
Simple Software Cost Analysis: Safe or Unsafe?

Tim Menzies
∗

Computer Science
Portland State University.

tim@menzies.us

Dan Port? Zhihao Chen‡

?Uni. of Hawaii, Computer
Science, Manoa;

‡Center for Software
Engineering,

Uni of Southern California

dport@hawaii.edu,
zhihaoch@cse.usc.edu

Jairus Hihn
Jet Propulsion Laboratory

Pasadena, USA

jairus.m.hihn@jpl.nasa.gov

ABSTRACT
Delta estimation uses changes to old projects to estimate
new projects. Delta estimation assumes that new costs can
be extrapolated from old projects. In this study, we show
that in certain real-world data sets, there exists attributes
where this assumption does not hold. We define here an
automatic method to find which attributes can be safely
used for delta estimation.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Time Estimation; K.6.3
[Software Management]: Software Process

General Terms
Algorithms, Measurement, Economics, Experimentation, The-
ory,Verification

Keywords
COCOMO, cost estimation, delta estimation, stability, M5,
LSR

1. INTRODUCTION
In Safe and Simple Software Cost Analysis, Boehm presents

a software effort estimation method where new projects are
costed via their delta to previous projects [2]. The method
is simple, fast, and best of all, can take full advantage of
local costing information.

A premise of that delta estimation method is that the cost
of new projects can be safely extrapolated from old projects.
This paper examines this safety premise using two data sets

∗See http://menzies.us/pdf/05safewhen.pdf for a draft
of this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PROMISE’05 May 15, 2005 St. Louis, Missouri USA
Copyright 2005 ACM 1-59593-125-2/05/0005 ...$5.00.

from the PROMISE repository [8]: the 1981 Cocomo81 data
set used to derive the COCOMO-I model [1] and 60 NASA
projects from described in CocomoNASA. All these projects
come from the 1980s and 1990s.

In this study, we processed these two sets in two separate
runs, as follows. In each run, we randomly sampled 2

3
rds the

data to learn linear models. After 30 repeats of this random
sub-sampling, some attributes were found to be stable; i.e.
had a similar influence on effort in all sub-samples. We say
that delta estimation is safe1 when applied to these stable
attributes.

However, many more attributes were unstable; i.e. had
a very different influence on effort in the sub-samples. We
say that delta estimation is unsafe when applied to unstable
attributes that have a widely variant effect on effort.

One possibility is that instability is just an artifact of
our sub-sampling policy degrading the performance of the
learned models. To check that possibility, we carefully bench-
marked the performance of our sub-samples when tested on
the 1

3
rd of the data not used to learn the model. These

models performed as well as known high water marks from
the COCOMO literature; i.e. the sub-sampling policy used
here does not artificially degrade the learned models.

Our results also suggest why Boehm had not seen this
instability effect before. COCOMO-I’s attributes are much
stabler than the NASA projects. Hence, delta estimation
would be less safe for projects from the NASA data than
from the Cocomo81 data. We conclude, therefore, that be-
fore conducting delta estimation, it is important to first
check for attribute instability.

The rest of this paper describes COCOMO, delta esti-
mation, our benchmark studies, and methods for checking
for attribute instability. Note that this entire approach is
automatic and can quickly be applied to new domains.

1.1 Digressions
Before beginning, we offer two digressions. Firstly, our

original intent was to perform this study on numerous data
sets from numerous industrial sites (ideally from sites that
have produced multiple versions of the same project). This
proved to be an impossible goal: modern corporations are
very reluctant to disclose their costing data since such data
often compromises their ability to effectively compete in the

1The term “safe” is used here since Boehm uses it in the
title of his paper. For other definitions of “safe”, see [6].

market place. The best we can do here is to base our study
on the available COCOMO data. In the future, we hope
to repeat this study on COCOMO-II. However, as far as
we know, there is no large publicly available data base of
COCOMO-II projects. Hence, to ensure reproducibility, this
paper uses COCOMO-I data.

Secondly, we also intended to present summaries of our re-
sults compared to other researchers. This turned out not to
be possible since, with the exception of our other PROMISE
paper [4], we are unaware of research reporting variances in
cost models as the the examples used in training change and
the attributes in the training set also change. As to our other
PROMISE paper, that work studied how feature subset se-
lection can improve cost estimation predictive accuracy by
intelligently selecting fewer attributes for the training set.
However, that study does not study the stability of the at-
tributes in the learned models (but such a stability study
would be the logical next step).

2. COCOMO AND DELTA ESTIMATION
The COCOMO effort estimation model [1,3] measures ef-

fort in calendar months of 152 hours (and includes devel-
opment and management hours). COCOMO assumes that
the effort grows more than linearly on software size; i.e.
months ∝ KSLOCn where KSLOC is estimated directly or
computed from a function point analysis. More specifically:

months = a ∗
“
KSLOCb

”
∗

 Y
j

EMj

!
(1)

where EMj is one of a set of effort multipliers shown in
Figure 1. In COCOMO I [1], the exponent on KSLOC was
a single value ranging from 1.05 to 1.2. In COCOMO II [3],
the exponent b of Equation 1 was divided into a constant,
plus the sum of five scale factors which modeled issues such
as “have we built this kind of system before?”.

The numeric values of the effort multipliers are shown in
Figure 2. These were learned by Boehm after a regression
analysis of the projects in the COCOMO I data set, followed
by extensive DELPHI sessions with estimation experts [1].

Figure 1 and Figure 2 are sorted by
EMmax

i

EMmin
i

where EMmax
i

and EMmin
i are the largest and smallest effort multiplier

values seen for EMi. With that sort order, the effort mul-
tipliers that most reduce effort are shown at the top while
the lower entries most increase effort. Note that, in CO-
COMO I, sced has a U -shaped correlation to effort; i.e. giv-
ing programmers either too much or too little time to develop
a system can be detrimental.

COCOMO can be used for delta estimation as follows. An
old project with known costs is used as a baseline. The new
project to be estimated is described in terms of its deltas to
the effort multipliers. The new estimate is then the product
of the baseline times the effort multiplier deltas. For exam-
ple, suppose the new project is estimated to have the same
size as the old project. In this case, we don’t need to scale

the new project’s cost by a factor
“

KSLOC(new)
KSLOC(old)

”b

. However,

we may need to make adjustments for other changes to the
project. For example, reducing analyst capability from very
high to high changes the acap effort multiplier from 0.71
to 0.86 (see the first line in Figure 2). Hence, according to
COCOMO-I, this new project will cost 0.86/0.71 = 1.21 =
21% more than the old project [2].

increase acap: analysts capability
these to pcap: programmers capability
decrease aexp: application experience
effort modp: modern programing practices

tool: use of software tools
vexp: virtual machine experience
lexp: language experience
sced: schedule constraint

decrease data: data base size
these to turn: turnaround time
decrease virt: machine volatility
effort stor: main memory constraint

time: time constraint for cpu
rely: required software reliability
cplx: process complexity

Figure 1: COCOMO I effort multipliers.

very very extra productivity
low low nominal high high high range

acap 1.46 1.19 1.00 0.86 0.71 2.06
pcap 1.42. 1.17 1.00 0.86 0.70 2.03
aexp 1.29 1.13 1.00 0.91 0.82 1.57
modp 1.24. 1.10 1.00 0.91 0.82 1.51
tool 1.24 1.10 1.00 0.91 0.83 1.49
vexp 1.21 1.10 1.00 0.90 1.34
lexp 1.14 1.07 1.00 0.95 1.20
sced 1.23 1.08 1.00 1.04 1.10
data 0.94 1.00 1.08 1.16 -1.23
turn 0.87 1.00 1.07 1.15 -1.32
virt 0.87 1.00 1.15 1.30 -1.49
stor 1.00 1.06 1.21 1.56 -1.56
time 1.00 1.11 1.30 1.66 -1.66
rely 0.75 0.88 1.00 1.15 1.40 -1.87
cplx 0.70 0.85 1.00 1.15 1.30 1.65 -2.36

Figure 2: COCOMO I effort multiplier values.

Note that this delta estimation approach assumes that
the only factors that change between projects are the fac-
tors modeled in the COCOMO parameters. While the CO-
COMO parameters capture a wide range of issue, they are
hardly complete. This is an issue well understood from the
COCOMO team who continually refine and extend the CO-
COMO model (for example, the COCOMO II [3] model con-
tains several more parameters than those shown in Figure 1).
In the limit, this is an issue that can never be resolved: ev-
ery model contains only a finite number of attributes and so
may not contain an important and relevant factor. All we
can offer here is this analysis is a general method of finding
stable parameters within a model.

3. EVALUATION CRITERIA

3.1 Stability Criteria
Data miners can convert COCOMO-I data into linear

models of the form:

X = β0 + β1X1 + β2X2 + . . . (2)

The M5 and LSR linear model learners used in this study
(from the WEKA package [9]) performs M5-style parameter
pruning [7]; i.e. they step through all the attributes remov-
ing the one with the smallest standardized coefficient until
no improvement is observed in the estimate of the model er-
ror given by the Akaike information criterion. Hence, some
attributes may be absent from the learned model.

Under the condition of N repeat sub-samples, we say that
Xi is unstable if (a) it is pruned away in the majority of

sub-samples (i.e. > 0.5 ∗N) or (b) there is a large variance
(defined below) in its associated βi value. For example, sup-
pose we learn these three models from N = 3 sub-samples
of some data:

β0 + β1X1 + β2X2 + β3X3 + β4X4

sub sample 1 : 23 + 101X1 + 21X2 + 31X3 + 41X4

sub sample 2 : 25 + 11X1 + + 30X3 + 42X4

sub sample 3 : 24 + 1X1 + + 32X3

(3)

Here, X1 is unstable since β1 has such a wide range. Fur-
ther, X2 is also unstable because it is usually pruned away.
This example was based on N = 3 repeats and this is in-
sufficient to make reliable conclusions. Appealing to the
central limit theorem, the results presented below are based
on N = 30 repeats.

In the sequel, we will use the following definition of “large
variance”. Given the success of the COCOMO-I model, we
say that a “large variance” is one that is larger than the
variances seen in COCOMO-I. This definition needs to be
refined and we are working on a better definition. However,
even with this approximate definition, we can show below
the main result of this paper: that some attributes are very
unstable indeed are hence not suitable for delta estimation.

An alternative approach to the above was proposed by
one of the reviewers of this paper. Rather that check for the
presence of an attribute, or the variance of its coefficient, in
the learned theory another method might be to compare the
variance of each independent variable with the class variable
over the whole data sets. While much simpler that the study
reported here, this alternate method would not study the
effect of conjunctions of attributes on the target variable.
Since our approach assesses the stability of attributes in the
context of a conjunctive model, we have some confidence that
our study catches “pair” effects where some set of attributes
might be unstable in isolation but stable in conjunction.

3.2 Performance Criteria
A good software effort estimator generates predictions

“close to” actual known efforts. One such measure of “close-
ness” is PRED(N) which is computed from the relative error,
or RE, which is the relative size of the difference between
the actual and estimated value; i.e. REi = estimatei−actuali

actuali
.

Given a test set of size X, then the mean magnitude of the
relative error, or MMRE, is the average percentage of the
absolute values of the relative errors; i.e. MREi = abs(REi)
and:

MMREi = 100
X

PX
i MREi

PRED(N) reports the average percentage of estimates that
were within N% of the actual values:

PRED(N) =
100

X

XX
i

1 if MREi ≤ N

100
0 otherwise

For example, PRED(30)=50% means that half the esti-
mates are within 30% of the actual.

This paper will compare its results with the PRED(30)
values reported in the COCOMO-I and COCOMO-II stud-
ies. Baseline values for PRED(N) from COCOMO are
PRED(30)= 52% (COCOMO-I [2, 163]) and PRED(30)=

69% (COCOMO-II [5]). PRED(30) was selected instead of,
say, PRED(30) since the most comprehensive experiment
reported in the COCOMO community comes from Chulani
et.al. [5]) who reported the results of their 15-way hold out
experiment in terms of PRED(30). In a such a hold-out,
some fraction of the available data is selected to be a test
set while the remaining data is used for testing.

Having decided to use PRED(30) from hold-out experi-
ments, we have a problem reporting early COCOMO-I re-
sults. COCOMO-II has been studied far more rigorously
than COCOMO-I and we are unaware of results from hold-
out studies on COCOMO-I. The best we can say is that the
COCOMO-I results are perhaps slightly inflated since they
were not generated using hold-out studies (i.e. where the
training set was kept separate to the test set).

4. DATA AND LEARNERS

 10

 100

 1000

 1 10 100 1000

ef
fo

rt
 (

m
on

th
s)

KSLOC

nasa60
coc81

Figure 3: A log transform:
LOC and effort

This study applied
LSR and M5 (two
data miners from the
WEKA toolkit [9])
to the 63 project in-
stances in Cocomo81
and the 60 project
instances in Cocomo-
NASA. Both data sets
use the COCOMO-
I attributes. LSR
builds one linear model
through the train-
ing data while M5
can build one or
more models. Inter-
nally, M5 builds a
decision tree whose
leaves are linear mod-
els which apply to
different zones of the parameter space. Hence, M5 out-
performs LSR when the data can’t be modeled as a single
linear model.

Nevertheless, LSR can still model non-linear data if that
data is first linearized. For example, a log transform replaces
all numerics with their logarithm. Data from a exponential
distribution forms a straight line in a log transformed space
and hence could be modeled by LSR.

For example, Equation 1 hypotheses that effort is expo-
nential on program size. Figure 3 supports that hypothesis
and shows a log transform on effort and lines of code in our
two COCOMO-I data sets. As predicted by Equation 1, the
relationship between these two variables is linear in the log
transformed space.

Before we can explore stability and sub-sampling, we first
must certify that our sampling and learning methods do not
artificially degrade performance when learning cost estima-
tion models from COCOMO data. Therefore, prior to the
sub-sampling study, we certified our learners by trying vari-
ous different learning strategies. Hence, we treated our data
in several ways. Firstly, both were converted to the same
set of symbols to generate coc81 and nasa60. These datasets
looked like this:

%rely , data, ... , sced, loc, effort
nominal , high, ... , low, 70, 278
very_high, high, ..., low, 227, 1181

coc81 nasa60
learner.treatment mean sd mean sd

lsr. num ln 44.3 10.8 69.7 11.1
lsr. em ln 40.0 9.7 68.5 12.5

m5. num ln 39.7 13.7 73.5 10.7
m5. em ln 38.4 9.2 69.7 10.5

m5. em loc ln 21.7 8.5 60.5 9.6
lsr. em loc ln 21.7 8.5 60.5 9.6

m5. num loc ln 20.6 6.9 55.3 11.7
lsr. num loc ln 20.6 6.9 55.3 11.7

m5. em 15.4 8.4 40.8 14.4
m5. num 13.7 8.7 41.0 11.6

m5. num loc 11.7 6.9 41.5 8.9
m5. em loc 11.7 6.9 42.0 12.7

lsr. num loc 11.3 6.7 41.2 8.4
lsr. em loc 11.3 6.7 40.2 14.1

lsr. num 9.4 6.7 31.0 10.8
lsr. em 7.9 5.8 28.7 13.0

Figure 4: Mean and standard deviations of
PRED(30) seen in 30 repeats of using coc81 and
nasa60.

...

Next, for X ∈ {coc81, nasa60}, the following treatments
were applied:

X num: The symbols very low, low, nominal, etc were re-
placed with 0.8,0.9,1,etc. Under these substitutions,
nominals effect the COCOMO-I output of Equation 1
by a factor of one.

X em: The attribute values were replaced by their associ-
ated effort multiplers from Figure 2.

X num loc, X em loc: All the effort multiplier attributes
were removed, leaving just lines of code and effort.

X num ln, X em ln, X num loc ln, X em loc ln: A log
transform was applied to the above data sets.

To certify the competency of our method, we benchmarked
our results with prior landmark COCOMO results [5]. Us-
ing the same methodology as those prior results, we ran
M5 and LSR over the treated data sets using 30 repeats
of a 2

3
rds/ 1

3
rd hold-out experiment. The results were con-

verted to win/loss tables as follows. For each of the 30 se-
lections, the training and test sets were transformed them
into X num, X em, etc; then run through M5 and LSR.
This generated a table of 30 results, with separate columns
1. . .C for each combination of {M5,LSR}×X num, X em,
etc. For each pair of columns {i, j} ∈ {1. . .C}, j > i, a
two-tailed t-test was performed to check if the mean of one
column was significantly different to the other. If not, then
a “tie” was declared. Otherwise, the means were compared
numerically to declare a “win” or a “loss”. The resulting
“win”/“loss”/“tie” counts were then sorted by “win-losses”.

The “win-loss” tables let us select the combination of
learner (M5 or LSR) and the treatment (X num, X em, etc)
that performs the best. This best combination was then
used in the sub-sampling study where, 30 times, we gener-
ated 2

3
rd/ 1

3
rd train/test sets; then collected the PRED(30)

scores seen when the models learned from the training set
were applied to the test set.

5. RESULTS
This certification phase of this work required 960 runs:

2 learners ∗ 2 data sets ∗ 8 treatments ∗ 30 repeats

 10

 20

 30

 40

 50

 60

 70

 80

P
R

E
D

(3
0)

PREDs, sorted

_em
_em_ln

_em_loc
_em_loc_ln

_num
_num_ln

_num_loc
_num_loc_ln

Figure 5: Results from 20 hold-outs of M5 on
nasa60.

Each run generated an effect estimator. For example, here
is one effect estimator learned from nasa60 em ln by LSR:

acteffort = −0.8474 ∗ rely + 2.7259 ∗ data + 2.9451 ∗ time+
−0.6964 ∗ stor + 0.882 ∗ turn + 2.8169 ∗ acap+
−6.6709 ∗ vexp + 3.5478 ∗ lexp +−1.8933 ∗modp+
1.1274 ∗ loc + 1.4098

Figure 4 shows a summary of the certification results. The
mean PREDs for coc81 were always lower than the mean
PREDs from nasa60 (on average, by about 20%). Figure 5
shows that the variance in the estimates can be quite large:
in 30 repeated trials on M5 on nasa60, the max and min
PRED(30)s seen in out treated data sets can be as large as
45%. Hence, in order to compare our means, we turn to
the t-test results shown in Figure 6 and Figure 7. In terms
of “wins-losses”, the pattern of results is the same for both
coc81 and nasa60:

• Linearization always beat non-linearization
• PREDs found using just lines of code were always worse

that using all the effort estimators.
• The best performance was seen using linearized data

that included the effort multiplier attributes.

In the top-performing cases, in terms of “wins-losses”:

• Using simple numbers like 0.8,0.9,1, etc did as well as
using the effort multipliers of Figure 2.

• Neither M5 or LSR was a clear winner.

From the win-loss tables, we see that the best combina-
tion of learner and treatments is either (M5 or LSR) and
(num ln or em ln). LSR produces a simpler output than
M5 so the following results just use LSR. Figure 8 and Fig-
ure 9 show a Equation 3-style analysis of the βi values seen in
the 30 hold-outs with LSR on num ln and em ln. Note that
these figures only show effort multipliers that were found in
the majority of the 30 hold-outs; i.e. if an effort multipler
variable appears less than 16 times, it is not shown.

The important features of Figure 8 and Figure 9 are:

• LOC is always present, with low βi deviation.

learner.treatment Wins - Loses Win Loss Tie
m5. num ln 12 12 0 3
m5. em ln 12 12 0 3

lsr. num ln 12 12 0 3
lsr. em ln 12 12 0 3

m5. num loc ln 3 7 4 4
m5. em loc ln 3 7 4 4

lsr. num loc ln 3 7 4 4
lsr. em loc ln 3 7 4 4

m5. em 0 4 4 7
m5. num loc -7 1 8 6

m5. num -7 1 8 6
m5. em loc -7 1 8 6

lsr. num loc -8 1 9 5
lsr. em loc -8 1 9 5

lsr. num -9 0 9 6
lsr. em -14 0 14 1

Figure 6: T-tests on coc81: 99% level

learner.treatment Wins - Loses Win Loss Tie
m5. num ln 12 12 0 3
m5. em ln 12 12 0 3

lsr. num ln 12 12 0 3
lsr. em ln 10 10 0 5

m5. em loc ln 5 8 3 4
lsr. em loc ln 5 8 3 4

m5. num loc ln 4 8 4 3
lsr. num loc ln 4 8 4 3

m5. num loc -6 2 8 5
m5. num -6 2 8 5

m5. em loc -6 2 8 5
lsr. num loc -6 2 8 5

m5. em -6 2 8 5
lsr. em loc -7 1 8 6

lsr. num -13 0 13 2
lsr. em -14 0 14 1

Figure 7: T-tests on nasa60: 99% level

coc81 n mean sd
loc 30 1.2 0.1

cplx 24 1.4 0.3
time 16 1.9 0.4
pcap 29 1.7 0.5
acap 29 2.1 0.5
rely 30 2.0 0.6
sced 25 2.9 0.7
virt 22 2.3 0.8

vexp 24 3.0 1.2

nasa60 n mean sd
loc 30 1.1 0.0

stor 22 -0.8 0.8
time 29 2.5 0.8
cplx 16 1.7 1.0
acap 28 2.7 1.0
data 26 3.1 1.2
turn 17 1.8 1.5

modp 16 -1.8 1.6
vexp 26 -5.6 2.3
lexp 16 2.5 3.0

Figure 8: LSR βi values from * em ln data.

coc81 n mean sd
loc 30 1.2 0.1

cplx 24 2.0 0.5
sced 29 -3.0 0.6
stor 22 2.5 0.6

pcap 28 -3.2 0.7
rely 30 3.3 0.8

vexp 30 -3.4 0.8
acap 30 -3.8 1.0

nasa60 n mean sd
loc 30 1.1 0.0

data 22 1.8 1.0
time 28 4.4 1.2

modp 25 2.6 1.4
stor 24 -1.2 1.4
acap 27 -5.2 1.7
sced 25 2.5 2.6
vexp 22 4.6 2.8
turn 16 1.6 2.9

Figure 9: LSR βi from * num ln data.

• Nearly half the attributes defined in COCOMO-I, are
missing (i.e. are unstable) in both data sets

• The list of missing attributes varies from experiment
to experiment; e.g. pcap appears in the majority of the
coc81 results but not at all in results from the nasa60
data sets.

Also, the coc81 attributes are stabler than the nasa60 at-
tributes:

• Most of the coc81 βi standard deviations are less than
1.0 while most of the nasa60 βi standard deviations
are greater than 1.0 (and, in five cases, greater than
2.0).

• The stable coc81 attributes are well-behaved in the
sense that their βi standard deviation only increases
when the mean βi values increases.

• The stable nasa60 attributes are not so well-behaved.
Large βi standard deviations can be found even when
the βi mean is quite small; e.g. turn has one βi mean
of 1.6 but a βi standard deviations of 2.9(!).

6. DISCUSSION
We set out with the intent of identifying stable attributes

that can be safely used in delta estimation. Along the way,
we needed to define some baselines for COCOMO-style ef-
fort estimation. Consequently, our results comment both on
COCOMO effort estimation and delta estimation.

Adequacy of our tools: If we could not have repro-
duced known baselines from the COCOMO research, then
our results would have been questionable. The tools de-
scribed above used COCOMO-I data and LSR to achieve
comparable results to known benchmarks for COCOMO-I
of PRED(30)=52% (see Figure 4)2.

Merits of just using LOC: Figure 3 suggests that lines
of code might be enough information to perform adequate
software cost estimation. Figure 6 and Figure 7 shows that
this is not necessarily the case. In terms of “wins-loses”, es-
timates based on just lines of code always performed worse
than linearized data sets containing COCOMO-I effort mul-
tipler attributes.

Merits of linearization: Equation 1 predicts that effort
is exponential on program size. Our results supported this
core premise of the COCOMO research. In Figure 6 and Fig-
ure 7, linearized data sets always performed non-linearized
data sets. Hence, this study endorses the core COCOMO
assumption that a single continuous exponential function is
adequate for modeling software effort.

Merits of multi-segmented models: This study did
not find any value is using a combination of multiple contin-
uous exponential functions to model software effort. Recall
that in Figure 6 and Figure 7, M5 never out-performed LSR
on the linearized data. That is, a multi-segmented model
(in log transformed space) did not do better than a model
with a single-segment.

Merits of stratification: Nasa60 comes just from the
aerospace domain while coc81 comes from many domains in-
cluding finance, engineering, etc. The stratification hypoth-
esis [3] claims that specialized subset (like nasa60) should
generate higher PREDs than general data sets (like coc81).
Figure 4 lends support to the stratification hypothesis since
the PRED(30) means from the stratified nasa60 data sets
are all 20% (approx) higher than the PRED(30) means.
However, curiously, this higher PRED comes with a cost:
more instability in the βi values. In the future we plan to

2To be precise, we used hold-out studies and the COCOMO-
I benchmark study did not. Also, our exact best results
were a mean PRED(30) of 44.3% with a standard deviation
of 10.8; i.e. the COCOMO-I results were within 70% of one
standard deviation to our results.

explore this strange disconnect where instability does not
mean lower PREDs.

Merits of effort multiplier attributes: In Figure 6
and Figure 7, the data sets using all the effort multiplier at-
tributes defined in Figure 1 always improved PRED over just
using LOC. Hence, using some effort multiplier attributes is
useful. However, using all of them may not be. Figure 8
and Figure 9 showed that it is possible to ignore some of
the effort multiplier attributes are still reach the adequate
performance levels seen in Figure 4. Strangely, the ignor-
able attributes are not fixed (recall in Figure 8 and Figure 9
how different stable attributes appeared in the different ta-
bles). Hence, it is still necessary to collect all the COCOMO
attributes even if they are not all used later on.

Applying COCOMO in novel domains: In Figure 6
and Figure 7, the data sets using the Figure 2 values did
not perform better than data sets just using simpler values
such as very low=0.8, low=0.9, nominal=1, etc. This means
that an adequate first-pass approximation for development
effort can be computed without requiring Figure 2-like values
calibrated from numerous past projects. This is an impor-
tant result since it means that COCOMO can be applied
to totally novel domains (e.g. cost models for autonomous
deep-space robots) without needing a historical record of
past, similar projects (which, for novel domains, may be
non-existent).

Detecting stable attributes: The methods used above
can automatically detect stable attributes, That check means
generating Figure 4 to Figure 9. Given our current tools, this
check takes around 30 minutes, on a standard LINUX ma-
chine. If we adopt the coc81 results as a baseline for stability,
then could declare an attribute unstable if the associated βi

standard deviation is greater than 1.2; i.e. the maximum
COCOCMO-I βi standard deviation seen anywhere in Fig-
ure 8 or Figure 9.

When delta estimation is safe: Delta estimation is
safe when the extrapolation from old to new projects is
based on changes to stable attributes. In the case of Fig-
ure 8, there six stable attributes with a βi standard deviation
within 1.2. Hence, for that experiment, the attributes that
can be safely used for delta estimation is {loc, stor, time,
cplx,acap, and data}.

This list of stable attributes may not repeat in other do-
mains (recall how the set of ignorable attributes changes in
all the tables of Figure 8 and Figure 9). Hence, if the reader
wishes to perform delta estimation in their own domain, it is
highly recommended that they first find the attributes that
are stable in their own domain.

Acknowledgments
This research was conducted at Portland State University,
the Jet Propulsion Laboratory, and the University of Hawaii
sponsored, in part, by the NASA Office of Safety and Mis-
sion Assurance under the Software Assurance Research Pro-
gram led by the NASA IV&V Facility. Reference herein to
any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not con-
stitute or imply its endorsement by the United States Gov-
ernment.

7. REFERENCES
[1] B. Boehm. Software Engineering Economics. Prentice

Hall, 1981.

[2] B. Boehm. Safe and simple software cost analysis.
IEEE Software, pages 14–17, September/October 2000.
Available from http://www.computer.org/

certification/beta/Boehm_Safe.pdf.

[3] Barry Boehm, Ellis Horowitz, Ray Madachy, Donald
Reifer, Bradford K. Clark, Bert Steece, A. Winsor
Brown, Sunita Chulani, and Chris Abts. Software Cost
Estimation with Cocomo II. Prentice Hall, 2000.

[4] Zhihao Chen, Tim Menzies, and Dan Port. Feature
subset selection can improves software cost estimation.
In Proceedings, PROMISE workshop, ICSE 2005, 2005.

[5] S. Chulani, B. Boehm, and B. Steece. Bayesian analysis
of empirical software engineering cost models. IEEE
Transaction on Software Engineerining, 25(4),
July/August 1999.

[6] N. Leveson. Safeware System Safety And Computers.
Addison-Wesley, 1995.

[7] J. R. Quinlan. Learning with Continuous Classes. In
5th Australian Joint Conference on Artificial
Intelligence, pages 343–348, 1992. Available from http:

//citeseer.nj.nec.com/quinlan92learning.html.

[8] J. Sayyad Shirabad and T.J. Menzies. The PROMISE
Repository of Software Engineering Databases. School
of Information Technology and Engineering, University
of Ottawa, Canada, 2005. Available from
http://promise.site.uottawa.ca/SERepository.

[9] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, 1999.

