
Reliability and Validity in Comparative Studies
of Software Prediction Models

Ingunn Myrtveit, Erik Stensrud, Member, IEEE, and Martin Shepperd

Abstract—Empirical studies on software prediction models do not converge with respect to the question “which prediction model is

best?” The reason for this lack of convergence is poorly understood. In this simulation study, we have examined a frequently used

research procedure comprising three main ingredients: a single data sample, an accuracy indicator, and cross validation. Typically,

these empirical studies compare a machine learning model with a regression model. In our study, we use simulation and compare a

machine learning and a regression model. The results suggest that it is the research procedure itself that is unreliable. This lack of

reliability may strongly contribute to the lack of convergence. Our findings thus cast some doubt on the conclusions of any study of

competing software prediction models that used this research procedure as a basis of model comparison. Thus, we need to develop

more reliable research procedures before we can have confidence in the conclusions of comparative studies of software prediction

models.

Index Terms—Software metrics, cost estimation, cross-validation, empirical methods, arbitrary function approximators, machine

learning, estimation by analogy, regression analysis, simulation, reliability, validity, accuracy indicators.

�

1 INTRODUCTION

PREDICTING software development effort with high preci-
sion is still a largely unsolved problem. Consequently,

there is an ongoing, high level of activity in this research
field. A large number of different prediction models1 have
been proposed over the last 20+ years. These range from
mathematical functions (e.g., regression analysis and
COCOMO) to machine learning models (ML) (e.g., estima-
tion by analogy—EBA, classification, and regression
trees—CART, and artificial neural networks—ANN). In
contrast to a regression model which is defined by a
mathematical formula, the ML models typically are not
defined by a mathematical formula but may take on many
different shapes. Such “functions” are also termed arbitrary
function approximators (AFA). In this study, we will use
the term AFA rather than ML to make the distinction
between mathematical functions and functions that are not
constrained to predetermined form.

Despite this substantial level of research activity, we are

still not in a strong position to advise practitioners as to

what prediction models they should select because the

studies do not converge with respect to the question “which

model is best?” Indeed, very contradictory results have

been reported in studies comparing an AFA with a
function. Furthermore, the performance of AFAs varies
wildly across studies.

Some studies conclude that EBA models outperform
regression models [33]. Other studies find the exactly
opposite result, namely, that regression models are superior
to EBA models [29]. Other studies again find CART models
superior to regression models [5] whereas other studies
report the opposite result [6]. Others again find ANN
models superior to regression models [35] whereas Jørgen-
sen reports the opposite result [19].

So far, the lack of convergence of studies on software
prediction models is poorly understood, and it has been a
puzzle to the research community on software prediction
systems for many years. Clearly, we need to consolidate the
knowledge on software prediction models and research
procedures; we need to understand why we have obtained
so wildly opposing conclusions on this matter.

We may speculate on various explanations of the reason
for contradictory conclusions. One obvious explanation is
that the studies vary in their quality of execution (data
quality, research procedure quality, etc.). Many techniques
require considerable expertise to use; so, some studies may
use the technique more effectively than others. This is also a
problem in the machine learning and data mining commu-
nities [26]. To put it bluntly, a badly performed study can
arrive at any conclusion.

Another explanation may be that the lack of convergence
is due to spurious effects in otherwise well conducted
studies hampered by small sample size. Many software
studies do indeed suffer from small sample size.

A third explanation may be that the commonly used
measuring procedures suffer from some fundamental flaws so
that they are either invalid, unreliable, or both. Indeed, Foss
et al. [15] investigated and questioned the validity of several
measures (“accuracy indicators”) that are in frequent use in

380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 5, MAY 2005

. I. Myrtveit is with the Norwegian School of Management BI, Elias Smiths
vei 15, Box 580, N-1301 Sandvika, Norway.
E-mail: ingunn.myrtveit@bi.no.

. E. Stensrud is with Myrtveit og Stensrud ANS, Austliveien 30, 0752 Oslo,
Norway. E-mail: erik.stensrud@ieee.org.

. M. Shepperd is with the School of Design, Engineering and Computing,
Bournemouth University, Poole House, P104d Bournemouth, BH12 5BB,
United Kingdom. E-mail: mshepper@bmth.ac.uk.

Manuscript received 19 July 2004; revised 28 Dec. 2004; accepted 1 Mar.
2005; published online 26 May 2005.
Recommended for acceptance by P. Jalote.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0147-0704.

1. We use prediction model and estimation model as synonyms.

0098-5589/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



empirical software engineering. They showed that several
of these accuracy indicators do not consistently select the
best from two competing, linear prediction models. In other
words, the accuracy indicators did not measure what they
were supposed to measure and were thus misleading for
this purpose. Furthermore, both Myrtveit and Stensrud [29]
and Kitchenham et al. [22] showed that different accuracy
indicators lead to rank reversal problems, i.e., that one
particular accuracy indicator selects model A whereas
another selects model B as best. Clearly, it is highly
undesirable that the selection of competing models depends
on the choice of the measure as long as we lack knowledge
on which measure is the most valid and reliable.

Researchers may approach this problem, the lack of
convergence, in two steps. The first and crucial step is to do
a careful evaluation of the individual studies’ research
procedures. If the research procedures are unreliable, they
will not yield consistent results and this might thus explain
the lack of convergence. In fact, several recent findings
directly or indirectly question the validity or reliability of
our measuring procedures [15], [22], [29], [25].

Given that the research procedures are reliable, we must
look elsewhere for explanations. For example, small sample
size may also account for the lack of convergence. If this is
the case, it may be appropriate to perform a meta-analysis.

“Meta-analysis involves aggregating results across stu-
dies in order to obtain a more powerful and stable estimate
of effect magnitudes. ... Meta-analysis is extremely useful in
aggregating well-done studies hampered by small sample
size. ... Meta-analysis is, however, no substitute for careful
evaluation of individual studies’ procedures and results,
and it was never intended as a “meat-grinder” to average
out results of studies that vary in their quality of execution.
Careful evaluation of individual studies may suggest why
the effect of interest occurred in certain studies and not in
others” ([31, p. 101]).

Recent research by Foss et al. has shown that the
frequently used accuracy indicators are invalid in studies
comparing linear models [15]. This study extends their
study in several directions by investigating:

. Comparisons between linear and nonlinear (i.e.,
AFA) prediction models.

. The reliability (rather than the validity) of the
commonly used measuring procedure.

. The whole measuring procedure, i.e., cross-valida-
tion applied to a single sample and evaluated with
commonly used goodness of fit accuracy indicators,
rather than a part of it (i.e., the accuracy indicator,
only).

The paper is organized as follows: Section 2 defines some
central terminology. Section 3 provides a taxonomy for cost
estimation models that is useful for this study. Section 4
provides a short summary of empirical studies on cost
estimation. The purpose of this section is just to show that
there is a substantial body of recent research in this area.
Section 5 presents the common validation procedure used
in many of the studies mentioned in the previous section
and some of the arguments used to advocate the procedure.
We also introduce statistical terminology. Section 6 de-
scribes our research method, a simulation study. Section 7

presents the results whereas Section 8 discusses threats to
validity. Section 9 concludes by discussing the implications
for researchers in empirical software engineering and
suggests some topics for further research.

2 TERMINOLOGY

The term Accuracy indicator is often used in a dual sense in
the software engineering literature denoting both the basic
measure and the summary statistic of the measure. As an
example, MRE (magnitude of relative error) is a basic
measure whereas MMRE (mean MRE) is a summary
statistic of this measure. This particular type of summary
statistic is a goodness-of-fit statistic. In this study, we use
the term accuracy indicator to denote the summary statistic,
only. We stick to this term because of its widespread use in
software engineering.

Measure—In this study, it means the basic measure of
the accuracy indicator, e.g., MRE, AR (absolute residual),
and BRE (balanced relative error). We may also use the term
basic measure to stress what we mean.

Measuring procedure—This term is best defined by
using an example of a measuring procedure: The commonly
used measuring procedure in software engineering in
comparative studies on prediction models comprises
cross-validation applied to a single sample and evaluated
with one or more accuracy indicators.

3 TYPES OF COST ESTIMATION MODELS

The term arbitrary function approximator, AFA, is probably
not wide spread in the software engineering community. In
this section, we provide a taxonomy in order to better
explain the concept of an AFA. (A taxonomy explains a
concept, e.g., AFA, by highlighting the differences and
similarities between this concept and related concepts.) In
this study, we are particularly interested in how mathema-
tical functions relate to AFAs since these are the two types
of estimation models we use in the study. There exist a
number of taxonomies, but none of them serve our purpose
quite well, and they all suffer from some flaws [7]. Also,
classification schemes are subjective and there is no
agreement about the best one [7].

There are several approaches to cost estimation. One can
group them as in Fig. 1. Broadly, we may distinguish
between sparse-data methods and many-data methods.
Sparse-data methods are estimation methods requiring few
or no historical data. They include Analytic Hierarchy
Process, AHP [34], expert judgment [40], and automated
case-based reasoning—CBR2 [28].

Many-data methods may be subdivided into functions
and arbitrary function approximators (AFA). Functions are
of the general form y ¼ AxB, that is, there is a mathematical
relationship between the variables expressed in a formula.
Linear regression models belong to this class. By contrast,
arbitrary function approximators do not make any assump-
tions regarding the relationship between the predictor and

MYRTVEIT ET AL.: RELIABILITY AND VALIDITY IN COMPARATIVE STUDIES OF SOFTWARE PREDICTION MODELS 381

2. Obviously, there is a spectrum between sparse and many-data
methods. CBR may belong to both. If CBR is used to identify the closest
case, it is a many-data method. EBA is an example of this use of CBR. On
the other hand, if you use CBR to reason from a case that is already selected,
it is a single-data method. We therefore view EBA as a kind of CBR method.

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



response variables (i.e., between x and y). The argument for
proposing them is that “it is very difficult to make valid
assumptions about the form of the functional relationship between
variables.... [Therefore] ... [the] analysis procedure should avoid
assumptions about the relationship between the variables....using
more complex functional forms would be difficult since we usually
have a poor understanding of the phenomena we are studying.”
[1]. EBA, CART, and ANN models belong to the AFA class.

In this paper, we only investigate validation methods
applied to many-data methods.

4 PREVIOUS WORK ON SOFTWARE PREDICTION

METHODS

There exists a relatively large number of empirical studies
on software cost estimation models. In particular there are a
large number of studies on regression analysis models since
this model often serves as the baseline against which the
performance of the other models is compared. See the
Encyclopedia of Software Engineering [7] for an overview.
Most of the studies have applied the ordinary least squares
method. Some studies have also reported on various robust
regression methods [14], [16], [18], [27], [30], [43].

There is also a substantial body of research on AFAs. The
latter include CART models [3], [5], [20], [35], OSR—Opti-
mized Set Reduction, a subtype of CART [1], [2], [19], EBA
models [17], [29], [33], [38], [41], [44], and, finally, ANN
models [32], [35] [44].

In these studies, the default accuracy indicator reported
is MMRE. More recent studies tend, however, to report
more than one indicator (e.g., MMRE, median MRE, MBRE,
MAR). The accuracy indicators are computed following
standard evaluation processes such as cross-validation
applied to a single sample [7]. Thus, the research procedure
in this study is well aligned with the research procedures of
previous studies.

5 MEASURING PROCEDURES

5.1 Reliability and Validity

Measurement is crucial to empirical software engineering.
At the most general level, measuring procedures need to
possess two basic properties: reliability and validity. We
therefore have to know whether the measuring procedures

are in fact reliable and valid. “First, one can examine the

reliability of an indicator. Fundamentally, reliability con-

cerns the extent to which an experiment, test, or any

measuring procedure yields the same results on repeated

trials [...] the more consistent the results given by repeated

measurements, the higher the reliability of the measuring

procedure [...] But an indicator must be more than reliable if

it is to provide an accurate representation of some abstract

concept. It must also be valid. In a very general sense, any

measuring device is valid if it does what is intended to do.

An indicator of some abstract concept is valid to the extent

that it measures what it purports to measure.” [8].
There are two basic kinds of error that affect empirical

measurements, random error and nonrandom error. Ran-

dom error is the term used to designate all those chance

factors that confound the measurement of any phenomen-

on. For example, if the shots fired from a well-anchored rifle

are scattered widely about the target, then the rifle is

unreliable. But, if the shots are concentrated around the

target, the rifle is reliable. Nonrandom error has a

systematic biasing effect on measuring instruments. If all

shots aimed at the center of the target hit approximately the

same location but not the center, then some form of

nonrandom error has affected the targeting of the rifle.

That is, you are consistently and systematically measuring

the wrong value for all respondents. This measure is

reliable, but not valid (that is, it is consistent but wrong).

Thus, reliability concerns the degree to which results are

consistent across repeated measurements. Validity is the

degree that a particular indicator measures what it is

supposed to measure rather than reflecting some nonran-

dom measurement error.
The measuring procedure in comparative studies of

software prediction models frequently is generally as

follows: The prediction models are validated on a single

sample (data set) by computing an accuracy indicator using

cross-validation. The model obtaining the highest accuracy

(i.e., a low value of the accuracy indicator) is deemed “best”

(In more recent studies, significance tests are added). In the

following sections, we provide further details on cross-

validation and the accuracy indicators that are frequently

used in empirical software engineering.

382 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 5, MAY 2005

Fig. 1. A taxonomy of SW cost estimation methods.

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



5.2 Cross-Validation

Cross-validation is a way of obtaining nearly unbiased

estimators of prediction error. The method consists of

1. deleting the observations from the data set one at a
time,

2. calibrating the model to the n� 1 remaining
observations,

3. measure how well the calibrated model predicts the
deleted observation, and

4. averaging these predictions over all n observations
[12].

In software engineering, MRE and MMRE are used as

the de facto standard in Steps 3 and 4, respectively [7]. More

recently, some researchers have replaced MRE with other

measures (e.g., BRE or absolute residual, AR) in Step 3.

Also, in Step 4, the median is now routinely used in

addition to the mean.
Cross-validation comes in two variants, n-fold and v-fold

(where n is sample size and k is some number smaller than

n). The default cross-validation method is n-fold cross-

validation, also termed leave-one-out cross-validation. In

the software engineering and machine learning commu-

nities, a variant of the cross-validation method, v-fold cross-

validation, is also used in Step 1 [2], [4]. V-fold cross-

validation divides the data set into v subsets, each with

approximately t observations with t > 1. That is, v�t � n.

Thus, instead of deleting one observation at a time,

t observations are deleted each time. In the machine

learning communities, these subsets are often termed

training sets and test sets, respectively.
In the literature, there has been a discussion on which

cross-validation method is the better. (Also, bootstrapping

has been suggested.) There has been a substantial amount of

theoretical and empirical study on cross-validation. Kuha

[24] presents many of these in a bibliography—which

indicates that this is still an unsettled matter. We have

chosen to investigate n-fold cross-validation in this study

for two reasons. First, it is a widely used variant. Second,

since no conclusive evidence exists regarding n-fold versus

v-fold, we have reverted to what to us seems like common

sense. To us, n-fold cross-validation makes more sense than

v-fold for the following reason. Viewed from a practitio-

ner’s standpoint, we want a method that comes as close as

possible to a realistic real world situation.
What, then, is a real-world situation closest to, n-fold

cross-validation or v-fold cross-validation? To us, a realistic

scenario is as follows: We have a data set with n relevant

(nonobsolete) historical projects, and we are to estimate a

single new project. Now, we think it would be wise to use

all the n observations to calibrate a prediction model and

not just, say, half of the observations. This real-world

situation seems almost perfectly approximated by n-fold

cross-validation where the model is calibrated with n� 1

observations, i.e., only one observation less than we would

have in the real world case. As opposed to this, the v-fold

cross-validation removes t observations at a time, thereby

using a smaller subset to calibrate the model than the data

set that would be available in reality.

However, v-fold is less computationally intensive than n-
fold and has for this reason been attractive in the ML
community.

5.3 Accuracy Indicators

In this section, we present the accuracy indicators that we
evaluate in this study. All of them are variants of goodness-
of-fit statistics.

The most widely used evaluation criterion to assess the
performance of software prediction models is the mean
magnitude of relative error (MMRE). Conte et al. [10]
consider MMRE � 0:25 as acceptable for effort prediction
models. MRE is defined as

MRE ¼ y� ŷyj j
y

;

where y ¼ actual and ŷy ¼ prediction. There exist a number
of supposed reasons to use MMRE. It is considered a
versatile assessment criterion lending itself to a number of
situations. The claimed advantages include the following:

1. Comparisons can be made across data sets [6], [41].
2. It is independent of units. Independence of units

means that it does not matter whether effort is
reported in workhours or workmonths. An MMRE
will be, say, 10 percent whatever unit is used.

3. Comparisons can be made across all kinds of
prediction model types [10]. This means, for exam-
ple, that it is considered as a valid and reliable
measure to compare AFAs with linear models.

4. It is scale independent. Scale independence means
that the expected value of MRE does not vary with
size. In other words, an implicit assumption in using
MRE as a measure of predictive accuracy is that the
error is proportional to the size (effort) of the project
[39]. For example, a one person-month error for a
10 person-month project and a 10 person-month
error for a 100 person-month will result in equal
MREs (10 percent for both projects).

In this study, we investigate claims 1 and 3 and show
that they do not hold. Foss et al. [15] demonstrated that
MMRE is an invalid measure for selecting between two
competing, linear prediction models, thus refuting claim 3.
In this study, we show that the whole validation procedure
is unreliable, thus refuting claims 1 and 3. As for claim 4, it
seems to hold [36], and claim 2 obviously holds.

Another measure akin to MRE, the magnitude of error
relative to the estimate (MER), has been proposed by
Kitchenham et al. [22]. Intuitively, it seems preferable to
MRE since it measures the error relative to the estimate.
MER is defined as

MER ¼ y� ŷyj j
ŷy

:

We use the notation MMER to denote the mean MER.
Kitchenham et al. also have proposed the mean (or median)
of the absolute residual (MAR, MdAR) instead of MMRE.
AR is defined as:

AR ¼ y� ŷyj j:

MYRTVEIT ET AL.: RELIABILITY AND VALIDITY IN COMPARATIVE STUDIES OF SOFTWARE PREDICTION MODELS 383

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



Another, and simple, measure of residual error is the
standard deviation (SD). It is computed as follows:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yi � ŷyið Þ2

n� 1

s
:

We also propose and evaluate two other measures. They
are the relative standard deviation (RSD) and the logarith-
mic standard deviation (LSD). RSD is defined as follows:

RSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP yi�ŷyi
xi

� �2

n� 1

vuut
:

The variable x is Function Points in our case. The
rationale behind RSD is to measure the dispersion relative
to the x value (e.g., FP—Function Points) rather than
relative to the y value (effort) to avoid one of the problems
withMMRE which is that small actuals (small ys) will have
a disproportionate influence on the mean MRE since a
number divided by a small number tends to be a large
number. Contrary to MRE, which is almost uncorrelated
with size [36], SD is positively correlated with size because
software project data sets are often heteroscedastic. Also,
unlike SD, RSD is almost uncorrelated with size.

We observe that RSD is limited to models with a single
predictor variable. In many software studies this is,
however, not a serious limitation since it is common to
create prediction models based on FP and effort. More
important, we can provide a rationale for choosing this
metric as well as an interpretation of its meaning. As for the
rationale, let us assume that we have the following model:

y ¼ �þ �xþ x"; ð1Þ

where " is normally distributed: Eð"Þ ¼ 0 and varð"Þ ¼ �2.
This model will generate data where the variance increases
with x. Dividing (1) by x gives:

y

x
¼ � � 1

x
þ � þ ": ð2Þ

The error term in this regression model (2), ", is normal:
Eð"Þ ¼ 0 and varð"Þ ¼ �2. OLS will, therefore, be an efficient
estimating method. Let �̂� and �̂� be estimates of � and �. Our
prognosis (sample prediction model) for effort is then:

ŷy ¼ �̂�þ �̂�x:

But,

ŷy

x
¼ �̂�

1

x
þ �̂�:

y
x �

ŷy
x is, therefore, and estimate, e, of the error term ".

Since we also have that

e ¼ y

x
� ŷy

x
¼ y� ŷy

x
:

RSD is, therefore, an estimate of the standard deviation
of the error term " in the regression equation. Thus, RSD is
a relevant measure of how good the prediction model is.

It remains to give RSD an interpretation making sense
since x and y are measured in different units (hours versus

FPs). We can interpret y
x as the effort per FP, that is to say,

the productivity. If � is close to zero or if the project is large
(in terms of x), we observe that y

x will approximate �.
We note that RSD is based on an additive model and

many software effort estimation models use an exponential
model. Thus, RSD may be less effective as a goodness of fit
statistic for an exponential model if the exponent is
significantly different from one. However, these two
models are very close to each other, see Section 6.2. The
exponent is 1.05 and, thus, very close to 1, see Table 2.
Therefore, RSD is an appropriate measure in this single-
predictor case.)

LSD is defined as follows:

LSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ei � � s2

2

� �� �2
n� 1

s
:

The term s2 is an estimator of the variance of the residual
ei where ei is given by

ei ¼ ln yi � ln ŷyi:

The rationale behind LSD is as follows: Data sets with a
large heteroscedasticity like the Finnish data set (cf.
Section 6.1) will be very influenced by the large projects.
Thus, the usual SD is more sensitive to large projects than
to small projects, and it may therefore not be a stable,
reliable measure for such data sets. On the other hand, LSD
lends itself well to data sets that comply with a log-linear
model because the residual error is independent of size (i.e.,
homoscedastic) on the log scale. In fact, we use a log-linear
transformation for our simulation (see Section 6.2), so LSD

should theoretically be more reliable than SD in this case.
(The reason for the �s2=2 term will become clearer in
Section 6.2. See also [15] for more details.) To summarize,
LSD is useful for comparing multiplicative models but it
may be inappropriate for comparing additive models.

Finally, we evaluate the mean of the balanced relative
error (BRE) and the inverted balanced relative error
(IBRE) proposed by Miyazaki et al. [27].

BRE ¼ ŷy� yð Þ
y

; ŷy� y � 0;

BRE ¼ ŷy� yð Þ
ŷy

; ŷy� y < 0;

IBRE ¼ ŷy� yð Þ
y

; ŷy� y < 0;

IBRE ¼ ŷy� yð Þ
ŷy

; ŷy� y � 0:

The mean of the absolute values of BRE and IBRE are
termed MBRE and MIBRE, respectively.

6 RESEARCH METHOD

Since the 1950s, various computer simulation techniques
have become increasingly important research tools across a
wide range of sciences. Software packages based on these

384 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 5, MAY 2005

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



techniques are also widely used in more applied fields such
as engineering, finance, or environmental management,
often in connection with computerized databases and
electronic gathering devices.

There are several advantages of simulation compared
with using real data. One advantage is that we can create
a large number of samples rather than having to use only
one, single sample. Thus, we obtain the distributions for
statistical parameters that are estimated (the estimators).
Using a single sample of real data, we can obtain the
distribution only when it can be calculated analytically. In
cases where we cannot calculate the distribution analyti-
cally, we would obtain one single value for the estimator,
not its distribution. In such cases, simulation adds value.
Clearly, we obtain more information and can draw more
reliable conclusions based on a distribution than based on
a single value.

In this study, we are interested in the reliability of the
measuring procedure. In comparative studies, the measur-
ing procedure is reliable if it consistently selects the same
among two (or more) competing models provided other
external factors are kept constant. An important external
factor is the data set. Data sets may exhibit different
characteristics in terms of linearity, heteroscedasticity,
sample size, type, and number of variables, etc. In this
study, we keep this factor constant by drawing samples
from the same population. The rationale is that we want to
identify which is the best model for a given population, not
for a particular sample drawn from this population. It is the
population model that provides unbiased predictions. The
procedure is in addition valid if it consistently selects the
“best” model, i.e., selects the true from the false model.

The simulation method in this study is aligned with the
common evaluation procedure and used n-fold cross-
validation. It consists of the following main steps:

Generate m ¼ 1; 000 random data samples (see details in
Section 6.4)

For i ¼ 1 to m

For j ¼ 1 to n where n is sample size (this loop is the

n-fold cross-validation)

Fit the AFA and OLS prediction models (see details in

Section 6.5)

Compute ŷy and the basic measures (see details in

Section 6.5)

Next j

Compute the accuracy indicators (MMRE, MBRE, etc.)

Compare the accuracy indicators of the AFA and OLS

models
Next i

Count the number of wins for each model and per type of

accuracy indicator

6.1 Data “Template”

It is important that a simulation method for generating data

generates samples from a population that represents an

actual population, i.e., the simulation model has to be as

close as possible to an actual software data set. In this study,

we use the Finnish3 data set as a model for our simulation

model. The Finnish data set exhibits properties that we

consider representative of other data sets of software

projects with respect to (non)linearity, heteroscedasticity,

and sample size. The projects span from 65 to 1,814 function

points (FP), that is, from small to medium software size. The

data set consists of 40 projects. (Typical software engineer-

ing data sets in previous studies have 10 to 100 observations

[7], [36], [42] although a small number are considerably

larger such as the ISBSG benchmarking data set.) Two

projects have missing data. The data comes from different

companies, and a single person performed the data

collection. This ensures high interrater reliability. The

projects span from 460 to 23,000 workhours. Descriptive

statistics are provided in Table 1. More details on the data

may be found in Kitchenham and Kansala [21].
In Fig. 2, we have plotted effort against FP . We observe

that the data are heteroscedastic (increasing variance).

6.2 Exploratory Investigation of the Population
Model

It is a common, and reasonable, starting point to assume a

linear model. This is further justified by recent research,

using a genetic programming approach as a flexible method

of model fitting, which nonetheless found no significant

deviations from a linear model [11]:

MYRTVEIT ET AL.: RELIABILITY AND VALIDITY IN COMPARATIVE STUDIES OF SOFTWARE PREDICTION MODELS 385

3. There exist more recent versions of the Finnish data set with more
observations. However, the degree of recency is irrelevant in this study.

TABLE 1
Descriptive Statistics for Finnish Data Set

TABLE 2
The Log-Linear Model (8)

Fig. 2. Plot of effort versus FP for Finnish data set.

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



y ¼ �þ � � xþ u; ð3Þ

where y is effort and x is function points. If we apply (3) to
the Finnish data set, we obtain the following OLS linear
regression model:

y ¼ 877þ 8:77 � x: ð4Þ

On closer inspection of the Finnish data set in Fig. 2, we
observe that it seems reasonably linear but exhibits
heteroscedasticity (increasing variance). OLS regression
analysis assumes that the data are homoscedastic (equal
variance). Model (4) is therefore not sufficiently correct. We
need to transform the data in an attempt to make them
better comply with the assumptions of the OLS method, in
particular the homoscedasticity assumption.

There exist several alternatives for transforming the data.
One alternative is to perform a log-linear regression where
we assume that the relationship between effort and FP is of
the form

y ¼ e�x� � I; ð5Þ

where I is lognormal with the mean equal to 1. Thus, I ¼ eu

with u normally distributed. It has been proven that if
V arðuÞ ¼ �2 and EðuÞ ¼ � �2

2 , then EðIÞ ¼ EðeuÞ ¼ 1 ([13,
p. 134]).

Rewriting (5) in the form:

y ¼ e� � x� � eu ð6Þ

and taking the logarithm of (6), we obtain:

lnðyÞ ¼ �þ � lnðxÞ þ u: ð7Þ

A fitted line plot of the transformed data using (7) is
presented in Fig. 3. Inspecting the plot, the data exhibit a
reasonable homoscedasticity and linearity.

Applying (7) to the Finnish data set, we get the following
OLS regression model:

lnðyÞ ¼ 1:70þ 1:05 � lnðxÞ: ð8Þ

Back transforming (8), we get:

y ¼ e1:70 � x1:05 ¼ 5:47 � x1:05: ð9Þ

From Table 2, we observe that the standard deviation is
0.79. Comparing (3) with (5), we can state that, in (3), we

believe there to be a linear relationship between effort and
FP, whereas, in (5), we believe it to be exponential. We
observe, however, that model (9) fitted to the Finnish data
set is not strongly exponential since the exponent is close to
1 (1.05 and with a standard error of 0.16, cf. Table 2). From
this, we cannot draw any conclusions regarding returns to
scale, i.e., whether to assume increasing, decreasing, like
COCOMO [9], or constant returns to scale. See, for example,
[23], [37] for a more detailed account of returns to scale.
However, none of the two models reject the assumption of
constant returns to scale. Therefore, a linear model seems to
be a good first order approximation of reality.

Given that the data seem reasonably linear, we could
have used (4) except for the fact that the data are
heteroscedastic. Therefore, it is interesting to investigate a
third model that is linear rather than log-linear but corrects
the heteroscedasticity of (4).

y ¼ �þ � � xþ x � u: ð10Þ

In model (10), we assume a linear relationship between
FP and effort as we do in (3), but unlike (3), we transform
the data in an attempt to obtain a more constant variance.
We investigated this model. However, we did not find that
it improved on the log-linear model.

In the simulation study that follows, we have therefore
opted for model (9), the log-linear model. The log-linear
model also has an additional benefit compared with the two
other models in that it forces the line through the origin in
addition to correcting for heteroscedasticity. That is, when
zero FP is delivered, zero effort is expended.

We find it useful to have performed this explorative
exercise because, unfortunately, there is no strong theory to
guide us in software engineering. We have therefore chosen
(9) based on empirical evidence from using the Finnish data
set. This empirical evidence weakly suggests a multi-
plicative model rather than an additive model. This finding
is supported by several studies on other software engineer-
ing data sets. See, for example, [15], [36].

6.3 Simulation Model Specification

Let us assume that we have estimated the regression
parameters based on a large sample (or alternatively,
suppose that we happen to know the population) and that
we therefore know the true (or population) regression
model. Assume that the true model is exponential of the
form (5) and with coefficients and standard deviation (�)
identical to model (9) in Table 2:

lnðyÞ ¼ 1:70þ 1:05 � lnðxÞ þ u; � ¼ 0:79: ð11Þ

Model (11), i.e., the regression model including the error
term and the standard deviation figure, is our simulation
model describing the population. The parameters describ-
ing the population should describe aspects of the popula-
tion that are relevant to the simulation study. For this study,
it is relevant to include a model for the variance of the
population. The error term, u, accounts for its stochastic
nature. Some projects use more effort, and some less effort,
than the expected effort based on FP counts. u is normal
with mean equal to ��2=2 and variance equal to �2 ([13,
p. 134]). This simulation model can be used to generate data
samples with characteristics similar to the Finnish data set.

386 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 5, MAY 2005

Fig. 3. Finnish data set: ln(FP) versus ln(Effort).

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



6.4 Generation of Data Samples

If the population is given by model (11), we may simulate
sampling from this population. Let the span of the x

variable, function points, be the same as for the Finnish data
set: [65, 1814], and let x be uniformly distributed in this
range. Furthermore, let the sample size be the same as for
the Finnish data set, i.e., n ¼ 40. Each sample was generated
with the following algorithm:

For i ¼ 1 to n /* observation i */

Draw a random integer x ið Þ from the uniform x

distribution;

Draw a random u ið Þ from the normal distribution

N ��2

2 ; �
� �

;

Compute y ið Þ ¼ e� � x� � eu ið Þ;

Store observation i as x ið Þ; y ið Þ;
Next i

To draw random numbers from a uniform distribution,
we used the RANDBETWEEN() function, and to draw
numbers from a normal distribution, we used the function
RANDOM(), both functions provided in Microsoft1 Excel
2000, the latter in the Excel Add-In: Analysis ToolPak. In
total, we created 1,000 samples.

6.5 Specification of the Prediction Models

We specified two kinds of models, one linear regression
model and one estimation-by-analogy (EBA) model as
implemented in the tool ANGEL [33]. The EBA model is
representative of arbitrary function approximators (AFAs).
In Fig. 4, we have depicted the functional form using the
closest analogy (nearest neighbor). The linear regression
model was fitted to the data using the ordinary least
squares (OLS) method. We used a multiplicative model of
the form:

y ¼ AxB:

To fit the OLS model to the data, we transformed the
sample data to log-log and applied a log-log, additive,
linear OLS model of the form:

lnðyÞ ¼ ln Að Þ þB � lnðxÞ:

As for the EBA model, it was fitted to the data by finding
the number of closest analogies (or nearest neighbors)

minimizing some criterion. As a fitting criterion, we
minimized all the accuracy indicators in turn, for example,
“minimum MMRE,” ”minimum MAR,” etc. The predicted
effort was calculated taking the mean effort of the
corresponding closest analogies.

Finally, comparing the accuracy indicators of the OLS
and the AFA models, when comparing, say, the pair wise
MAR values, we used the AFA model fitted with the
“minimumMAR” method. Likewise for the other measures,
MMRE, MBRE, etc. The closest analogies were found by
measuring the Euclidean distances in the FP dimension, the
only independent variable used in this study.

/***** Fitting the AFA ****/

For k ¼ 1 to n // k is the number of closest analogies
For j ¼ 1 to n where n is sample size (this loop is the

n-fold cross-validation)

Find the k closest analogies (or nearest neighbors);

Compute ŷy ¼ 1
k

Pk
i¼1 yi;

Compute the basic measures (MRE, BRE, etc.);

Next j

Next k

Compute all the accuracy indicators (MMRE, MBRE, etc.);
Among the n resulting AFA models, select the “best” AFA

model, i.e., select the k that minimises one particular

criterion, e.g., “Minimum MMRE”;

/**** Fitting the linear regression model *****/

For j ¼ 1 to n where n is sample size (this loop is the n-fold

cross-validation)
Compute ŷy ¼ ea � xb, where a and b are obtained in the

preceding step;

Compute the basic measures (MRE, BRE, etc.);

Next j

Compute all the accuracy indicators;

Effectively, this procedure favors the AFA. The reason is
that when we compare, say, MMRE(AFA) with
MMRE(OLS), we pick the lowest MMRE(AFA) because
we use the number of closest analogies that minimizes
MMRE for the AFA.

To investigate if this impacts on results, i.e., on the
conclusions of the study, we also did a variant where we
kept the fitting criterion constant, say, MBRE as the fitting

MYRTVEIT ET AL.: RELIABILITY AND VALIDITY IN COMPARATIVE STUDIES OF SOFTWARE PREDICTION MODELS 387

Fig. 4. Estimation by analogy model (ANGEL), closest analogy, for Finnish data set.

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



criterion for the AFA, picked the AFA model minimizing
MBRE and used this model in comparing MMRE(AFA)
with MMRE(OLS), and so on. In this case, we should only
favor the AFA when comparing MBRE(AFA) with
MBRE(OLS) but not when comparing, say, MMRE(AFA)
and MMRE(OLS).

6.6 General Presentation of the EBA Estimating
Approach

EBA methods identify analogues (or similar cases) in the
database. Commonly used similarity measures are Eucli-
dean distance and correlation coefficients. Euclidean dis-
tance is employed in the EBA tool ANGEL [33]. ANGEL
predicts effort based on identifying analogous or similar
projects in p-dimensional feature space (where each project
is characterised by p features or independent variables) for
which effort is known. The predicted effort is basically
identical to the effort of the most similar project in the
“nearest neighbor” case. When identifying the “k nearest
neighbors,” the predicted effort is the average effort of these
k nearest neighbors. The ANGEL model is illustrated in
Fig. 4 for k ¼ 1, the single nearest neighbor case.

Using the Finnish data set to see how ANGEL works,
the most similar project is the project which is closest in
terms of FP (in the univariate case). For example, to
estimate the effort for a 1,300 FP project, we would
measure the distance to every project in the database and
identify project C (1,282 FP) in Fig. 4 as closest (a distance
of 18 FP). C is closer than for example D (1,347 FP). The
effort for C is 22,670 workhours. Therefore, the estimated
effort for the 1,300 FP project would be 22,670 workhours
in the “nearest neighbor” case. For k ¼ 2, the predicted
effort would be the average of C and D.

We observe that the similarity measurements may be
used to rank all the projects in the database with respect to
closeness with project X where X is 1,300 FP in our
particular example.

ANGEL may also compute estimates that are averages of
the k closest projects where k may be any value chosen by
the user. At the extreme, we may average over all the
38 projects in the Finnish data set (i.e., use the sample
mean). In this case, the ANGEL function would be the solid,
horizontal, thick line in Fig. 5. (The average effort of all
projects is 7,573 workhours.) For any other k, the model

would be a stepwise function somewhere in between the
solid thick line and the collection of the thin horizontal,
discontinuous line segments in Fig. 5.

6.7 Validating the Prediction Models

For each data sample, we fitted and validated the two
models using n-fold cross-validation. Both models were
therefore fitted to subsamples of size n� 1 (n is sample
size). For each subsample, we computed the predicted
effort, ŷy, of the left-out observation, and all the different
error terms (e.g., MRE, AR, BRE, etc.). Finally, we computed
all the different accuracy indicators for this sample and per
model (e.g., MMRE, MAR, MBRE, etc.).

7 RESULTS

The results for the comparisons are presented in Table 3 and
Table 4. We have reported the number of times each model
obtains the highest accuracy.

The results in Table 3 suggest that the AFA model
obtains the highest accuracy with a 99.4 percent probability
using MMRE both as the fitting method for the AFA model
as well as the selection criterion. This comes as no surprise.
MMRE tends to select the bad to the good provided the bad
model has smaller slope and/or intercept than the good
(true) model [15]. In other words, a model fitted with the
“minimum MMRE” method will underfit whereas a
regression model fitted with the “minimum least squares”
method will fit to the central tendency of the data and, thus,

388 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 5, MAY 2005

Fig. 5. ANGEL prediction model taking the average over the 38 closest projects, Finnish data set (thick solid line).

TABLE 3
Results of Comparison between AFA and

OLS Models, Highest Accuracy

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



not minimize MMRE. As we have used “minimum MMRE”

as criterion to fit the AFA to each sample whereas we have

used the OLS method to fit the regression line to each

sample, we should expect the AFA to have highest accuracy

in terms of MMRE.
Using the “minimum MMER” fitting method for the

AFA and MMER as selection criterion between the AFA

and OLS models, the OLS model has highest accuracy

97.2 percent of the time. In other words, we obtain complete

opposite results by using another fitting and selection

criterion. This is not unexpected. Minimizing MMER is

quite close to minimizing OLS. Both will fit to some central

tendency of the data as opposed to MMRE that fits to some

value below the central tendency.
Using the “minimum MAR” fitting method for the AFA

and MAR as selection criterion between the AFA and

OLS models, the OLS model has highest accuracy 84.6 per-

cent of the time. Similarly, using the “minimum MBRE”

fitting method for the AFA and MBRE as selection criterion

between the AFA and OLS models, the OLS model has

highest accuracy 91.9 percent of the time.
An interesting observation is that several of the accuracy

indicators (MAR, MBRE, and MIBRE) tend to select the

OLS model, but not with a very high probability. Keeping in

mind that previous studies are essentially single sample

studies, we observe there is still an 8-31 percent probability

that the AFA obtains the highest accuracy using these three

accuracy indicators.
Another interesting observation is that although we have

favored the AFA model in every respect by using the same

fitting and selection criterion in the comparison, it generally

does not obtain the highest accuracy except when using

MMRE in both cases. This may explain the results of

previous studies whose results often tend to go in favor of

some new proposed ML technique when compared against

a linear regression model since MMRE has been the most

common accuracy indicator. From Table 4, we also observe

that using a “minimum X” (X=MBRE in the reported table)

fitting criterion for the AFA together with a comparison

accuracy indicator Y (where Y is any of the accuracy

indicators), the results exhibit a similar pattern, but less

consistent than in Table 3. This implies that the outcome of

single sample studies would be even less consistent

(reliable) with such a procedure.

8 DISCUSSION OF THREATS TO VALIDITY

We believe that there are no serious threats to validity in

this study. However, there are a few hypothetical ones that

we discuss in this section.
Population model. One potential threat is the population

model chosen. We repeat that we believe the characteristics

of the population model are representative of typical

software data sets. Hypothetically, it could be possible that

we would obtain more consistent results, i.e., higher

reliability, comparing an AFA and an OLS regression

model using a different population model with different

characteristics in terms of slope and intercept coefficients,

(non)linearity, heteroscedasticity, kurtosis, multivariate in

stead of univariate, project age, etc. As an example, suppose

we vary the slope coefficient from � ¼ 1:05 (our model) to

� ¼ 1:12 (as in the COCOMO model). As another example,

suppose we used an error term with higher kurtosis. In this

case, it is well-known that a least absolute deviation method

(LAD) would be more efficient than the OLS method. In

either case, we are not able to see that this would alter the

results at all.
Sample size. Similarly, we do not see how a smaller or

larger sample size should all of a sudden yield consistent

(reliable) results, that is, choose the AFA, for example, with

a probability above, say, 95 percent for any accuracy

indicator.
Simulation procedure. In the paper, we have reported the

results drawing m ¼ 1; 000 samples. However, we also did

m ¼ 100 samples. The results were very similar. We do not

think that an increase to m ¼ 10; 000 samples would alter

the results towards more consistency across and within the

accuracy indicators.
Significance tests. We did not test for significance for each

pair wise comparison of the accuracy indicators for the AFA

and the OLS models. The reason is twofold. First, and most

important, studies before 1999 tended to draw conclusions

without testing for significance [29]. Therefore, our proce-

dure is aligned with a large part of previous studies,

probably the major part. Second, testing for significance

would imply that a certain proportion of the results would

not be significant. However, we do not expect that this

would alter the overall results, for example that both

MMRE and MMER would all of a sudden consistently pick

the same model as best in the significant cases. Also, there

would be an additional issue of which alfa-level to choose

since different studies used different levels.
Other potential objections. Some may object that it is

perfectly reasonable to choose the AFA as best on one

sample and the OLS model as best on another sample, even

when both are drawn from the same population. This

would, however, leave us in an impossible position with

regard to giving advice to a project manager on which

model to use to predict his or her next project. The next

project is, we should remember, part of the population and

not of a particular sample. Therefore, we are actually in

quest of the population model, and our single sample

studies may give us the wrong choice a large percentage of

the time as evidenced by the results in this study.

MYRTVEIT ET AL.: RELIABILITY AND VALIDITY IN COMPARATIVE STUDIES OF SOFTWARE PREDICTION MODELS 389

TABLE 4
Results of Comparison between AFA and OLS Models,
Highest Accuracy, Minimizing Only MBRE for the AFA

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



9 CONCLUSIONS

In this study, we have demonstrated that one of the
commonly used measuring procedures in empirical soft-
ware engineering is unreliable when used in comparative
studies of software prediction models. First, the proce-
dure is highly unreliable across accuracy indicators. That
is, one accuracy indicator may tend to select the AFA
whereas another accuracy indicator may tend to select the
OLS model. Studies in the past have to some extent used
different accuracy indicators. Our study thus suggests
that the conclusions on “which model is best” to a large
extent will depend on the accuracy indicator chosen. This
is a serious problem because, at present, we have no
theoretical foundation to prefer, say, MMRE to MMER or
MAR to MBRE.

Second, also for most of the accuracy indicators, the
results are not sufficiently reliable across the samples for the
same accuracy indicator. Typically, there is a 20/80 percent
split. This implies that the conclusions on “which model is
best” to some extent depend on the particular sample at
hand, even for samples drawn from the same population.
When other studies have used samples from populations
with different characteristics, this contributes further to the
lack of convergence.

Third, the conclusions also depend on how the AFA is
fitted to the sample. If we use the fitting criterion for the
AFA also as the subsequent selection criterion, we increase
the probability that the AFA obtains the highest accuracy.
On the other hand, if we use one fitting criterion for the
AFA and another accuracy indicator as the selection
criterion (e.g., “minimize MBRE” and MMRE as selection
criterion), we arrive at different conclusions regarding
“which model is best.” For the regression model, we do
not introduce this fitting complication because it is fitted all
the time with the same method, namely, OLS.

In summary, the lack of convergence in empirical studies
may be attributed to a large degree to low reliability in the
measuring procedure. Which of the factors in the measuring
procedure that contributes most to this problematic state of
affairs is uncertain. Below, we offer our thoughts on which
factors we consider important.

Single sample studies. The results suggest that it may be
very difficult to get compelling evidence from single sample
studies.

Choice of accuracy indicator. The choice of accuracy
indicator has a large impact on the results.

Fitting criterion for the AFA. The choice of fitting criterion
also impacts on the results. This is a problem for AFAs,
only, as the regression model is consistently fitted with the
same method.

9.1 Generalization of Results

In this study, we have only evaluated the measuring
procedure on one type of AFA, estimation by analogy.
However, we believe that one would obtain similar results
comparing a regression model with other ML type models
(classification and regression trees, artificial neural net-
works). This, however, remains to be investigated, and we
think it is prudent not to generalize our findings to other
AFAs based on this study alone.

9.2 Implications for Researchers and Topics for
Further Research

The implications for researchers in empirical software

engineering are that the commonly used measuring

procedures hinder meaningful comparative studies on

prediction models. This may be an important reason why

we are still not in a strong position to advise practitioners as

to what prediction models they should select. The results

suggest several topics for future research:

. Identify better measuring procedures.

. Investigate if, and how, one may draw conclusions
from individual studies that use single data sets.

. Investigate the degree of confidence we may have in
each accuracy indicator, to see if one of them stand
out as more valid and reliable than the others.

. Replicate this study with other AFAs in order to
generalize the findings.

. Examine the influence on the cross-validation
method chosen, for example, n-fold versus v-fold,
and investigate if there exist optimal values for v.
There is a large body of ongoing research on variants
of cross-validation (and bootstrapping for that sake).

. Investigate if other more reliable and valid measur-
ing procedures have been used in some of the
previous studies.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers

for their very helpful comments. They would also like to

thank Barbara Kitchenham for her review and constructive

comments on an early draft of this paper and Tron Foss for

his review of the simulation part. Finally, we wish to thank

STTF for providing the “Finnish” data set that served as a

template for the simulation model.

REFERENCES

[1] L.C. Briand, V.R. Basili, and W.M. Thomas, “A Pattern Recogni-
tion Approach for Software Engineering Data Analysis,” IEEE
Trans. Software Eng., vol. 18, no. 11, pp. 931-942, Nov. 1992.

[2] L.C. Briand, V.R. Basili, and C.J. Hetmanski, “Developing
Interpretable Models with Optimized Set Reduction for Identify-
ing High-Risk Software Components,” IEEE Trans. Software Eng.,
vol. 19, no. 11, pp. 1028-1044, Nov. 1993.

[3] L.C. Briand, K. El-Emam, and I. Wieczorek, “A Case Study in
Productivity Benchmarking: Methods and Lessons Learned,” Proc.
Ninth European Software Control and Metrics Conf. (ESCOM), pp. 4-
14, 1998.

[4] L.C. Briand, K. El-Emam, and I. Wieczorek, “Explaining the Cost
of European Space and Military Projects,” Proc. 21st Int’l Conf.
Software Eng. (ICSE 21), pp. 303-312, 1999.

[5] L.C. Briand, K. El-Emam, K. Maxwell, D. Surmann, and I.
Wieczorek, “An Assessment and Comparison of Common Cost
Software Project Estimation Methods,” Proc. 21st Int’l Conf.
Software Eng. (ICSE 21), pp. 313-322, 1999.

[6] L.C. Briand, T. Langley, and I. Wieczorek, “A Replicated
Assessment and Comparison of Common Software Cost Modeling
Techniques,” Proc. Int’l Conf. Software Eng. (ICSE 22), pp. 377-386,
2000.

[7] L.C. Briand and I. Wieczorek, “Resource Modeling in Software
Engineering,” Encyclopedia of Software Eng., 2001.

[8] E.G. Carmines and R.A. Zeller, Reliability and Validity Assessment.
Sage Univ. papers, 1979.

[9] The COCOMO II Suite, http://sunset.usc.edu/research/
cocomosuite/index.html, 2004.

390 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 31, NO. 5, MAY 2005

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 



[10] S.D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Engineering
Metrics and Models. Menlo Park, Calif.: Benjamin/Cummings,
1986.

[11] J.J. Dolado, “On the Problem of the Software Cost Function,”
Information Software Technology, vol. 43, no. 1, pp. 61-72, 2001.

[12] B. Efron and G. Gong, “A Leisurely Look at the Bootstrap, the
Jackknife, and Cross-Validation,” The Am. Statistician, vol. 37, no. 1,
pp. 36-48, Feb. 1983.

[13] Encyclopedia of Statistical Sciences, S. Kotz et al. eds. Wiley, 1982-
1998.

[14] T. Foss, I. Myrtveit, and E. Stensrud, “A Comparison of LAD and
OLS Regression for Effort Prediction of Software Projects,” Proc.
12th European Software Control and Metrics Conf. (ESCOM 2001),
pp. 9-15, 2001.

[15] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A
Simulation Study of the Model Evaluation Criterion MMRE,”
IEEE Trans. Software Eng., vol. 29, no. 11, pp. 985-995, Nov. 2003.

[16] A.R. Gray and S.G. MacDonell, “Software Metrics Data Analysis
—Exploring the Relative Performance of Some Commonly Used
Modeling Techniques,” Empirical Software Eng., vol. 4, pp. 297-316,
1999.

[17] R. Jeffery and F. Walkerden, ”Analogy, Regression and Other
Methods for Estimating Effort and Software Quality Attributes,”
Proc. European Conf. Optimising Software Development and Main-
tenance (ESCOM ’99), pp. 37-46, 1999.

[18] R. Jeffery, M. Ruhe, and I. Wieczorek, “Using Public Domain
Metrics to Estimate Software Development Effort,” Proc. ME-
TRICS 2001 Conf., pp. 16-27, 2001.

[19] M. Jørgensen, “Experience with the Accuracy of Software
Maintenance Task Effort Prediction Models,” IEEE Trans. Software
Eng., vol. 21, no. 8, pp. 674-681, Aug. 1995.

[20] B.A. Kitchenham, “A Procedure for Analyzing Unbalanced
Datasets,” IEEE Trans. Software Eng., vol. 24, no. 4, pp. 278-301,
Apr. 1998.

[21] B.A. Kitchenham and K. Kansala, “Inter-Item Correlations among
Function Points,” Proc. First METRICS Conf., pp. 11-14, 1993.

[22] B.A. Kitchenham, S.G. MacDonell, L. Pickard, and M.J. Shepperd,
“What Accuracy Statistics Really Measure,” IEE Proc. Software
Eng., vol. 148, pp. 81-85, 2001.

[23] B.A. Kitchenham, “The Question of Scale Economies in Soft-
ware—Why Cannot Researchers Agree?” Information and Software
Technology, vol. 44, no. 1, pp. 13-24, 2002.

[24] J. Kuha, “Model Assessment and Model Choice: An Annotated
Bibliography,” http://www.stat.psu.edu/jkuha/msbib/biblio.
html, 2004.

[25] C. Mair, G. Kadoda, M. Lefley, K. Phalp, C. Schofield, M.
Shepperd, and S. Webster, “An Investigation of Machine Learning
Based Prediction Systems,” J. Systems Software, vol. 53, pp. 23-29,
2000.

[26] D. Michie, D.J. Spiegelhalter, and C.C. Taylor, Machine Learning,
Neural and Statistical Classification. J Campbell, ed. Sussex, U.K.:
Ellis Horwood, 1994.

[27] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Robust
Regression for Developing Software Estimation Models,”
J. Systems and Software, vol. 27, pp. 3-16, 1994.

[28] T. Mukhopadhyay, S.S. Vicinanza, and M.J. Prietula, “Examining
the Feasibility of a Case-Based Reasoning Model for Software
Effort Estimation,” MIS Quarterly, pp. 155-171, June 1992.

[29] I. Myrtveit and E. Stensrud, “A Controlled Experiment to Assess
the Benefits of Estimating with Analogy and Regression Models,”
IEEE Trans. Software Eng., vol. 25, no. 4, pp. 510-525, Apr. 1999.

[30] P. Nesi and T. Querci, “Effort Estimation and Prediction for
Object-Oriented Systems,” J. Systems and Software, vol. 42, pp. 89-
102, 1998.

[31] J.C. Nunnally and I.H. Bernste, Psychometric Theory, third ed.
McGraw-Hill, 1994.

[32] B. Samson, D. Ellison, and P. Dugard, “Software Cost Estimation
Using and Albus Perceptron (CMAC),” Information and Software
Technology, vol. 39, pp. 55-60, 1997.

[33] M.J. Shepperd and C. Schofield, “Estimating Software Project
Effort Using Analogies,” IEEE Trans. Software Eng., vol. 23, no. 12,
pp. 736-743, Dec. 1997.

[34] M.J. Shepperd and M. Cartwright, “Predicting with Sparse Data,”
IEEE Trans. Software Eng., vol. 27, no. 11, pp. 987-998, Nov. 2001.

[35] R. Srinivasan and D. Fisher, “Machine Learning Approaches to
Estimating Software Development Effort,” IEEE Trans. Software
Eng., vol. 21, no. 2, pp. 126-137, Feb. 1995.

[36] E. Stensrud, T. Foss, B. Kitchenham, and I. Myrtveit, “A Further
Empirical Investigation of the Relationship between MRE and
Project Size,” Empirical Software Eng., vol. 8, no. 2, pp. 139-161,
2003.

[37] E. Stensrud and I. Myrtveit, “Identifying High Performance ERP
Projects,” IEEE Trans. Software Eng., vol. 29, no. 5, pp. 398-416,
May 2003.

[38] E. Stensrud and I. Myrtveit, “Human Performance Estimating
with Analogy and Regression Models: An Empirical Validation,”
Proc. METRICS’98 Conf., pp. 205-213, 1998.

[39] K. Strike, K. El-Emam, and N. Madhavji, “Software Cost
Estimation with Incomplete Data,” IEEE Trans. Software Eng.,
vol. 27, no. 10, pp. 890-908, Oct. 2001.

[40] S.S. Vicinanza, T. Mukhopadhyay, and M.J. Prietula, “Software
Effort Estimation: An Exploratory Study of Expert Performance,”
IS Research, vol. 2, no. 4, pp. 243-262, 1991.

[41] F. Walkerden and R. Jeffery, “An Empirical Study of Analogy-
Based Software Effort Estimation,” Empirical Software Eng., vol. 4,
no. 2, pp. 135-158, 1999.

[42] C. Mair and M.J. Shepperd, ”Making Software Cost Data
Available for Meta-Analysis,” Proc. Conf. Empirical Assessment in
Software Eng. (EASE 2004), May 2004.

[43] L. Pickard, B. Kitchenham, and S. Linkman, “An Investigation of
Analysis Techniques for Software Datasets,” Proc. METRICS 99
Conf., pp. 130-142, 1999.

[44] M.J. Shepperd and G. Kadoda, “Comparing Software Prediction
Techniques Using Simulation,” IEEE Trans. Software Eng., vol. 27,
no. 11, pp. 1014-1022, Nov. 2001.

Ingunn Myrtveit received the MS degree in
management from the Norwegian School of
Management in 1985 and the PhD degree in
economics from the Norwegian School of
Economics and Business Administration in
1995. She is an associate professor in manage-
ment accounting and software economics at the
Norwegian School of Management. She has
also been a senior manager at Accenture’s
World Headquarters R&D Center in Chicago.

Erik Stensrud received the MS degree in
physics from the Norwegian Institute of Tech-
nology in 1982, the MS degree in petroleum
economics from the Institut Francais du Petrole
in 1984, and the PhD degree in software
engineering from the University of Oslo in
2000. He is an associate professor at Buskerud
University College, Norway, and he also con-
sults on software engineering. Before that, he
managed software projects in Accenture, Ernst

and Young, and other companies. He is a member of the IEEE and the
IEEE Computer Society.

Martin Shepperd received the PhD degree in
computer science from the Open University,
United Kingdom, in 1991. He is professor of
software engineering at Bournemouth Univer-
sity, United Kingdom. He has published more
than 90 refereed papers and three books in the
area of empirical software engineering, machine
learning and statistics. He is editor of the journal
Information & Software Technology and was an
associate editor of IEEE Transactions on Soft-

ware Engineering (2000-2004).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

MYRTVEIT ET AL.: RELIABILITY AND VALIDITY IN COMPARATIVE STUDIES OF SOFTWARE PREDICTION MODELS 391

Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:22:09 UTC from IEEE Xplore.  Restrictions apply. 


