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Abstract. Estimation of a software project effort, based on project analogies, is a promising method in the area
of software cost estimation. Projects in a historical database, that are analogous (similar) to the project under
examination, are detected, and their effort data are used to produce estimates. As in all software cost estimation
approaches, important decisions must be made regarding certain parameters, in order to calibrate with local data
and obtain reliable estimates. In this paper, we present a statistical simulation tool, namely the bootstrap method,
which helps the user in tuning the analogy approach before application to real projects. This is an essential step
of the method, because if inappropriate values for the parameters are selected in the first place, the estimate will
be inevitably wrong. Additionally, we show how measures of accuracy and in particular, confidence intervals,
may be computed for the analogy-based estimates, using the bootstrap method with different assumptions about
the population distribution of the data set. Estimate confidence intervals are necessary in order to assess point
estimate accuracy and assist risk analysis and project planning. Examples of bootstrap confidence intervals and a
comparison with regression models are presented on well-known cost data sets.
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1. Introduction

The more software becomes important in almost every human activity, the more it becomes
complex and difficult to implement. Even if modern software technologies render easier
the development of certain types of software products, increased user demands and new
application domains produce additional problems. It is not surprising that software project
management activities are becoming increasingly important.

One of the most critical activities during the software life cycle is that of estimating the
effort and time involved in the development of the software product under consideration.
This task is known asSoftware Cost Estimation. Estimations may be performed before,
during and after the development of software.

The cost and time estimates are necessary during the first phases of the software life
cycle, in order to decide whether to proceed or not (feasibility study). Accurate estimates
are obtained with great difficulty since, at this point, available data may not be precise, wrong
assumptions may be made, etc. During the development process, the cost and time estimates
are useful for the initial rough validation and the monitoring of the project’s progress. After
completion, these estimates may be useful for project productivity assessment.
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Estimation methods fall in three main categories, namelyexpert judgement, estimation by
analogyandalgorithmic cost estimation. Expert judgement relies purely on the experience
of one or moreexperts. Estimation by analogy compares the software project under con-
sideration with few (e.g. two or three) similar historical projects (i.e. projects with known
characteristics, effort and schedule). Algorithmic cost estimation involves the application
of acost model, i.e. one or more mathematical formulas which, typically, have been derived
through statistical data analysis. Well known examples are regression models, COCOMO
(Boehm, 1981) and Function Points (Albrecht and Gaffney, 1983).

All of the three approaches have known advantages and disadvantages. Expert judgement
is easy to apply and produces fast evaluation but suffers from the difficulty to find real experts
and is exposed to wrong subjective assessment. Estimation by analogy concentrates on a
concrete, well-defined estimation framework provided that, suitable projects of the past
may be easily found and the mechanism applying analogy is correct. Cost models are very
useful when they are used correctly after they have been calibrated with historical data
reflecting the characteristics of the estimated project.

After years of application of the variety of software cost estimation techniques, certain
principles are widely accepted. Applying these concepts should help the generation of
more accurate results. The following hold among cost estimation researchers and practi-
tioners:

a. Every “automatic” cost estimation method should be adapted (calibrated) to local data
if meaningful estimates are to be generated (DeMarco, 1982). Calibration should be
performed very cautiously, since cost data in the software industry are often inaccurate
and properly measured software projects are not easily found. Therefore, software cost
data sets tend to be relatively small and noisy.

b. It is safer to produce interval estimates, along with a probability distribution over the
estimate interval (see for example Kitchenham and Linkman, 1997). Relying blindly on
a point estimate, given the error magnitude associated to the cost estimation techniques,
may lead easily in wrong managerial decisions and project failure. An interval estimate
may be collapsed to provide a point estimate for practical purposes, but still gives
invaluable information about the reliability of the estimation process and provides the
basis for risk and what-if project analysis.

c. It is preferable not to generate an estimate at all, than to apply a technique that it is
known in advance to be inappropriate for the specific project. Therefore, it is important
to possess tools that help in making such a decision.

The above suggest strongly that, before application, an estimation method should be thor-
oughly understood and carefully analyzed using local data. For example, a typical activity
for the adoption of an algorithmic cost model by a software development organization is its
calibration by estimating values for the model coefficients. As another example, the weights
of the various system types in Function Point Analysis are re-estimated to improve the ac-
curacy of the method. Regression techniques are normally used for this task. Innovations
in software technology lead software organizations to the use of advanced development
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tools and methods. This situation affects the organization’s productivity and alters project
characteristics, rendering necessary the repetition of the calibration activities after a certain
period of time.

The purpose of this paper is to provide means for calibration, when analogy based es-
timation is considered along with the ability to generate interval estimates. In Section 2,
we provide a summary description of the method using analogies for the estimation of
the effort of a software project under development. In Section 3, we describe two dif-
ferent versions of the bootstrap method, the non-parametric and the parametric bootstrap,
that will be used subsequently as the basis for calibration and validation of the analogy
based estimation. In Section 4, we apply the bootstrap method to the calibration of the
estimation by analogy procedure. This involves choice of the appropriate parameters for
the analogy method (distance metric, number of analogies and location statistic). In Sec-
tions 5 and 6, we describe the procedures for obtaining interval estimates by analogy using
non-parametric and parametric bootstrap respectively. In Section 7, we use two data sets
in order to perform a parallel study of the interval estimates obtained by the proposed
bootstrap method and the interval estimates resulting from the traditional method of re-
gression. In Sections 8 and 9 we discuss practical implications and automation issues
of the proposed methods. Finally, in Section 10 we conclude with directions for future
research.

Throughout the paper, for illustrative examples and comparative studies, we used two well
known data sets, namely the Albrecht data set (Albrecht and Gaffney, 1983) and the Abran-
Robillard data set (Abran and Robillard, 1996). All statistical and simulation procedures
(including graphics) have been implemented with functions and programs developed in the
S-Plus® statistical language.

2. Estimation by Analogy

Estimation by analogy is a technique that has been proposed since a long time as a valid
alternative to algorithmic cost estimation and expert judgement (Boehm, 1981). However,
only recently (Shepperd et al., 1996; Shepperd and Schofield, 1997) it has been presented in
the form of a detailed estimation methodology and has been applied uniformly on a number
of cost data sets.

The main aspect of the method is the utilization of historical information from completed
projects with known effort. Initially, it is necessary to characterize the new active project,
with attributes (variables, also calledfeatures) common to the ones of the completed projects
registered in the database. The attribute values are standardized (between 0 and 1) so that
they have the same degree of influence and the method is immune to the choice of units. It
is useful for our notation to represent such a historical data set, together with a new project,
in the form of a matrix as the one in Table 1.

The following step is to calculate how much the new project differs from the other
projects in the available database. This can be done by using a “distance” metric between
two projects, based on the values of thek variables for these projects. The most known
such distance metric (suggested in Shepperd and Schofield, 1997, on an intuitive basis) is
the Euclideanor straight-line distancewhich has a straightforward geometrical meaning
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Table 1.Characterization of an active project and its placement into a historical
data set.

Actual Effort Attribute 1 Attribute 2 . . . Attribute k

Project1 E1 X11 X12 . . . X1k

Project2 E2 X21 X22 . . . X2k

Project3 E2 X31 X32 . . . X3k

. . . . . . . . . . . . . . . . . .

Project n En Xn1 Xn2 . . . Xnk

New Project Unknown Y1 Y2 . . . Yk

as the distance of two points in thek-dimensional Euclidean space:

dnew,i =
{

k∑
j=1

(Yj − Xi j )
2

}1/2

, i = 1,2, . . . ,n

The estimation of the effort using analogies is based on the completed projects that are
similar to the new one. The notion of similarity in this case coincides with the notion
of small distance (in any way it can be measured). Therefore, we can consider similar
to the new project a fixed number of the completed ones that have the smallest distances
from the new among all projects in the database. The number of the “neighbor” projects is
determined empirically in advance and for small sets of data is 1, 2 or 3. The estimation of
the effort is eventually obtained by calculating a statistic using the efforts of the neighbor
projects. Typically, this statistic is the mean (weighted or unweighted) of these effort
values.

Estimation by analogy is essentially a form of Case Based Reasoning (Mukhopadhyay
et al., 1992). However, as it is argued in Shepperd and Schofield (1997) there are certain
advantages in respect with rule based systems, such as the fact that users are more willing to
accept solutions from analogy based techniques, rather than solutions derived from awkward
chains of rules or neural nets. On the other hand, there are certain limitations in the use of
the method of analogy. As pointed out in the description of the method, the new project
under estimation must be inserted in a historical data set where the projects are characterized
by specific attributes. This implies that the new project has to be described by exactly the
same features. The approach is quite realistic for software organizations that undertake
projects in the same domain but problems may occur when a firm uses development tools
and technology that are changing fast. Problems in the implementation of the method may
also arise when the new project is characterized by completely new features that are not
present in the older projects or when new projects are built by reuse of existing code. In
any case, the method of analogy, as well as other statistical methods (e.g. regression), is
based on existing information. Any firm that wants to apply such methods should maintain
and update its data sets according to the changes of the development process. In addition,
the method itself may require specific adjustments according to the needs and peculiarities
of the new projects.
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3. The Bootstrap Method

The method of analogies, as described in Section 2, foresees a method-tuning phase limited
to the search of the appropriate project attributes for the estimation procedure. The method
also results in a “point estimation” for the unknown effort i.e. a single value, which is
computed from a particular sample (the historical data set) coming from a practically infinite
population with unknown characteristics, i.e. the population of all possible software projects.
A critical question is how valid the tuning activity may be and which is the accuracy and
reliability of the generated estimation. In these cases, it is common practice to enhance the
value of the estimator with various measures of accuracy from its probability distribution.
As the underlying probability distribution is unknown too, we are constrained to use the
empirical distribution in order to calculate the standard error, the bias, confidence intervals
etc. We can also obtain an estimation of the unknown density function of the estimator after
the application of a smoothing procedure on the empirical distribution. The crucial point
here is to obtain an empirical distribution for the estimator and this is where simulation
techniques can contribute.

We will next describe briefly thebootstrap method, a simulation technique applicable in
two different modes, namely the non-parametric and the parametric bootstrap. The first
method is based entirely on the empirical distribution of the data set, without any assumption
on the population distribution. The second method is based on the assumption that the
data set comes from a theoretical distribution, which is approximated by a parametric
model. Bootstrap was invented by Efron in 1979. A detailed account of the principles
and the applications of the method can be found in the book of Efron and Tibshirani
(1993).

(a) Non-Parametric Bootstrap

The non-parametric bootstrap method is applied when we deal with a random sample
x = (x1, . . . , xn) drawn independently from a family of distributions of the formFθ where
θ is an unknown parameter. Suppose thatθ̂ = T(x) is a symmetric function of the sample
(independent from the order of the sample). The idea is to take a large number (say B)
of samples fromx with replacementand to calculatêθj , j = 1,2, . . . , B for each of
these samples. By “sampling with replacement” we mean the procedure where a random
number generator independently selects integersj1, j2, . . . , jn, each of which equals any
value between 1 andn with probability 1/n. These integers determine which members of
x = (x1, . . . , xn) are selected to be in the new random sample. An obvious consequence of
this sampling method is that in every new sample there are data points, which appear more
than once while others do not appear at all.

(b) Parametric Bootstrap

The difference in this method lies in the way of sampling. Instead of sampling with
replacement from the original data points, we drawB samples of sizen (same size as in
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the original data) from a parametric estimation of the theoretical distribution that generated
the data. Therefore, we need first to investigate the possibility that a known distribution
(univariate or multivariate, according to our data) fits in a satisfactory way our original
sample. Then, applying the appropriate algorithm we can generate random samples from
this distribution. It is obvious that the parametric bootstrap is applicable only in cases where
there is prior knowledge about the form of the underlying distribution.

The purpose of the method is to measure the variability ofθ̂ about θ , studying the
distribution of θ̂j aboutθ̂ . The most common measures of accuracy that can be obtained
from the so-calledbootstrap samplesare the standard error, the bias and the confidence
intervals. In our context, we deal mainly with the computation of confidence intervals.
The bootstrap sampling (non-parametric or parametric) is applied not only to the univariate
data sets but also to the multivariate ones, which is our case. Data points that provide the
bootstrap samples are considered the projects in the database. Since the statistical inference
based on the non-parametric bootstrap depends solely on the available sample, without any
assumptions about the form of the underlying population, the method is particularly useful
when our data sets are small and contain non-homogeneous data. As mentioned in the
introduction, this is often the case for a software project cost data set. On the other hand,
the parametric bootstrap is useful in cases where some knowledge about the form of the
underlying population is available.

In the following sections we apply the bootstrap sampling for two purposes: First in
order to calibrate the method of analogies choosing the optimal parameters (distance metric,
number of analogies, statistic) and second to assess the accuracy of the estimations obtained
by the method.

4. Alternative Parameters for the Estimation by Analogy Procedure—Calibration
of the Procedure Using Bootstrap

In the previous sections, we pointed out that during the procedure of effort estimation by
analogy the user has to decide upon three issues:

(a) The choice of distance metric by which the projects of the database will be sorted
according to their similarity to the one under estimation,

(b) the number of closest projects (analogies) and

(c) the statistic that will be computed from the efforts of the closest projects and will serve
as estimation for the unknown effort.

As we have already seen, the proposed distance metric is the Euclidean distance, the
number of analogies is relatively small (1, 2 or 3) and the estimation statistic is the arithmetic
mean. From now on, we refer to these choices as theparameters of the analogy procedure.
In the following of this section, we review some other alternatives for the above parameters,
we discuss measures of performance for them and we illustrate their use by an example.
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(a) The Distance Between Projects

It is argued that the Euclidean distance has a disadvantage as far as each co-ordinate con-
tributes equally to its calculation. As the co-ordinate variables represent measurements that
are strongly affected by random fluctuations of differing magnitudes, it seems reasonable
sometimes to weight the co-ordinates in such a way that attributes with low variability, in-
fluence the distance more than those with high variability. Therefore, an alternative metric,
which tries to balance the importance of each variable, is thescaled Euclidean distance:

dnew,i =
{

k∑
j=1

w2
j (Yj − Xi j )

2

}1/2

i = 1,2, . . . ,n

where thewj are appropriate weights. Some typical choices are:wj = 1/(standard deviation
of j -th variable) orwj =1/(range ofX j). A very interesting discussion on the usefulness of
weighted distances and on the standardization of the variables generally, can be found in
Kaufman and Rousseeuw (1990). However, there are some other well known metrics for
the distance of two points when the variables are quantitative (see Krzanowski, 1993):

Minkowski distance: dnew,i = {
∑k

j=1 |Yj − Xλ
i j |λ}1/λ whereλ is an integer. Whenλ = 1

the distance is known ascity blockor Manhattan distancewhile the caseλ = 2 gives the
Euclidean distance.

Canberra distance: dnew,i =
k∑

j=1

|Yj − Xi j |
Yj + Xi j

Czekanowski coefficient: dnew,i = 1−
2

k∑
j=1

min(Yj , Xi j )

k∑
j=1

(Yj + Xi j )

Chebychev or “maximum” distance: dnew,i = max
1≤ j≤k

|Yj − Xi j |

Although the above metrics refer to quantitative variables, there are some others for the
cases where the variables are dichotomous and also others regarding mixed data, i.e. with
various types of variables (ordinal, nominal, interval and ratio variables) (Kaufman and
Rousseeuw, 1990; Krzanowski, 1993). As it is quite natural for data sets with software
projects to have variables of mixed type, we mention a specialdissimilarity coefficient
suggested by Kaufman and Rousseeuw (1990):

dnew,i =
∑k

j=1 δ
( j )
new,i d

( j )
new,i∑k

j=1 δ
( j )
new,i

where:

δ
( j )
new,i =

{
1 if Xi j ,Yj nonmissing
0 otherwise,
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and

d( j )
new,i =

1 if Xi j 6= Yj

when j -th variable is binary or nominal
0 if Xi j = Yj

while

d( j )
new,i =

|Xi j − Yj |
Rj

when j -th variable is ordinal, interval or ratio.Rj is the range of the variable.

(b) The Number of Analogies

When small sets of data are available, it is quite reasonable to consider only a small number
of analogies. However, when the available data are comprised of many projects or when
the statistic that will provide the effort estimation is unaffected by extreme values, we can
increase the number of analogies. The point is that there is no rule of thumb to decide upon
this number without experimenting with the available data.

(c) The Calculated Statistic

When the analogy projects are selected, we have to compute a certain location statistic based
on their efforts, which may represent an efficient approximation of the unknown effort. Of
course, when the analogies have been determined to be only two, the arithmetic mean (or
at least a weighted mean) is the only plausible choice. Alternatively, when the number of
the closest projects increases, one can replace the mean by another more robust statistic.
There is a great number of such statistics available in the statistical literature and the most
known ones are the median, the trimmed mean, Tukey’s biweight estimator and Huber’s
estimator. Such statistics (most of them belong to a special class calledM-estimators) have
the advantage of remaining unaffected by the outlying values which usually appear in effort
values (see Hoaglin et al., 1983). On the other hand, one may want to take into account
the outlying values and, in this case, the mean is the most appropriate statistic. It is always
recommended to perform first a descriptive statistical analysis on the entire set of effort
values obtained from the neighbor projects and then to decide for the suitable statistic.

It is obvious that the choice of the distance metric, the determination of the number
of analogies as well as the choice of the appropriate location statistic are quite empirical
aspects and require a great amount of experimentation before the final decision. The
jackknifemethod (also known asleave-one-out cross validation) is a useful tool to validate
the error of the prediction procedure employed, in order to estimate the effort of a new
project. In each step, a completed project (say thei -project) is removed from the data
set and the remaining projects are used as a basis for the estimationÊi of its effort (the
parameters of the procedure are fixed throughout this process). Two common estimates
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of the prediction error, computed from the jackknife process, are themean magnitude of
relative error (MMRE) defined as

MMRE= 100

n

n∑
i=1

|Ei − Êi |
Ei

.

and the percentage of estimations that fall within 25% of the actual effort denoted by
PRED(25) (see Conte et al., 1986). The following example indicates how the parameters
affect the two measures of prediction error in the case of a well-known data set.

Example 1. We use the known as Albrecht data set to test how the error of the pre-
dictions based on analogies is influenced by the choice of the parameters of the analogy
procedure. The (explanatory) variables for the calculation of the distances are IN (number
of external inputs), OUT (number of external outputs), FILE (number of external and in-
ternal files) and INQ (number of user inquiries), according to Function Point terminology.
The dependent variable is the variable EFFORT measured in man months. Here we apply
the jackknife technique for various combinations of the above parameters and each time
we calculate MMRE and PRED(25). The results in Table 2 have been obtained by con-
sidering three distance metrics (Euclidean, Manhattan and Maximum), three choices for
the number of analogies (2, 5 and 10), two choices for the location parameter (mean and
median—coincident for 2 analogies) and two alternatives regarding the standardization of
the variables. The standardization is depicted in the third column of Table 2, where “Yes”
means that before the calculations of the distances, thei -th value of theXj variable has
been standardized in the interval [0,1] according to the rule:

Xi j ← Xi j −min1≤m≤n(Xmj)

max1≤m≤n(Xmj)−min1≤m≤n(Xmj)

As can be seen from Table 2, for this particular small data set (it contains 24 completed
projects) the smallest error is obtained when the estimation is based on a small number
of analogies and when the variables are standardized. An interesting result is that the
“maximum” distance improves the prediction error when the number of analogies is 2
while it provides the best overall MMRE (68%) and a relatively high PRED(25) (33%).
Another fact that is also worth mentioning is that the best PRED(25) (42%) was achieved
with 10 analogies and the “maximum” distance.

The question here is whether we can rely on the MMRE or PRED(25) in order to decide
for the parameters of the estimation by analogies procedure when we have to predict the
effort of a new project. The reason for being cautious towards a positive answer is this:
The values of MMRE and PRED(25) that estimate the prediction error of the procedure, are
derived from only a small sample of projects drawn from an unknown infinite population.
Hence, the prediction of a new project’s effort is subject to an error of intangible variability.
Ideally, we should be able to have repeated samples from the original population and for
each of them to compute the MMRE and PRED(25) after using exactly the same parameters.
Then, their average values would produce efficient estimates of the prediction error with
the specific parameters. Additionally, we would have the ability to measure the accuracy
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Table 2.Comparison of the various parameters in estimation by anal-
ogy.

Distance Analogies Std Statistic MMRE PRED(25)

Euclidean 2 Yes Mean 73% 33%
No 81% 29%

5 Yes Mean 80% 33%
No 81% 33%
Yes Median 82% 21%
No 85% 13%

10 Yes Mean 114% 25%
No 98% 25%
Yes Median 108% 25%
No 98% 21%

Manhattan 2 Yes Mean 74% 29%
No 85% 33%

5 Yes Mean 81% 33%
No 82% 29%
Yes Median 85% 17%
No 86% 17%

10 Yes Mean 106% 25%
No 100% 25%
Yes Median 102% 17%
No 98% 21%

Maximum 2 Yes Mean 68% 33%
No 75% 33%

5 Yes Mean 87% 25%
No 83% 33%
Yes Median 86% 25%
No 86% 17%

10 Yes Mean 116% 42%
No 106% 21%
Yes Median 112% 25%
No 102% 17%

of the estimated error taking confidence intervals for the error. Comparing these values for
a range of parameters, we could point out the parameters that optimize the performance
of the prediction procedure. Of course the availability of new data from the population
is impossible, but instead we can draw bootstrap samples (non-parametric or parametric)
from the available data set. This kind of search for optimal parameters is sometimes called
calibration of the estimation procedure. Example 2 is a demonstration of the bootstrap
samples utilization, for the calibration of the estimation by analogies method in the Albrecht
data set.

Example 2. We used the same data set as in Example 1 (Albrecht data set) to draw 1000
bootstrap samples with replacement. For each one of these samples we computed MMRE
and PRED(25) for fixed distance metric and location statistic and for the complete range of
possible values for the number of analogies. Actually, the number of analogies can range
from only 1 to 23 (the number of projects in the data set minus one). In Figure 1, there are
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Figure 1. Distributions of MMRE and PRED(25) for various numbers of analogies.

boxplots, each one for a certain number of analogies, showing the distribution of MMRE
and PRED(25) when the distance is Euclidean and the statistic is the arithmetic mean. The
variables have been standardized as described in Example 1. Both panels of Figure 1 show
that the best choice for the number of analogies, for the specific data set and the particular
choice of the other fixed parameters, is one project. The empirical distributions of MMRE
and PRED(25) for every number of analogies give us invaluable information. Table 3 shows
for every case the mean values of MMRE and PRED(25) together with the standard error
(SE) and a 95% confidence interval (CI). The standard error is simply the sample standard
deviation computed from all the samples while the bounds of every confidence interval are
the 2.5% and 97.5% percentiles of the empirical distribution. For example, for the case of
only one analogy, the mean value of the MMRE is 31% while a 95% confidence interval
(CI) is [9%, 74%]. For the same case, the mean value of PRED(25) is 72% and a 95% CI is
[54%, 88%]. An interesting point is that the increase of the number of analogies causes not
only the increase of MMRE’s mean but also its variability towards large extreme values.
This means in practice, that when we use a large number of analogies for our prediction,
not only we have to expect an increased value of MMRE, but we also have to face the
risk of having an extremely large value of prediction error, that is to make an unreasonably
optimistic or pessimistic prediction.

In the same data set, we also fixed the distance (Euclidean) and the number of analogies.
We chose the number of analogies to be 23 i.e. each project’s effort in the data base is
estimated by a statistic computed from all the other 23 projects’ efforts. Of course, the
maximum number of analogies is used here only for the purpose of illustration, as it is
expected that the prediction error will be at extremely high levels. However, the two
statistics that are compared, the mean and the median, seem to differ in performance as
we can see in Figure 2. The median decreases the mean value of MMRE (331% for the
mean, 165% for the median) and increases the mean value of PRED(25) (14% for the mean
and 27% for the median).Similar simulation techniques were applied by fixing the number
of analogies and the statistic in order to investigate any differences between three distance
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Table 3.Mean, standard error and confidence intervals for MMRE and PRED(25) from
the application of bootstrap on the Albrecht data set.

MMRE (%) PRED(25) (%)
Analogies Mean SE 95% CI Mean SE 95% CI

1 31 18 9–74 72 9 54–88
2 47 20 17–86 54 13 25–79
3 58 23 24–100 45 14 17–71
4 66 26 28–114 39 14 13–67
5 72 29 30–130 36 13 13–58
6 77 33 32–142 34 13 12–58
7 82 37 33–158 33 12 13–63
8 88 42 35–177 33 12 8–58
9 94 47 36–198 32 12 13–58

10 100 51 38–221 32 12 13–58
11 106 55 39–230 31 12 8–58
12 112 59 41–244 31 12 8–54
13 119 63 43–263 30 11 8–54
14 126 67 45–272 30 11 8–50
15 133 71 47–288 28 12 8–50
16 139 74 48–298 28 12 8–50
17 146 78 50–315 27 12 4–50
18 153 82 53–333 25 12 4–50
19 165 92 54–371 24 12 4–50
20 187 109 56–451 22 12 4–50
21 221 133 63–555 20 12 0–46
22 270 159 74–658 17 11 0–42
23 327 182 95–756 14 9 0–33

metrics (Euclidean, Manhattan, Maximum). The results from 1000 bootstrap samples
showed that for the particular data set the three distances produce almost the same results
for MMRE and PRED(25). However, in other data sets, different distance metrics may
produce different results.

5. Measurement of Accuracy for the Effort Estimation with Non-Parametric
Bootstrap

In this section, we deal with the generation of interval estimates. We follow the non-
parametric bootstrap method described in Section 3, but we consider now the set of the
completed projects as a sample of multivariate observations coming from an unknown
population. The population’s parameter we have to estimate is the effort of the new project,
i.e. the particular value of one variable (effort) of a point whose values for the other variables
(dependent) are known. The function used by the method of analogies for estimation, is the
mean value of the efforts obtained by projects with minimum Euclidean distance from the
new one. In order to obtain confidence intervals for this estimation, we apply an algorithm,
which generates a large number of independent bootstrap samples drawn randomly with
replacement from the available data set. Each sample contains exactly n projects (as many
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Figure 2. Distributions of MMRE and PRED(25) for two alternatives of the statistic.

as the original data set) but some of the original projects appear more than once while others
do not appear at all. Each time a sample is drawn, we find the closest projects to the new
one and we calculate the mean of their efforts. Of course, as we saw in Section 4, we can
always employ alternative measures for the distance or for the location statistic instead of
the mean. It must be noted that the estimations from the bootstrap samples are derived
in exactly the same way as from the original data. The estimations from each sample are
recorded and will be used for the computation of the appropriate variability measures.

Let us denote byÊnew the estimation for the effort of the new project obtained by the
procedure using analogies when applied to the original data set. Let alsoE∗new(b) denote
the estimation obtained by the same procedure applied to theb-th bootstrap sample where
b = 1,2, . . . , B andB is the total number of the samples. A typical measure of accuracy
for Ênew is the standard error, which in turn can be estimated by

SEboot=
√∑B

b=1[E∗new(b)− E∗new(·)]2

B− 1
where E∗new(·) =

∑B
b=1 E∗new(b)

B
.

Another well-known measure of accuracy is the bias of the estimator. This can also be
estimated by the bootstrap samples by

BIASboot= E∗new(·)− Ênew.

A simple rule for the accuracy of an estimator is that|BIASboot/SEboot | ≤ .25. The most
useful of all the measures is the confidence interval. The point estimationÊnew is just
a guess for the true value of the new project’s effort. This estimation should always be
accompanied with a lower and an upper bound together with a probability level. A(1-a)%
confidence intervalfor Ênew can be estimated from the bootstrap samples by

(1− a)%CIboot=
[
E∗new;a/2, E∗new;(1−a/2)

]
wherea is a small probability level whileE∗new;a/2 andE∗new;(1−a/2) are the 100·a/2 and the
100· (1− a/2) empirical percentile points of all theE∗new(b) values. A confidence interval
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of this type is calledpercentile interval. The goal of confidence intervals is to provide us
with an interval estimation consisting of an “optimistic” and a “pessimistic” guess for the
true magnitude of the effort.

Beside the measures of accuracy we just mentioned, it is often very useful to represent
graphically the entire distribution of all the estimationsE∗new(b), b = 1,2, . . . , B computed
from the B bootstrap samples. For this purpose, we can employ several known graphic
methods such as boxplots, histograms etc. An advanced statistical analysis requires the
fitting of a smooth density function to the empirical distribution of the bootstrap estimations.
In a simple case, a known theoretical distribution such as the Normal, the Lognormal or the
Gamma distribution may be fitted satisfactorily to the estimations. In the most usual case
where no such distribution can be found, we estimate the unknown density functionf (x)
by a smoothing procedure such as thekernel density estimation(see Silverman, 1986). The
estimation is based on an expression of the form

f̂ (x) = 1

w

B∑
b=1

K

(
x − E∗new(b)

w

)
where we need to predefine akernel function K( ) and a constantw called thebandwidth.
The kernel is, usually, chosen to be a known probability density function such as the Gaussian
function, while the bandwidth determines the level of smoothing. Of course, someone has
to try several kernels and bandwidths in order to represent efficiently the distribution of the
data (see Venables and Ripley, 1994).

Example 3. For an illustration of the non-parametric bootstrap confidence intervals, we use
again the Albrecht data set to estimate the effort of a new hypothetical project. Suppose that
the new project has the following known values for the (explanatory) variables: IN= 27,
OUT = 36, FILE = 20, and INQ= 10. The estimation based on 2 analogies from
the existing data set (Euclidean distance, standardized variables and mean of the closest
projects efforts) is 5.55 man months. In order to figure out the accuracy of this estimation
by the measures discussed, we perform a bootstrap procedure taking with replacement
B = 1000 samples and estimating each time the effort using 2 analogies exactly as for
the point estimation. Figure 3(a) shows a histogram of the empirical distribution of these
estimations. The histogram shows that the underlying probability density function is far
from being normal. In (b) we can see three estimations of the density function, with different
smoothness, based on the kernels’ method. In both panels, the vertical dashed line indicates
the estimation by the method of analogies (5.55).

At this point, from the 1000 bootstrap estimations we can compute the standard error,
which is SEboot = 2.29. The mean of all estimations isE∗new(·) = 6.29 and hence an
approximation to the bias of the estimation is derived by the differenceBIASboot= 6.29−
5.55= .74. According to the empirical rule, the absolute ratio of the bias to the standard
error is.32> .25, so the bias is considered large. This simply means that in the average
we tend to overestimate the unknown effort. Finally, we can easily compute a confidence
interval for our estimation utilizing the percentiles of the empirical distribution derived by the
bootstrap estimations. For example, the 2.5% and 97.5% percentiles (the 1000·.025= 25th
and the 1000· .975= 975th values respectively when we sort the estimations in ascending
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Figure 3. (a) Histogram of the estimations obtained from 1000 bootstrap samples. (b) Kernel density estimation
of a smooth density function.

order) produce the 95%CIboot = [3.6,11.45]. A narrower confidence interval, is 50%
CIboot= [3.6,7.5] which provides more reasonable predictions but with less probability.

6. Measurement of Accuracy for the Effort Estimation with Parametric Bootstrap

The bootstrap method we discuss in this section is characterized by the initial assumption that
the historical data set, or some transformation of it, is a sample from a theoretical multivariate
distribution which can be consider as normal. Experience shows, that in many practical
problems the assumption of normality is quite realistic while the mathematical modeling of
the data as sample from a normal distribution has many theoretical advantages (see Johnson
and Wichern, 1988). In general, the method may as well, presuppose some other multivariate
distribution other than the normal. In this case, the verification of the assumption and
the generation of random numbers are extremely complicated tasks. Additionally, in most
practical situations, an appropriate transformation on the original data can produce variables
following a normal distribution. For the above reasons, we deal only with situations where
we can assume normality.

The method we are going to describe, generates a large number of samples, each one of
sizen (the same as the size of the original data set) withartificial projectsfrom a hypothetical
distribution, which is assumed to fit the original data. This method is different from the
non-parametric bootstrap, which is based on samples containing real projects drawn from
the available data set. The purposes of the parametric bootstrap are the same as those of
the non-parametric one. In other words, we want to estimate measures of accuracy for
the estimation by analogy procedure and especially confidence intervals. The complete
procedure of the estimation can be summarized in the following steps:

Step 1: Assess the Assumption of Normality.We investigate the possibility that the set of
our data, in the form of Table 1, is derived from ak + 1-dimensional normal distribution.
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However, this seems unrealistic for software cost data sets as all the variables can take only
positive values while often large positive outliers appear. The assumption of normality is
not only misleading but also without practical purpose, since the sampling we are about to
perform later will inevitably generate negative values. A common way to bring the data
in a “more normal” framework, is their transformation, i.e. their re-expression in different
units. Experience and theory have shown that logarithmic (orlogit) and square root trans-
formations are quite effective in producing quantities normally distributed. Moreover, these
transformations ensure the generation of only positive values in the subsequent sampling.

The next question we have to answer is whether the transformed variables really show
normal behavior or it is necessary to proceed with the application of an alternative transfor-
mation, which will be more effective. As the known overall goodness-of-fit tests assessing
the joint normality in more than one dimensions are very complex, it is a common practice
to concentrate on the behavior of the variables in one and two dimensions (univariate and
bivariate cases). This is justified by the property of the multivariate normal distribution
stating that every subset of its variables also comes from a normal distribution. Of course,
the opposite is not true, but for practical situations it is usually enough to ensure that each
one of the variables comes from a univariate normal distribution and that every pair of the
variables comes from a bivariate normal. We refer to Johnson and Wichern (1988) for a
complete discussion on assessing normality in the univariate and bivariate case. A very
useful graphical tool in order to detect normality in one dimension is theQ-Q plot, the plot
of order data against the percentiles of a normal distribution. A straight line here shows
normal behavior. A more objective way to check normality in the univariate case is the
Kolmogorov-Smirnov goodness-of-fit test, which tests the null hypothesis that a normal
distribution equals the real distribution of the data. In the bivariate case we just form
scatterplots for all possible pairs of the variables. If the points exhibit an almost elliptical
pattern, we have some evidence of normality.

Step 2: Estimate the Parameters of the Multivariate Normal Distribution.For the ran-
dom vectorX = (X1, X2, . . . , Xp)

′, the p-dimensional normaldensity function, which is
denoted byN p(µ,Σ) has the form

f (x) = 1

(2π)p/2|Σ|1/2 e−(1/2)(x−µ)
′Σ−1

(x−µ)

where thep × 1 vectorµ represents the expected value of the random vectorX and the
p× p matrix Σ the variance–covariance matrix. The vectorµ and the matrixΣ are the
parametersof the multivariate normal distribution, which have to be evaluated from the
sample.

In our setup, we have originallyn data points (projects)P1,P2, . . . ,Pn, and each one of
them is a(k+ 1)-vectorPi = (Ei , Xi 1, . . . , Xik)

′, i = 1,2, . . . ,n (see Table 1). Suppose
that under a certain set of transformation functionsgj (x), j = 1,2, . . . , k + 1 the new
vectors

T i = [g1(Ei ), g2(Xi 1), . . . , gk+1(Xik)]
′ = [Yi , Zi 1, . . . , Zik ]



A SIMULATION TOOL 51

have been found in Step 1 to represent a sample coming from ak+ 1-dimensional normal
distributionNk+1(µ,Σ). Then, the parameters of this distribution are evaluated from the
sample by the sample mean and the sample covariance matrix

µ̂ = T = 1

n

n∑
i=1

T i and Σ̂ = 1

n− 1

n∑
i=1

(T i − T)(T i − T)′.

In simple words, we estimate the parametersµ andΣ of the multivariate normal distribution
that generated the (transformed) data by computing the arithmetic mean and the variance
for each one of the (transformed) variables, and the covariances between all pairs.

At this point, we have to remark that the procedure of approximating the population
distribution by a parametric model, estimated from the sample, is typical in statistical
practice. However, we have to bear in mind that the accuracy of such approximations
depends on the quality of the sample. In general, we have better approximations when
the sample is large and homogeneous while small samples or data generated from more
than one populations may produce bad approximations and eventually misleading bootstrap
samples.

Step 3: Sample from the Assumed Normal Distribution.We extract a large number of
samples each of size n, from the multivariate normal distribution that was found in Steps 1
and 2 to fit to our transformed data. The sampling is accomplished by one of the algorithms
that are available in the literature for the generation of random numbers (see for example
Law and Kelton, 1991). Each sample must then be re-transformed in the original units,
applying the inverse transformation, in order to produce the artificial projects which in turn
will be used to estimate the effort of the new project.

Step 4: Estimate by Analogy Using the Parametric Bootstrap Samples.For each one of the
samples drawn in Step 3, we use a standard estimation procedure by analogies to estimate
the new projects’ effort. The distance metric, the number of analogies and the statistic
are kept fixed throughout the process. The estimation obtained from each sample is stored
in a vector, which will provide the parametric measures of accuracy for the estimation by
analogies.

Step 5: Calculate Confidence Intervals and Other Measures of Accuracy.The estimations
obtained from each bootstrap sample, are used for the calculation of confidence intervals
(CI) and the other measures of accuracy (SE and BIAS) described in Section 5.

Example 4. We illustrate the method of parametric bootstrap using the Albrecht data
set to estimate the effort of a new hypothetical project with values for the explanatory
variables as in Example 3. The point estimation based on 2 analogies from the existing
data set is 5.55 man months. In the first step, the tests for normality showed that none
of the original variables is normally distributed. After trying various transformations on
the variables, the logarithmic transformation was found suitable for variables EFFORT,
IN, OUT and FILE while for the last variable, INQ, the square root transformation was
found to accomplish normality. For example, in Figure 4 we can see Q-Q plots for the
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Figure 4. Q-Q plots for the variable EFFORT and its logarithmic transformation.

Figure 5. Scatterplots for the variables EFFORT and IN before and after the logarithmic transformation together
with contours of a bivariate normal distribution.

variable EFFORT and its logarithmic transformation LOG(EFFORT). Specifically, the large
deviation from the straight line in left panel is an indication of non-normality while the right
panel suggests that the logarithmic transformation removes a great deal of the curvature
and produces values normally distributed. The Kolmogorov–Smirnov test verifies the above
indications.

Usually, in practice we can assume joint normality when approximate marginal normality
is achieved for each one of the variables. However, we can detect bivariate normality for all
the pairs of the variables by scatterplots as in Figure 5. The scatterplots are accompanied by
contour plots of the most fitting bivariate normal distribution. In the left panel, we see that
the pairs for the values of the original variables EFFORT and IN do not exhibit an elliptical
pattern, as they are concentrated in a region of the plot. In the right panel, the transformed
values are distributed randomly forming an elliptical configuration.
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Figure 6. Histogram of the estimations obtained from 1000 parametric bootstrap samples.

Next, we estimate the parameters of the multivariate normal distribution fitting the trans-
formed data obtaining

µ̂ = [2.48,3.43,3.60,2.52,3.37]

and

Σ̂ =


1.363 .438 .712 .670 1.401
.438 .523 .296 .206 .611
.712 .296 .537 .391 .902
.670 .206 .391 .691 .664

1.401 .611 .902 .664 5.788


Finally, we are ready to draw samples from theN5(µ̂, Σ̂) normal distribution we found

fitting our transformed data. A number ofB = 1000 samples of sizen = 24 (as the original
data) were taken. For each one of them, the inverse transformations (exponential and square
power) were applied to bring the samples into the original units. Each time the effort of the
new projects was estimated using 2 analogies. Figure 6 shows a histogram of the empirical
distribution and a smooth density function for these estimations. The vertical dashed line
is used to mark the position of estimation by the method of analogies (5.55).

The standard error isSEboot= 9.61. The mean of all estimations isE∗new(·) = 13.30 and
bias of the estimation is approximated byBIASboot = 13.30− 5.55= 7.75. The absolute
ratio of the bias to the standard error is.81 > .25. A 95% confidence interval for our
estimation is 95%CIboot= [3.46,35.12].

Comparing now these results with the ones from the non-parametric bootstrap, we notice
that the parametric bootstrap reveals lower accuracy for our predictions. It is remarkable that
while the two methods provide almost identical lower bounds for their confidence intervals,
the upper bound is much larger in the parametric case. This is reasonable considering that
this last estimation was derived under the assumption of a theoretical distribution (some
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Figure 7. The actual efforts of the Albrecht data set with estimations by analogy and regression models.

transformation of the normal) whose values can be infinitely large, although with probability
nearly zero. The samples drawn from this distribution may contain very large values for
the effort. This does not happen in the non-parametric case where the samples come from
a certain data set with bounded values. However, in cases where we suspect that the effort
of a project may take an unreasonably large value, it is preferable to use the parametric
bootstrap for interval estimation.

7. Comparison of Bootstrap Confidence Intervals for the Method of Analogies and
Regression Confidence Intervals

In this section, we present a comparison of confidence intervals obtained by the non-
parametric and the parametric bootstrap procedures applied to estimation by analogies
method and the confidence intervals derived by a traditional algorithmic method, namely
the linear regression model. Specifically, two linear regression models were built for each
data set, the first based on the original variables and the second one based on transformations
of the variables.
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Table 4.Description of the attributes of the Abran-Robillard data set.

Attribute Description

DETIF Number of Data Element Type for the Internal Logical Files
GREIF Number of Record Element Type for the Internal Logical Files
DETEF Number of Data Element Type for the External Logical Files
GREEF Number of Record Element Type for the External Logical Files
DETIP Number of Data Element Type for the Inputs
GREIP Number of File Type Referenced for the Inputs
DETOP Number of Data Element Type for the Outputs
GREOP Number of File Type Referenced for the Outputs
DETIQ Number of Data Element Type for the Inquiries
GREIQ Number of File Type Referenced of the Inquiries

At this point, we must emphasize that estimation by analogy was compared by Shepperd
and Schofield (1997) against regression models on the basis of the MMRE and Pred(25)
values. In this study, nine industrial data sets were used and, in general, analogy appeared
to give better results than regression.

In the present study, we used two data sets: (a) the Albrecht data set with 24 projects and
4 attributes (independent variables) as described in Example1 (Section 4) and (b) a data set
of 21 projects from a major Canadian financial organization with 10 attributes described in
Table 4. The complete data set was given by Abran and Robillard (1996) where the specific
attributes were used to build a linear regression model. The dependent variable is denoted
by WE and represents actual effort days.

The results of the present study were obtained by using the jackknife procedure for all
estimation methods, including the regression models. Therefore, after removing a project
from the data set, a regression model was generated using all the remaining projects and this
in turn was used to provide an estimation along with a confidence interval for the work effort
of the removed project. The confidence intervals for the regression predictions are given by
certain formulas and they are available from every known statistical package. In the estima-
tion by analogy procedure, we used in all cases standardized variables of the data sets, while
the estimations were based on 2 analogies. In the parametric bootstrap procedure, where
we need to sample from a multivariate normal distribution, we used transformations of the
original data sets. Specifically, for the Albrecht data set we used the logarithmic transforma-
tion for the EFFORT and the independent variables IN, OUT and FILE and the square root
transformation for variable INQ. For the Abran-Robillard data set, we used the square root
transformation for the dependent variable WE and all the independent variables of Table 4.
The same transformations were used in order to build the second regression model.

The results of the study are presented in Tables 5 and 6 and in Figures 7–16. In the last
row of Table 5, we can see from the values of MMRE and Pred(25) that estimation by analogy
gives better results compared to both regression models in the case of Albrecht data set. In
the case of the Abran–Robillard data set, we can see from Table 6, that the analogy method
performs better than the regression model with the original variables, while the regression
model built on the transformed variables gives the best values of MMRE and Pred(25).
The percent denoted by INC, shows the percentage of confidence intervals containing the
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Figure 8. A 95% confidence zone for estimation by analogy using non-parametric bootstrap (Albrecht data set).

actual effort and is an estimation of the probability that the actual effort will fall in a 95%
C.I. using the specific method of prediction. From both tables, we can also see an obvious
disadvantage of linear regression based on the original variables, i.e. the negative values in
the estimates and in the lower bound of confidence intervals. We note that the projects in
both tables have been sorted in ascending order according to their actual efforts.

Figure 7, shows in four different panels the actual efforts of the Albrecht data set arranged
in ascending order together with the estimations obtained by analogy and regression models.
Figures 8, 9, 10 and 11 present the actual efforts of the same data set along with the
95% confidence intervals by non-parametric bootstrap, parametric bootstrap and the two
regression models respectively. For better interpretation, we present all the lower and all the
upper bounds connected with a dashed line forming in every graph a 95%confidence zone.
Figures 12, 13, 14, 15 and 16 are the same as before but for the Abran–Robillard data set.

As we can see from the figures, in the case of the Albrecht data set, the parametric
bootstrap and the regression model based on the transformed variables provide in general
wide confidence intervals. On the other hand, the non-parametric bootstrap intervals are
quite similar to the ones obtained by regression based on the original variables. In the
Abran–Robillard data set, both regression models give wide confidence intervals.
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Figure 9. A 95% confidence zone for estimation by analogy using parametric bootstrap (Albrecht data set).

We would like to remind the reader that the obtained results serve only for the comparison
between the above mentioned models and are not meant to demonstrate the validity of
analogy based cost estimation.

8. Applying Statistical Simulation within the Analogy Based Estimation Process

In this section, we discuss certain aspects of the practical application of estimation by
analogy combined with bootstrap. In Shepperd and Schofield (1997) the authors describe
the following steps, needed to introduce estimation by analogy in a software development
organization:

1. identify the data or features (attributes) to collect

2. agree data definition and collection mechanisms

3. populate the case base

4. tune the estimation method

5. estimate the effort for a new project
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Figure 10.A 95% confidence zone for estimation by regression with the original variables (Albrecht data set).

According to this sequence of actions, statistical simulation is involved mainly in the
last two steps. During the fourth step, the parameters of the analogy procedure must be
decided. Subsequently, using the approach described in this paper, the estimation accuracy
is thoroughly assessed. Poor prediction indicators suggest the revision of the selected
parameters and may lead in the repetition of the previous steps. Finally, the calculation of
interval estimates using bootstrap enhances the last stage of the above process. Software
project managers may take advantage of interval estimates in order to reduce the risks
related to project cost and schedule overruns.

Standard practical rules apply in the first three steps concerning attribute identification
and collection (attributes should affect development effort, should be measurable, etc.).
However, these initial steps may present serious problems, such as the appearance of signif-
icant attributes that can not be collected for all cases, or failure to apply coherent collection
mechanisms across the organization. Problems may also arise in firms where the develop-
ment tools and technology are changing fast, since such development environment render
obsolete the previously collected data. Particular attention is needed when new projects
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Figure 11.A 95% confidence zone for estimation by regression with transformed variables (Albrecht data set).

include the reuse of existing code, since this modern approach will affect dramatically new
code size and project productivity.

The growth of the historical database is another issue. Shepperd and Schofield recognize
that there are tradeoffs between the size of the data set and homogeneity. They suggest
alternative strategies to cope with this problem. For example, they suggest dividing highly
distinct projects into separate data sets. According to their experience, data sets of 10–12
projects already provide a stable basis for estimation.

Our approach helps in dealing with these problems, since it provides the means for tuning
and monitoring the accuracy of the predictions through the analysis of the case data set.
In practice, the software organization may assess the accuracy of the method each time a
major technological change is experienced. If the results are satisfactory, the organization
may decide to continue estimating on the basis of the existing data set. Otherwise, the five
set-up steps must be repeated and data that are more suitable to the new technology must
be collected again while on going projects are gradually completed. The organization may
also repeat the analysis to assess the impact of the growth of the dataset on the accuracy of
the predictions.
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Figure 12.The actual efforts of the Abran–Robillard data set with estimations by analogy and regression models.

The reader should refer to Shepperd and Schofield (1997) for further discussion on the
advantages and drawbacks of estimation by analogy and comparison with traditional es-
timation methods, such as the use of regression models. In general no method may be
rejected: regression models seem more suitable for relatively large datasets where strong
data relationships are detected, while analogy may be better for relatively small datasets
that do not permit the generation of sound statistical models. On the other hand, the success
of both methods is subject to the quality of the data and the assumptions used, and to correct
interpretation of the estimates produced. Regression models and analogy based estimation
should be seen as complementary methods: a software organization should consider both
when deciding its cost estimation strategy. Detailed multisource cost and schedule estima-
tion is also recommended by Boehm (1991) as a risk management technique addressing the
problem of unrealistic schedules and budgets.

9. Automating Statistical Simulation

In this section, we discuss shortly the automation of the calculations presented above.
The analogy method is already automated through ANGEL (ANaloGy Estimation tooL,
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Figure 13. A 95% confidence zone for estimation by analogy using non-parametric bootstrap (Abran–Robillard
data set).

Shepperd et al., 1996), a software tool that supports the stages of data collection and effort
prediction, and provides some tuning facilities. Bootstrap has been applied on the data sets
of this paper through the help of the widely used statistical package S-Plus. The authors have
prepared routines written in the proprietary statistical language of S-plus. However, a typical
software practitioner may find cumbersome the application of the statistical techniques such
as the ones described here. It is evident that a software tool supporting statistical simulation
for cost estimation will help the dissemination of the method in the software industry.

The entire procedure involving calibration, estimation by analogy and non-parametric
bootstrap, can be easily programmed in every known programming language since the
algorithm includes only trivial calculations, random number generation and data sorting. A
straightforward approach may be the implementation of the statistical routines in a stand-
alone tool, e.g. by incorporating them into ANGEL.

On the other hand, the parametric bootstrap needs tests for normality and decisions on
the transformation of the original attributes. It also needs the implementation of an algo-
rithm providing random samples from the multivariate normal distribution. A reasonable
approach for complete automation is the integration of a tool performing typical analogy
estimation tasks, such as project data collection and estimate generation with a statistical
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Figure 14. A 95% confidence zone for estimation by analogy using parametric bootstrap (Abran–Robillard data
set).

package providing all necessary routines for parametric bootstrap calculations (such as
S-Plus). Estimation tools are usually provided with easy-to-use interfaces that must be en-
hanced with commands implementing the necessary tasks for bootstrap, such as parameter
selection (e.g. number of analogies, sample size) and calculation of confidence intervals.
Statistical packages usually can be programmed only through proprietary languages. Inte-
gration may be accomplished through a command interface that will translate the bootstrap
specific commands into script files, containing the necessary calls to the statistical routines,
and through auxiliary commands managing files and variables. The interface will invoke
the statistical tool with the appropriate script file and will also manage and read back the
statistical results into the main estimation module.

10. Conclusions and Future Research

In this paper we have proposed the use of a statistical simulation procedure in order to
improve the applicability and the reliability of the estimation by analogy method for software
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Figure 15.A 95% confidence zone for estimation by regression with the original variables (Abran–Robillard data
set).

projects. In particular, we have explored the problem of determining the optimum method
parameter configuration before application. Such method parameters may be the distance
between projects, the number of analogies and the statistic used to predict efforts. We have
also shown how interval estimates may be generated both with and without assumptions
about the theoretical distribution of the data set. We believe that in this way we have
contributed to the tuning phase of the method and have helped in rendering the method
more attractive for practical, risk oriented, software cost estimation.

The ideas presented can be automated and the authors have initiated the development
of a software tool that will support the user in the application of the bootstrap method
for cost estimation. Nevertheless, as in all automatic software estimation approaches, the
application of the method is not without problems. The organization applying analogy
should review the accuracy of the method at various time periods or even avoid using
it when projects with radically new characteristics must be estimated. The user should
carefully assess the quality of his/her historical project cost database in order to be able to
have a sound idea about the reliability of the analogy based estimates.
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Figure 16.A 95% confidence zone for estimation by regression with transformed variables (Abran–Robillard data
set).

In the future we plan to apply the ideas presented in this paper on other cost data sets,
as well as the COCOMO data base (see Boehm, 1981) in order to fully explore the issue
of similarity between projects with nominal attributes. We would also like to experiment
with distance metrics that require a preliminary analysis of the attributes in the cost data
set, such as the scaled Euclidean distance.

Another point of interest is the determination of a threshold distance between projects to
decide whether analogy based estimations should be applied or not. Such information will
add credibility to the entire approach, helping its dissemination among software developers.
It is also widely accepted that, whenever possible, it is preferable to apply more than one
technique (e.g. combine expert judgement and an algorithmic cost model, or more than one
algorithmic cost models) and compare and combine their results to reach the final estimate.
Therefore, we would like to investigate the issue of generation of estimates combining
analogy and one or more other estimation methods.

Finally, we would like to exploit the power of the bootstrap methods in other areas of
software engineering.
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