 estimation methods applied to 20 datasets
as an attempt to address this issue. Performance was assessed using MAR, MMRE, MMER,
MBRE, MIBRE, MdMRE, PRED(25) and compared using a Wilcoxon ranked test (95%).
A comprehensive empirical experiment was carried out.

Our results show that prior concerns regarding ranking instability of effort estimation
methods may have been overly pessimistic. Given the large number of datasets, it is now
possible to draw stable conclusions about the relative performance of estimation methods
and to select the most suitable ones. In this study, regression trees or analogy-based methods
are the best performers, and we recommend against neural nets or simple linear regression.
Based on the proposed evaluation method, we are able to determine the most suitable local
estimator for software cost estimation, an important process in the application of any effort
estimation analysis.

Keywords Effort estimation, Data mining, Stability, Linear Regression, Regression Trees,
Neural Nets, Analogy, MMRE, Evaluation Criteria

Jacky Keung

Department of Computing

The Hong Kong Polytechnic University
Kowloon, Hong Kong

E-mail: Jacky.Keung @comp.polyu.edu.hk

Ekrem Kocaguneli and Tim Menzies

Lane Department of Computer Science and Electrical Engineering
West Virginia University

Morgantown, WV 26505, USA

E-mail: ekocagun @mix.wvu.edu, tim@menzies.us

1 Introduction

Being able to choose the most suitable software development effort estimator for the local
software projects remains illusive for many project managers. For decades, researchers have
been searching for the “best” software development effort estimator. At the time of writing,
no such “best” estimator has been found which provides consistently the most accurate
estimate. The usual conclusion is that effort estimation suffers from a ranking instability
syndrome; i.e. different researchers offer conflicting rankings as to what is “best” [30, 32].
It seems, different set of best effort estimators exist under various different situations given
different historical sample datasets.

This is an open and urgent issue since accurate effort estimation is vital to Software
Engineering, and is often a challenging task for many software project managers. Both
overestimating and underestimating would result in unfavorable impacts to the business’
competitiveness and project resource planning. Conventionally, the single most familiar ef-
fort estimator may be used for different situations, this approach may not produce the best
effort estimates for different projects.

Being able to compare and determine the best effort estimator for different scenarios
is critically important to the relevance of the estimates to the target problem under inves-
tigation. Software effort estimation research focuses on the learner used to generate the
estimate (e.g. linear regression, neural nets, etc) in many cases, overlooking the importance
of the quality and characteristics of the data being used in the estimation process. We ar-
gue that this approach is somewhat misguided since, as shown below, learner performance
is greatly influenced by the data preprocessing and the datasets being used to evaluate the
learner.

Ranking stability in software effort estimation should be the primary research focus,
being able to correctly classify the characteristics of each method allows the most suitable
estimators to be used in the estimation process. This paper presents a method which can be
used to determine the best effort estimators to use at different situations.

Method combinations can produce vastly different results, in all, this study applies 90
estimators (10 learners and 9 preprocessors) to 20 datasets and measure their performance
using seven performance criteria. To the best of our knowledge, this is the largest effort
estimation study yet reported in the literature. One result of exploring such a large space of
data and algorithms is that we are able to report stable conclusions (while prior studies have
not).

This paper is structured as follows. Section 2 addresses our research challenge and moti-
vation. Related work discusses effort estimation and the prior reports on conclusion instabil-
ity. Those reports used a dataset to seed the generation of artificial data. Our results section
shows that if we extend the experiments to a broader set of methods and project data, we are
able to discover stable conclusions such as that we can list best (and worst) effort estimators.

2 Searching for the Best Estimator

As witnessed by recent international SE conferences (e.g. ESEM, PROMISE, ICSE), ef-
fort estimation is an active area of research. Further, as data mining research matures, an
increasing number of estimation methods are being explored in the literature.

With so many candidate methods, it is now difficult to select appropriate modeling meth-
ods for a particular domain. Despite decades of research, there is still no consensus of what

effort estimators are better or worse than any other. Some researchers doubt that such a rank-
ing can ever be generated. For example, Shepperd and Kododa [32] compared regression,
rule induction, nearest neighbor and neural nets, in an attempt to explore the relationship be-
tween accuracy, choice of prediction system, and different dataset characteristics by using a
simulation study based on artificial datasets. They also reported that a number of conflicting
results exist in the literature as to which method provides superior prediction accuracy, and
offered possible explanations including the use of an evaluation criteria such as MMRE or
the underlying characteristics of the dataset being used can have a strong influence upon the
relative effectiveness of different prediction models. Their work as a simulation study that
took a single dataset, then generated very large artificial datasets using the distributions seen
on that data. They concluded that:

— None of these existing estimators were consistently “best”;
— The accuracy of an estimate depends on the dataset characteristic and a suitable predic-
tion model for the dataset.

Their conclusion was that it is generally infeasible to determine which prediction technique
is the “best”.

Recent results suggest that it is appropriate to revisit the ranking instability hypothesis.
Menzies et al. [28] applied 158 estimators to various subsets of two COCOMO datasets. In
a result consistent with Shepperd and Kododa, they found the precise ranking of the 158 es-
timators changed according to the random number seeds used to generate train/test sets; the
performance evaluation criteria used; and which subset of the data was used. However, they
also found that four methods consistently outperformed the other 154 across all datasets,
across 5 different random number seeds, and across three different evaluation criteria.

There are now many datasets in public domain readily available for stability studies.
Figure 2 lists 20 datasets which have become available in the last year at the PROMISE
repository of reusable SE data'. It is no longer necessary to work on simulated data (as
done by Shepperd and Kadoda [32]) or to study merely two datasets (as done by Menzies et
al. [28]).

When previous studies and conclusions are considered, unless we address the instability
issue, we cannot make conclusive remarks about neither the algorithms nor the datasets. Our
fundamental motivations is to question the stability issue and we propose a methodology for
evaluating the stability (see methodology of Figure 7).

3 Estimation Methods for Software Development Projects

This section reviewed the effort estimation literature with regards to the major estimation
techniques used by empirical research studies on cost estimation within the last 15 years.

3.1 Algorithmic Methods

There are many algorithmic effort estimators. For example, if we restrict ourselves to just
instance-based algorithms, Figure 3 shows that there are thousands of options just in that
one sub-field.

! http://promisedata.org/data

8611 [eI0L
6'€ 0T9¥S 1T6€ 6281 9T sImoy sorueduwoo aremijos soury) woiy spoelord 661 81 Butyd
LT SGITT €Ev8T €67 $S€T sypuow saruedwod wood[e) 10y s100fo1d douBUAUIBIA 8T € WO
909 98G1 L¥'L8 1'8¢ 9¢ syuow 71090D ut padojosdp spoaford aremyos asoueder gf 8 peMezeAw
9T°€ v69€9 T€TI8 S'681S €8¢ smoy pue[uL{ Ul SyuEq [EIOIWWOD WOy $192(01d 79 LT [[emxeur
9L'T €L0TT +vT6IT €0€l TeT syyuow suoneardde ssoutsnq o3reT [L Torourdy
$6°0 0L99T €8L9L OEYS 09t smoy puepur ut padojoadp sioaford aremiyos 8¢ 8 ystuuy
Tt o1 44 4 I sypuow NI woxy s1ford 4T L yoaIqre
6'¢ e 43 Tl 4 syuow s1ooford aremyjos ysopng, g 4 Ips
98'1 088 SY891 SETll 9¥S smoy | ¢afen3ue yim pado[oadp aie Jey) steureyso(ur s1aford Q1 I €TsteuIRySap
9I'l €L6VT L9TIS TL¥E SSTT smoy | gaSenSue yim padoaadp are Jey) steureysa(ur sivafoid G I TIsTeuIeysap
60T 0V6ET 6'8ELS S'SE0V S08 smoy | yaSenSuer yim pado[aAdp are Jey) STeuIeysa(T ur s1vdfoid 9f T [TSreuIeysop
0C 0¥6£T 9%0S L¥9€ 9rS SImoy s100foxd aremyjos uerpeue) g 4! STRUIRYSIP
'€ 1128 1101 1LS L sypuow G Jojued woly syoafoid gaeseN or L1 G IUAD~gRSRU
jard 0SET €T 8 8 syuow T 121u00 woij syo2foxd ¢geseN LE L1 T TIUd0~gpeSeu
98°0 09¢ T6'6€1 99 (74 syjuouwr 1 19120 woyy s1oa(o1d ¢geseN 1 L] 111U~ ¢ pBSeU
(44 1128 ¥279 [4%4 8 syuow s1afoid VSYN €6 L1 g6eseu
9T 00%9 S96¥8 9SI 6'S syuow s100fo1d payoeIop-1uwes [gOw020) [L1 S$[80UW0000
L'l ore 09 9% 9 syjuow s300fo1d oruesio [gowod0) T Ll 0]80WO020d
¥'e 00¥IT €STI ¥S€ 6 syyuow s109foxd pappaquia [gowooo) 8¢ L1 2180W0203
vy 00VIT €89 86 9 syyuow s109fo1d VSYN €9 L1 [80W0209
SSAUMINS XBJAl UBIA UBIPIIA Ul syun uondLsaq ZIS saanyed | jesereq

e)e(MOy [EXLI0)SIH

lumn

ion in co

one denotes a dataset that is a subset of another dataset. For notes on these datasets, see the

appendix.

ects used in this study come from 20 data sets. Indentati

: The 1198 proj

Fig. 1

8611 [eI0L
6'€ 0T9¥S 1T6€ 6281 9T sImoy sorueduwoo aremijos soury) woiy spoelord 661 81 Butyd
LT SGITT €Ev8T €67 $S€T sypuow saruedwod wood[e) 10y s100fo1d douBUAUIBIA 8T € WO
909 98G1 L¥'L8 1'8¢ 9¢ syuow 71090D ut padojosdp spoaford aremyos asoueder gf 8 peMezeAw
9T°€ v69€9 T€TI8 S'681S €8¢ smoy pue[uL{ Ul SyuEq [EIOIWWOD WOy $192(01d 79 LT [[emxeur
9L'T €L0TT +vT6IT €0€l TeT syyuow suoneardde ssoutsnq o3reT [L Torourdy
$6°0 0L99T €8L9L OEYS 09t smoy puepur ut padojoadp sioaford aremiyos 8¢ 8 ystuuy
Tt o1 44 4 I sypuow NI woxy s1ford 4T L yoaIqre
6'¢ e 43 Tl 4 syuow s1ooford aremyjos ysopng, g 4 Ips
98'1 088 SY891 SETll 9¥S smoy | ¢afen3ue yim pado[oadp aie Jey) steureyso(ur s1aford Q1 I €TsteuIRySap
9I'l €L6VT L9TIS TL¥E SSTT smoy | gaSenSue yim padoaadp are Jey) steureysa(ur sivafoid G I TIsTeuIeysap
60T 0V6ET 6'8ELS S'SE0V S08 smoy | yaSenSuer yim pado[aAdp are Jey) STeuIeysa(T ur s1vdfoid 9f T [TSreuIeysop
0C 0¥6£T 9%0S L¥9€ 9rS SImoy s100foxd aremyjos uerpeue) g 4! STRUIRYSIP
'€ 1128 1101 1LS L sypuow G Jojued woly syoafoid gaeseN or L1 G IUAD~gRSRU
jard 0SET €T 8 8 syuow T 121u00 woij syo2foxd ¢geseN LE L1 T TIUd0~gpeSeu
98°0 09¢ T6'6€1 99 (74 syjuouwr 1 19120 woyy s1oa(o1d ¢geseN 1 L] 111U~ ¢ pBSeU
(44 1128 ¥279 [4%4 8 syuow s1afoid VSYN €6 L1 g6eseu
9T 00%9 S96¥8 9SI 6'S syuow s100fo1d payoeIop-1uwes [gOw020) [L1 S$[80UW0000
L'l ore 09 9% 9 syjuow s300fo1d oruesio [gowod0) T Ll 0]80WO020d
¥'e 00¥IT €STI ¥S€ 6 syyuow s109foxd pappaquia [gowooo) 8¢ L1 2180W0203
vy 00VIT €89 86 9 syyuow s109fo1d VSYN €9 L1 [80W0209
SSAUMINS XBJAl UBIA UBIPIIA Ul syun uondLsaq ZIS saanyed | jesereq

e)e(MOy [EXLI0)SIH

lumn

ion in co

one denotes a dataset that is a subset of another dataset. For notes on these datasets, see the

appendix.

ects used in this study come from 20 data sets. Indentati

0]

The 1198 pr:

Fig. 2

Instance-based learners draw conclusions from instances near the test instance.
Mendes et al. [27] discuss various near-ness measures.

My : A simple Euclidean measure;

Mo : A “maximum distance” measure that that focuses on the single feature that
maximizes inter-project distance.

M35 : More elaborate kernel estimation methods.

Once the nearest neighbors are found, they must be used to generate an effort
estimate via...

R1 :Reporting the median effort value of the analogies;

R2 : Reporting the mean dependent value;

R3 :Reporting a weighted mean where the nearer analogies are weighted higher
than those further away [27];

Prior to running an instance-based learning, it is often recommended to handle

anomalous rows by:

N7 :Using in an “as is” manner;

Ny : Using outlier removal [18];

N3 : Prototype generation; i.e. replace the data set with a smaller set of most
representative examples [8].

When computing distances between pairs, some feature weighting scheme is often
applied:

W1 : All features have uniform weights;
Wa..Wyg : Some pre-processing scores the relative value of the features using various
methods [12, 18,25]. The pre-processors may require discretization.

Discretization breaks up continuous ranges at points b1, ba, ..., each containing
counts of ¢y, ca, ... of numbers [11]. Discretization methods include:

D1 : Equal-frequency, where ¢; = c;;

Do : Equal-width, where b; 1 — b; is a constant;
D3 : Entropy [9];

D4 : PKID [36];

Ds : Do nothing at all.

Finally, there is the issue of how many k neighbors should be used:

K7 :k = 1isused by Lipowezky et al. [26] and Walkerden & Jeffery [35];

Ko : k = 2isused by Kirsopp & Shepperd [19]

K3 :k=1,2,3is used by Mendes el al. [27]

K4 :Lietal.use k = 5[25];

K5 : Baker tuned k to a particular training set using an experimental method [3].

Fig. 3: Each combination of the above N xW xDxM x Rx K techniques is one algorithm
for instance-based effort estimation. This figure shows 3 x 3 x 3 x 9 x 5 x 5 > 6,000
algorithms for effort estimation. Some of these ways can be ruled out, straight away. For
example, at £ = 1 all the adaptation mechanisms return the same result. Also, not all the
feature weighting techniques require discretization, decreasing the space of options by a
factor of five. However, even after discarding some combinations, there are still hundreds to
thousands of algorithms to explore.

As to non-instance methods, there are many proposed in the literature including vari-
ous kinds of regression (simple, partial least square, stepwise, regression trees), and neural
networks just to name a few. For notes on these non-instance methods, see §4.3.

Note that instance & non-instance-based methods can be combined to create even more
algorithms. For example, once an instance-based method finds its nearest neighbors, those
neighbors might be summarized with regression or neural nets [25].

3.2 Non-Algorithmic Methods

An alternative approach to algorithmic approaches (e.g. the instance-based methods of Fig-
ure 3) is to utilize the best knowledge of an experienced expert. Expert based estimation [13]
is a human intensive approach that is most commonly adopted in practice. Estimates are usu-
ally produced by domain experts based on their very own personal experience. It is flexible
and intuitive in a sense that it can be applied in a variety of circumstances where other
estimating techniques do not work (for example when there is a lack of historical data). Fur-
thermore in many cases requirements are simply unavailable at the bidding stage of a project
where a rough estimate is required in a very short period of time.

Jorgensen [14] provides guidelines for producing realistic software development effort
estimates derived from industrial experience and empirical studies. One important finding
concluded was that the combined estimation method in expert based estimation offers the
most robust and accurate combination method, as combining estimates captures a broader
range of information that is relevant to the target problem, for example combining estimates
of analogy based with expert based method. Data and knowledge relevance to the project’s
context and characteristics are more likely to influence the prediction accuracy.

Although widely used in industry, there are still many ad-hoc methods for expert based
estimation. Shepperd et al. [34] do not consider expert based estimation an empirical method
because the means of deriving an estimate are not explicit and therefore not repeatable, nor
easily transferable to other staff. In addition, knowledge relevancy is also a problem, as an
expert may not be able to justify estimates for a new application domain. Hence, the rest of
this paper does not consider non-algorithmic methods.

4 Experiment Design

In our experiments, numerous performance measures were collected after various algo-
rithms (combinations of preprocessors and learners) were applied to the data of Figure 2.
This section describes those performance measures, preprocessors, and learners.

Since it is impractical to explore (say) the thousands of options described in Figure 3,
we elected to explore variants commonly used in the literature. For example, we explore
neural nets, regression, and analogy because those methods were explored by Shepherd and
Kododa [32]. Nevertheless, it is important to note that our conclusions come only from the
estimators, performance criteria and datasets used in this study. Further work is required to
confirm our findings on other estimators, performance criteria, datasets.

4.1 Performance Measures

Performance measures comment on the success of a prediction. For example, the absolute
residual (AR) is the difference between the predicted and the actual:

AR; = z; — &)

(where x;, 4; are the actual and predicted value for test instance).

The Magnitude of Relative Error measure a.k.a. MRE is a very widely used evaluation
criterion for selecting the best effort estimator from a number of competing software pre-
diction models [33] [10]. MRE measures the error ratio between the actual effort and the
predicted effort and can be expressed as the following equation:

MRE, = LT =@l AR o
€Ty €Ty
A related measure is MER (Magnitude of Error Relative to the estimate [10]):
ZT; Ty

The overall average error of MRE can be derived as the Mean or Median Magnitude of
Relative Error measure (MMRE, or MAMRE respectively), can be calculated as:

" MRE;
MMRE = 2izy MRE: @)
n

MdMRE = median(allM RE;) 5)

A common alternative to MMRE is PRED(25), and defined as the percentage of predic-
tions failing within 25% of the actual values, and can be expressed as:

N

100 lif MRE; < 32
PRED(25) = N Z { 0 otherwise ©
=1

For example, PRED(25)=50% implies that half of the estimates are failing within 25% of

the actual values [33].

There are many other performance measures including Mean Balanced Relative Er-
ror (MBRE) and the Mean Inverted Balanced Relative Error (MIBRE) studied by Foss et
al. [10]:

MBRE; = —+ i _ 6
min(@;, ;)
MIBRE; = _ T T ()

max(L;, ;)

4.2 Ten Pre-processors

In this study, we investigate:

Three simple preprocessors: none, norm, and log;

One feature synthesis methods called PCA;

Two feature selection methods: SFS (sequential forward selection) and SWreg;
— Four discretization methods: divided on equal frequency/width.

None is the simplest preprocessor, all values are unchanged.
With the norm preprocessor, numeric values are normalized to a O-1 interval using
Equation 9. Normalization means that no variable has a greater influence that any other.

(actualValue — min(allV alues))

©

normalizedV alue = -
(maz(allValues) — min(allValues))

With the log preprocessor, all numerics are replaced with their logarithm. This logging
procedure minimizes the effects of the occasional very large numeric value.

Principal component analysis [1], or PCA, is a feature synthesis preprocessor that con-
verts a number of possibly correlated variables into a smaller number of uncorrelated vari-
ables called components. The first component accounts for as much of the variability in the
data as possible, and each succeeding component accounts for as much of the remaining
variability as possible.

Some of the preprocessors aim at finding a subset of all features according to certain
criteria such as SFS (sequential forward selection) and SWR (stepwise regression). SFS
adds features into an initially empty set until no improvement is possible with the addition of
another feature. Whenever the selected feature set is enlarged, some oracle is called to assess
the value of that set of features. In this study, we used the MATLAB, objective function
(which reports the the mean-squared-error of a simple linear regression on the training set).
One caution to be made here is that exhaustive search algorithms over all features can be
very time consuming (2" combinations in an n-feature dataset), therefore SFS works only
in forward direction (no backtracking).

SWR adds and removes features from a multilinear model. Addition and removal is
controlled by the p-value in an F-Statistic. At each step, the F-statistics for two models
(models with/out one feature) are calculated. Provided that the feature was not in the model,
the null hypothesis is: “Feature would have a zero coefficient in the model, when it is added”.
If the null hypothesis can be rejected, then the feature is added to the model. As for the other
scenario (i.e. feature is already in the model), the null hypothesis is: “Feature has a zero
coefficient”. If we fail to reject the null hypothesis, then the term is removed.

Discretizers are pre-processors that maps every numeric value in a column of data into
a small number of discrete values:

— width3bin: This procedure clumps the data features into 3 bins, depending on equal
width of all bins see Equation 10.

10)

binWidth — ceiling (ma:p(allValues) — min(allValues))

n

— width5bin: Same as width3bin except we use 5 bins.

— freq3bin: Generates 3 bins of equal population size;

— freq5bin: Same as freq3bin, only this time we have 5 bins.

10

4.3 Nine Learners

Based on our reading of the effort estimation literature, we identified nine commonly used
learners that divide into

— Two instance-based learners: ABE(O-INN, ABE(0-5NN;
— Two iterative dichotomizers: CART(yes),CART(no);
— A neural net: NNet;

— Four regression methods: LReg, PCR, PLSR, SWReg.

Instance-based learning can be used for analogy-based estimation. A large class of ABE
algorithms was described in Figure 3. Since it is not practical to experiment with the 6000
options defined in Figure 3, we focus on two standard variants. ABEQ is our name for a
very basic type of ABE that we derived from various ABE studies [15, 25,27]. In ABEO-
xNN, features are firstly normalized to 0-1 interval, then the distance between test and train
instances is measured according to Euclidean distance function, x nearest neighbors are
chosen from training set and finally for finding estimated value (a.k.a adaptation procedure)
the median of x nearest neighbors is calculated. We explored two different x:

— ABEO-INN: Only the closest analogy is used. Since the median of a single value is
itself, the estimated value in ABEQ-1NN is the actual effort value of the closest analogy.
— ABEO-5NN: The 5 closest analogies are used for adaptation.

Iterative Dichotomizers seek the best attribute value splitter that most simplifies the data
that fall into the different splits. Each such splitter becomes a root of a tree. Sub-trees are
generated by calling iterative dichotomization recursively on each of the splits. The CART
iterative dichotomizer [7] is defined for continuous target concepts and its splitters strive
to reduce the GINI index of the data that falls into each split. In this study, we use two
variants:

— CART (yes): This version prunes the generated tree using cross-validation. For each
cross-validation, an internal nodes is made into a leaf (thus pruning its sub-nodes). The
sub-tree that resulted in the lowest error rate is returned.

— CART (no): Uses the full tree (no pruning).

In Neural Nets, or NNet, an input layer of project details is connected to zero or more
“hidden” layers which then connect to an output node (the effort prediction). The connec-
tions are weighted. If the signal arriving to a node sums to more than some threshold, the
node “fires” and a weight is propagated across the network. Learning in a neural net com-
pares the output value to the expected value, then applies some correction method to improve
the edge weights (e.g. back propagation). Our NNet uses three layers.

This study also uses four regression methods. LReg is a simple linear regression algo-
rithm. Given the dependent variables, this learner calculates the coefficient estimates of the
independent variables. SWreg is the stepwise regression discussed above. Whereas above,
SWreg was used to select features for other learners, here we use SWreg as a learner (that
is, the predicted value is a regression result using the features selected by the last step of
SWreg). Partial Least Squares Regression (PLSR) as well as Principal Components Re-
gression (PCR) are algorithms that are used to model independent variables. While model-
ing, they both construct new independent variables as linear combinations of original ones.
However, the ways they construct the new independent variables are different. PCR gener-
ates new independent variables to explain the observed variability in the actual ones. While
generating new variables the dependent variable is not considered at all. In that respect, PCR

11

is similar to selection of n-many components via PCA (the default value of components to
select is 2, so we used it that way) and applying linear regression. PLSR, on the other hand,
considers the independent variable and picks up the n-many of the new components (again
with a default value of 2) that yield lowest error rate. Due to this particular property of
PLSR, it usually results in a better fitting.

4.4 Experimental Rig

This study copied the experimental rig of a recent prominent study [24]. In their leave-one-
out experiment, given 7" projects, 1 project at a time is selected as the test and the remaining
T — 1 projects are used for training, so eventually we have T predictions. The resulting T'
predictions are then used to compute our seven evaluation criteria given in Section 3.1.

To compare the performance of one algorithm versus the rest, we used a Wilcoxon non-
parametric statistical hypothesis test. Wilcoxon is more robust than the Student’s #-test as it
compares the sums of ranks, unlike Student’s #-test which may introduce spurious findings
as aresult of possible outliers in the given datasets. Ranked statistical tests like the Wilcoxon
are also useful if it is not clear that the underlying distributions are Gaussian [22].

Using the Wilcoxon test, for each dataset, the performance measures collected from
each of our 90 algorithms was compared to the 89 others. This allowed us to collect win-tie-
loss statistics using the algorithm of Figure 4. First, we want to check if two distributions
i, j are statistically different according to the Wilcoxon test (95% confident); otherwise we
increment tie; and tie;. If the distributions are statistically different, we update win;, win;
and loss;, loss;, after checking which one is better according to the performance measure
at hand.

if WILCOXON(P;, Pj, 95) says they are the same then
tie; = tie; + 1;
tie; = tie; + 1;
else
if better(median(P;), median(F;)) then
win; = win; + 1
loss;j =loss; + 1
else
wing = win; + 1
loss; =loss; + 1
end if
end if

Fig. 4: Comparing algorithms (i,/) on performance (P;,P;). The “better” predicate changes
according to P. For error measures like MRE, “better” means lower medians. However, for
PRED(25), “better” means higher medians.

5 Results

After applying leave-one-out to all 20 data sets, the procedure of Figure 4 was repeated seven
times (once for MAR, MMRE, MMER, MBRE, MIBRE, MAMRE and PRED(25)). Our

rank pre-processor learner rank pre-processor learner

1 norm CART (yes) 46 PCA NNet

2 norm CART (no) 47 width3bin ABEO-5NN
3 none CART (yes) 48 none NNet

4 none CART (no) 49 widthSbin SWR

5 log CART (yes) | 50 widthSbin ABEO-INN
6 log CART (no) 51 none LReg

7 SWR CART (yes) | 52 width5bin ABEO-5NN
8 SWR CART (no) 53 SFS NNet

9 SFS CART (yes) | 54 norm PLSR

10 SFS CART (no) 55 freq5bin ABEO-INN
11 SWR ABEO-INN 56 SWR NNet

12 log ABEO-INN 57 SWR LReg

13 SWR ABEOQO-5NN 58 norm LReg

14 SFS ABEO-5NN 59 freq3bin ABEO-1INN
15 PCA PLSR 60 freq3bin CART (yes)
16 SWR PCR 61 freq3bin CART (no)
17 none PLSR 62 PCA ABEO-INN
18 SFS ABEO-INN 63 width3bin SWR

19 PCA PCR 64 widthSbin PLSR

20 none PCR 65 log SWR

21 PCA CART (yes) 66 log PCR

22 PCA CART (no) 67 log PLSR

23 freqSbin ABEO-5NN 68 width3bin PLSR

24 SWR PLSR 69 width3bin ABEO-INN
25 SFS LReg 70 widthSbin PCR

26 norm ABEO-1NN 71 norm PCR

27 none ABEO-INN 72 width3bin PCR

28 SFS PCR 73 freqSbin PCR

29 SFS PLSR 74 freq5bin SWR

30 freqSbin CART (yes) 75 width3bin LReg

31 freqSbin CART (no) 76 freq3bin PCR

32 widthSbin CART (yes) | 77 widthSbin LReg

33 widthSbin CART (no) 78 freq3bin PLSR

34 norm ABEO-5NN 79 freq5bin PLSR

35 PCA SWR 80 log LReg

36 none ABEO-5NN 81 freq3bin SWR

37 SWR SWR 82 freqSbin LReg

38 SFS SWR 83 widthSbin NNet

39 log ABEO-5NN 84 norm NNet

40 norm SWR 85 width3bin NNet

41 none SWR 86 log NNet

42 freq3bin ABEO-5NN 87 freq3bin NNet

43 PCA ABEO-5NN 88 freq5Sbin NNet

44 width3bin CART (yes) 89 freq3bin LReg

45 width3bin CART (no) 90 PCA LReg

Fig. 5: Detailed algorithm combinations, sorted by the sum of their losses seen in all per-
formance measures and all data sets. The algorithm with fewest losses is ranked #1 and is
norm/CART (yes). At the other end of the scale, the algorithm with the most losses is ranked
#90 and is PCA/LReg.

ninety algorithms were then sorted by their total number of losses over all datasets. The re-
sulting sort order is shown in Figure 5. The algorithm, with fewest losses (norm/CART (yes))
was ranked #1 and the algorithm with the most losses (PCA/LReg) was ranked #90.

Given 89 comparisons and seven performance measures and 20 datasets, the maximum
number of losses for any algorithm was 89 x 7 x 20 = 12,460. Figure 6 sorts all 90 algo-
rithms according to their total losses seen in all seven performance criteria (expressed as a
percentage of 12,460). The x-index of that figure corresponds to the ranks of Figure 5; e.g.
the top ranked method of norm/CART (yes) lost in nearly zero percent of our experiments.

Figure 7 tests the stability of the methods. In this plot, we check if the sort orders are
changed by different performance criteria:

90 T T T T T T T T T
80
70
60
50
40
30
20

10

0 I 1 1 1 1 1 1 1 1

0O 10 20 30 40 50 60 70 80 90
methods, sorted by number of losses

percentage of losses

Fig. 6: The ninety algorithms of Figure 5, sorted by their percentage of maximum possible
losses (so 100% = 12,460).

— In Figure 7, we report the mean of maximum rank changes for each method with respect
to their ordering in Figure 5.
— Each error measure defines its own ordering of methods w.r.t. its win, loss or win —
loss values.
— Maximum rank change is the maximum absolute difference between either of these
orderings and the ordering of Figure 5.
— Then, mean of maximum rank changes coming from 7 performance measures gives
us Figure 7.

The sort order on the x-axis of Figure 7 was kept the same as the before. A line drawn parallel
to x-axis at y = 10 gives methods, whose mean rank change is less/more than 10. See in
Figure 7 that y = 10 line divides all methods into 3 regions: a (from method 1 to 13), b (from
method 14 to 64) and ¢ (from method 65 to 90). Regions a and ¢ show “high-ranked” and
“low-ranked” methods respectively. None of the methods in regions @ and c exceed mean
rank change of 10, i.e. they are “stable” in high and low ranks. In region b “medium-ranked”
methods are accumulated. However, all methods in region b have mean rank changes above
10, i.e. they are “unstable” in this region. In a result consistent with prior reports on ranking

a(1to13) b (14 to 64) c (65 to 90)

T S R S T

mean max-rank-changes

40 64 80 90
algorithms, sorted as per Figure 5

Fig. 7: Algorithms and the mean of their maximum rank changes over all performance mea-

T8

sures. Mean rank change of smaller than 10 divides 90 methods into 3 regions. Region “a

consists of high-ranked stable methods, whereas region “c” contains low-ranked but still sta-
ble methods. Region “b” on the other hand shows middle-ranked and non-stable methods.

T T T T 17T
<12.5% losses
< 25.0% losses
<50.0% losses
>=50.0% losses

o OFEN EHgEEN s
b
%Io | _._
S Reg L | 1 HY
3 n 1] L
£ ™ | L
(%]
Q 64— ------ -
7]
8 60 [| ... I. .. i -
Y ... [|
T n [- llll
[=]
g 40 I..= —H L
o L i
£ it | i
S n iNE |
< [|]
LT
S [|
20] I .I.—
| i1
IogABI‘:Ié— ------------------ :l—
INN
©8.%%%505%53% BRWES WS
25282082088 % 003
22T Y 2 2% % X
A \o<;><$/ AYoXte o)
DRGE Yo &S 0L %T® ¥
°oRIR % % %
v RS e
AN ‘e \o

Fig. 8: Number of losses seen in 90 methods and 20 datasets expressed as a percentage of
the maximum losses possible for one method in one dataset (so 100% = 89 comparisonx x
7 error measures = 623; 50%=311; 25%=156; 12.5%=78). The algorithms on the y-axis are
sorted according to Figure 5.

instability, the lines in each region are not exactly smooth. However, they do closely follow
the same general trends as Figure 6.

Since the sort orders seen using the number of losses and mean rank changes over seven
performance criteria are mostly stable, we use them to draw Figure 8. In that figure, each
X,y position shows the results of 623 comparisons (each algorithm compared to 89 oth-
ers using seven performance measures; 89 x 7 = 623). The y-axis of that figure shows the
90 algorithms sorted in the rank order of Figure 5. For example, the top-ranked algorithm
norm/CART (yes) appears at y=1; the log/ABE0-1NN result appears at y=12; the log/LLReg
results appear at y=80; and the worst-ranked algorithm PCA/LReg appears at y=90.

In order to discuss which learners/preprocessors are “best”, we divide Figure 8 into 3
bands of Figure 7. We reserve the lowest band from method 1 to 13 (containing the “best”
estimators) for the region where all algorithms have a mean rank change of smaller than
10. Note that algorithms in that region almost always lose less than %th of the time (i.e.
the rows y = 1 to y = 13 that are almost completely yellow in Figure 8). In the other
bands (boundaried at y = 14 to y = 64 and y = 65 to y = 90), algorithms lose much
more frequently, i.e. behavior of methods in the loss percentage graph of Figure 8§ are in
agreement with rank change graph of Figure 7.

Performance, grouped by algorithms
60 T

T T T
algorithms 1..13 4
50 | algorithms 14..64 |
algorithms 65..90 ------- A
. 40 | f g
Te}
o
@ %or / B
2
0 -
/
0}/ i
0 | I I I I I I I

10 20 30 40 50 60 70 80 90
all preds, sorted

Fig. 9: Spectrum of Pred(25) across the bands

Figure 9 shows the spectrum of PRED(25) values across the 3 bands. As might be ex-
pected, the y-axis sort order of Figure 9 predicts for estimation accuracy. As we move over
the three bands from worst to best, the PRED(25) values double (approximately), thus con-
firming the unique performance of algorithms in each band.

Figure 10 shows the frequency counts of preprocessors and learners grouped into the
three bands:

— A “good” preprocessor/learner appears often in the lower bands (tendency towards band
a). In Figure 10, CART is an example of a “good” learner.

— A “poor” preprocessor/learner appears more frequently in the higher bands (tendency
towards band c). In Figure 10, all the discretization preprocessors (e.g. freq3bin) are
“poor” preprocessors.

— The gray rows of Figure 10 shows preprocessor/learner that are neither “good” nor
“poor” (since they exist in all 3 bands and have high frequency counts in bands b and c);
e.g. see the log preprocessor.

6 Discussion
6.1 Findings

Based on these figures and results, we summarize our findings as follows.

Findingl: Observing the small amounts of “jitter” in Figure 7 we can see that our results
are not 100% stable, they are only sufficiently stable to draw conclusions. We conjecture
that prior reports on ranking instability could stem from using too few data sets or too few
algorithms.

Finding2: Observe how, in Figure 5, learners found at one rank with a one preprocessor,
can jump to a very different rank if preprocessor is changed. For example, the top-ranked
method that uses CART(yes), is driven down to rank 60 if the preprocessor is changed
from norm to freq3bin. Clearly, the effectiveness of a learner can be significantly altered by
seemingly trivial details relating to data preprocessing. Hence, in future, researchers should
explore learners and the preprocessors, as they are both equally important.

Finding3: Observe in Figure 10 how SWR, LReg and NNet are stand-out learners that
fall entirely into the worst two bands. Proponents of these learners need to defend their value
for the purposes of effort estimation.

Occurrence of algorithms in bands a, b, ¢
banda bandb band ¢
y = 1..13 14..64 65..90
CART (yes) 34 28 1
CART (no) 33 28 2
ABEO-5NN 6 55 2
g ABEO-INN 11 44 8
g PCR 3 29 31
] PLSR 3 35 25
LReg 22 41
SWR 46 17
NNet 20 43
SWR 25 37 1
SFS 14 49
none 14 48 1
4 log 20 17 26
4 norm 14 33 16
) § PCA 4 49 10
A A freq5bin 28 35
width3bin 31 32
width5bin 42 21
freq3bin 23 40

Fig. 10: Frequency counts over 7 error measures for preprocessor and learners in the three
bands of Figure 7.

The relatively poor performance of simple linear regression is a highly significant result.
LReg, with a log preprocessor, is the core technology of many prior publications; e.g. the
entire COCOMO project [5]. Yet as shown in Figure 8, w.r.t. loss values over all error mea-
sures, log/LReg ranks very poorly (position 80 out of a maximum of 90 algorithms). We also
did experiments at individual level of error measures. At individual level the ranking is not
very different either, i.e. the ranking of LReg w.r.t. loss values over MAR, MMRE, MMER,
MBRE, MIBRE, MdMRE and Pred(25) are 80, 76, 81, 80, 75, 76 and 78 respectively.

Finding4: While SWR falls into the worst two bands of the learners, it is most com-
monly found in the best two bands of the preprocessors. That is, stepwise regression is a
poor learner but a good preprocessor. Hence, in future, the fate of SWR might be as an
assistant to other algorithms.

Finding5: While simple regression methods like LReg are depreciated by this study,
more intricate regression methods like regression trees (CART) and partial linear regression
PLSR are found in the better bands. Hence, in future, proponents of regression for effort
estimation might elect to explore more intricate forms of regression than just simple LReg.

Finding6: The top-ranked algorithm was norm/CART(yes).

Finding7: Simple methods (e.g. k=1 nearest neighbor on the log of the numerics) per-
form nearly as well as the top-ranked algorithm. Figure 11 compares the PRED(25) results
between rank=12 and rank=1. The datasets in that figure are sorted by the difference between
the top-ranked and the twelfth-ranked algorithm. Except for China dataset, the difference in
PRED(25) values is either slightly negative, or positive. That is, even though the rank=1 al-
gorithm is relatively “best” (measured according to our comparative Wilcoxon tests), when
measured in an absolute sense, it is not impressively better than simpler alternatives.

Finding7 is an important result, for three reasons. Firstly, there are many claims in the
literature that software project follows a particular parametric form. For example, in the
COCOMO project, that form is ef fort o« K LOC®). The fact that non-parametric instance
methods perform nearly as well as our best method suggests that debates about the paramet-

norm/CART(yes) log/ABEO-1NN difference

kemerer 7 27 -20
desharnaisL.3 20 40 -20
nasa93_center_2 43 57 -14
nasa93 29 39 -10
cocomo8ls 9 18 -9
albrecht 33 42 -9
telecoml 33 39 -6
cocomo81 13 16 -3
nasa93_center_5 36 33 3
desharnaisL1 39 35 4
cocomo8lo 29 21 8
desharnaisL.2 48 40 8
cocomo8le 18 7 11
desharnais 43 32 11

sdr 42 29 13

miyazaki94 40 25 15
maxwell 32 15 17

finnish 61 37 24
nasa93_center_1 58 33 25
china 95 43 52

Fig. 11: Using all data sets to compare the Pred(25) of norm/CART(yes) (rank=1) and
log/ABEO-INN (rank=12).

ric form of effort estimation is misguided. Also, it means that the value of certain commercial
estimation tools based on a particular parametric form may not be much more than simple
instance-based learners.

Secondly, analogy-based estimation methods are widely used [2, 16-18, 20,23-25,33—
35]. Finding7 says that while this approach may not be 100% optimal in all cases, compared
to our best estimator found by this study, there is not a dramatic lost if estimates are gen-
erated by analogy. Prior to this publication, we are unaware of a large comparative study
relating to this matter.

Thirdly it is easier to teach and experiment with simpler algorithms (like the log/ABEO-
INN algorithm at rank=12) than more complex algorithms (like the norm/CART algorithm
at rank=1). For example, recently we have been experimenting with a very simple variant of
ABEO-1NN that is useful as a learner to find software process change [6]. Such experimen-
tation would have been hindered if we tried to modify the more complex CART algorithm
(particularly if we included sub-tree pruning).

6.2 Validity

Construct validity (i.e. face validity) assures that we are measuring what we actually in-
tended to measure [31]. Previous studies have concerned themselves with the construct va-
lidity of different performance measures for effort estimation (e.g. [10]). While, in theory,
these performance measures have an impact on the rankings of effort estimation algorithms,
we have found that other factors dominate. For example, Figure 8 showed that some of the
datasets have a major impact on what could be concluded after studying a particular es-
timator on these datasets. We also show empirically the surprising result that our results
regarding algorithms are stable across a range of performance criteria.

External validity is the ability to generalize results outside the specifications of that
study [29]. To ensure external validity, this paper has studied a large number of projects.
Our data sets are diverse, measured in terms of their sources, their domains and the time

18

they were developed in. We use datasets composed of software development projects from
different organizations around the world to generalize our results [4]. Our reading of the
literature is that this study uses more data, from more sources, than numerous other papers.
For example, Table 4 of [21] list the total number of projects used by a sample of other
studies. The median value of that sample is 186; i.e. one-sixth of the 1198 projects used
here.

As to the external validity of our choice of algorithms, recalling Figure 3, it is clear
that this study has not explored the full range of effort estimation algorithms. Clearly, future
work is required to repeat this study using the “best of breed” found here (e.g. bands “a” and
“b” of Figure 10 as well as other algorithms).

Having cast doubts on our selection of algorithms, we hasten to add that this paper has
focused on algorithms that have been extensively studied in the literature [33] as well as
the commonly available datasets (that is, the ones available in the PROMISE repository of
reusable SE data). That is, we assert that these results should apply to much of the current
published literature on effort estimation.

7 Conclusion

In this study, ten learners and nine data preprocessors were combined into 90 effort estima-
tion algorithms. These were applied to twenty datasets. Performance was measured using
seven performance indicators (AR, MRE, MER, MAMRE, MMRE, PRED(25), MBIRE).
Performances were compared using a Wilcoxon ranked test (95%). This procedure can be
used as a ranking stability indicator for selecting the most suitable effort estimator in soft-
ware cost estimation, which is an important stage in the estimation process. To the best
of our knowledge, this is the largest and most comprehensive effort estimation study yet
reported in the literature. Eight findings are noteworthy:

1. Prior reports of ranking instability about effort estimation may have been overly pes-
simistic. Given relatively large number of publicly available effort estimation datasets,
it is now possible to make stable rankings about the relative value of different effort
estimators.

2. The effectiveness of a learner used for effort estimation (e.g. regression or analogy meth-
ods) can be significantly altered by data preprocessing (e.g. logging all numbers or nor-
malizing them zero to one).

3. Neural nets and simple linear regression perform much worse than other learners such
as analogy learners.

4. Stepwise regression was a very useful preprocessor, but surprisingly a poor learner.

5. Non-simple regression methods such as regression trees and partial linear regression are
relatively strong performers.

6. Regression trees that use tree pruning performed best of all in this study (with a prepro-
cessor that normalized the numerics into the range zero to one).

7. Very simple methods (e.g. K=1 nearest neighbor on the log of the numerics) performed
nearly as well as regression trees.

Lastly, we offer an hypothesis on why certain algorithms were better than others. Recall
from Figure 5 that none of the top 13 ranked methods fit single model to the training data:

— The CART regression tree learner appears at ranks 1 through 10 of Figure 6. Each branch
of a regression tree defines one context in which an estimate may be different.

19

— Analogy-based estimation (ABE) appears at ranks 11,12,13. ABE builds a different
model for each test instance (using the test instances k-th nearest neighbors).

Based on this observation, we conjecture that it may be a mistake to fit a single model
to effort data. Software engineering is a highly idiosyncratic process where highly trained
engineers produce novel solutions for rapidly changing business situations using toolkits and
languages that are constantly evolving. Hence, it seems unlikely that effort models conform
to a single distribution. In terms of future directions in effort estimation, we speculate that
the next generation of models will explore combinations of multiple estimators.

References

1. E. Alpaydin. Introduction to Machine Learning. MIT Press, 2004.

2. M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl. Optimal project feature weights in
analogy-based cost estimation: Improvement and limitations. IEEE Trans. Softw. Eng., 32:83-92, 2006.

3. D. Baker. A hybrid approach to expert and model-based effort estimation. Master’s thesis, Lane Depart-
ment of Computer Science and Electrical Engineering, West Virginia University, 2007. Available from
https://eidr.wvu.edu/etd/documentdata.eTD?documentid=5443.

4. A. Bakir, B. Turhan, and A. Bener. A new perspective on data homogeneity in software cost estimation:
A study in the embedded systems domain. Software Quality Journal, 2009.

5. B. W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper Saddle River, NJ, USA,
1981.

6. A.Brady and T. Menzies. Case-based reasoning vs parametric models for software quality optimization.
In International Conference on Predictive Models in Software Engineering PROMISE’10. 1EEE, Sept.
2010.

7. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA, 1984.

8. C. Chang. Finding prototypes for nearest neighbor classifiers. IEEE Trans. on Computers, pages 1179—
1185, 1974.

9. U. M. Fayyad and I. H. Irani. Multi-interval discretization of continuous-valued attributes for classifica-
tion learning. In IJCAI’93, pages 1022-1027, 1993.

10. T.Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit. A simulation study of the model evaluation criterion
mmre. [EEE Trans. Softw. Eng., 2003.

11. J. Gama and C. Pinto. Discretization from data streams: applications to histograms and data mining. In
SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing, pages 662—667, New York,
NY, USA, 2006. ACM Press. Available from http://www.liacc.up.pt/~Jjgama/IWKDDS/
Papers/p6.pdf.

12. M. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data mining.
IEEE Transactions On Knowledge And Data Engineering, 15(6):1437-1447, 2003.

13. M. Jgrgensen. A review of studies on expert estimation of software development effort. Journal of
Systems and Software, 70(1-2):37-60, 2004.

14. M. Jorgensen. Practical guidelines for expert-judgment-based software effort estimation. Software,
IEEE, 22(3):57-63, 2005. 0740-7459.

15. G. Kadoda, M. Cartwright, and M. Shepperd. On configuring a case-based reasoning software project
prediction system. UK CBR Workshop, Cambridge, UK, pages 1-10, 2000.

16. J. Keung. Empirical evaluation of analogy-x for software cost estimation. In ESEM '08, pages 294-296,
New York, NY, USA, 2008. ACM.

17. J. Keung and B. Kitchenham. Experiments with analogy-x for software cost estimation. In ASWEC "08:
Proceedings of the 19th Australian Conference on Software Engineering, pages 229-238, Washington,
DC, USA, 2008. IEEE Computer Society.

18. J. W. Keung, B. A. Kitchenham, and D. R. Jeffery. Analogy-x: Providing statistical inference to analogy-
based software cost estimation. IEEE Trans. Softw. Eng., 34(4):471-484, 2008.

19. C. Kirsopp and M. Shepperd. Making inferences with small numbers of training sets. Software, IEE
Proceedings, 149, 2002.

20. C. Kirsopp, M. Shepperd, and R. Premrag. Case and feature subset selection in case-based software
project effort prediction. Research and development in intelligent systems XIX: proceedings of ES2002,
the twenty-second SGAI International Conference on Knowledge Based Systems and Applied Artificial
Intelligence, page 61, 2003.

20

21. B. Kitchenham, E. Mendes, and G. H. Travassos. Cross versus within-company cost estimation studies:
A systematic review. IEEE Trans. Softw. Eng., 33(5):316-329, 2007.

22. J.Kliijnen. Sensitivity analysis and related analyses: a survey of statistical techniques. Journal Statistical
Computation and Simulation, 57(1-4):111-142, 1997.

23. J. Li and G. Ruhe. A comparative study of attribute weighting heuristics for effort estimation by anal-
ogy. Proceedings of the 2006 ACM/IEEE international symposium on Empirical software engineering,
page 74, 2006.

24. J. Li and G. Ruhe. Decision support analysis for software effort estimation by analogy. In International
Conference on Predictive Models in Software Engineering PROMISE 07, May 2007.

25. Y. Li, M. Xie, and T. Goh. A study of project selection and feature weighting for analogy based software
cost estimation. Journal of Systems and Software, 82:241-252, 2009.

26. U. Lipowezky. Selection of the optimal prototype subset for 1-nn classification. Pattern Recognition
Letters, 19:907-918, 1998.

27. E.Mendes, I. D. Watson, C. Triggs, N. Mosley, and S. Counsell. A comparative study of cost estimation
models for web hypermedia applications. Empirical Software Engineering, 8(2):163-196, 2003.

28. T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum. Stable rankings for different effort models. Auto-
mated Software Engineering, 17:409-437, 2010.

29. D. Milic and C. Wohlin. Distribution patterns of effort estimations. In Euromicro, 2004.

30. I. Myrtveit, E. Stensrud, and M. Shepperd. Reliability and validity in comparative studies of software
prediction models. /EEE Trans. Softw. Eng., 31:380 — 391, 2005.

31. C.Robson. Real world research: a resource for social scientists and practitioner-researchers. Blackwell
Publisher Ltd, 2002.

32. M. Shepperd and G. Kadoda. Comparing software prediction techniques using simulation. IEEE Trans.
Softw. Eng., 27(11):1014 —1022, nov 2001.

33. M. Shepperd and C. Schofield. Estimating software project effort using analogies. IEEE Trans. Softw.
Eng., 23(11):736 —743, nov 1997.

34. M. Shepperd, C. Schofield, and B. Kitchenham. Effort estimation using analogy. In Proceedings of the
18th International Conference on Software Engineering, pages 170 —178, 25-29 1996.

35. F. Walkerden and R. Jeffery. An empirical study of analogy-based software effort estimation. Empirical
Softw. Engg., 4(2):135-158, 1999.

36. Y. Yang and G. I. Webb. A comparative study of discretization methods for naive-bayes classifiers. In
Proceedings of PKAW 2002: The 2002 Pacific Rim Knowledge Acquisition Workshop, pages 159-173,
2002.

Appendix: Data Used in This Study

All the data used in this study is available either at http://promisedata.org/data or through the
authors. As shown in Figure 2, our data includes:

— The desharnais and albrecht data sets;

— sdr, which is data from projects of various software companies in Turkey. sdr is collected by Softlab, the
Bogazici University Software Engineering Research Laboratory repository [4];

— And the standard COCOMO data sets (cocomo*, nasa*).

Note that some of these data sets (nasa93_center_1, nasa93_center_2, nasa93_center_5) come from dif-
ferent development centers around the United States and some datasets (cocomo81e, cocomo810) represent
different kinds of projects:

— The cocomo81le “embedded projects” are those developed within tight constraints (hardware, software,
operational, ...);

— The cocomo81o “organic projects” come from small teams with good experience working with less than
rigid requirements.

Note also in Figure 2, the skewness of our effort values (up to 6.06): Our datasets are extremely hetero-
geneous with as much as 60-fold variation. There is also some divergence in the features used to describe our
data:

— While our data includes some effort value (measured in terms of months or hours), no other feature is
shared by all data sets.

— The cocomo* and nasa* data sets use the features defined by Boehm [5]; e.g. analyst capability, required
software reliability, memory constraints, and use of software tools.

— The other data sets use a wide variety of features including, number of entities in the data model, number
of basic logical transactions, query count and number of distinct business units serviced.

