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Abstract—Recently, Bayesian probabilistic models have been used for predicting software development effort. One of the reasons for

the interest in the use of Bayesian probabilistic models, when compared to traditional point forecast estimation models, is that

Bayesian models provide tools for risk estimation and allow decision-makers to combine historical data with subjective expert

estimates. In this paper, we use a Bayesian network model and illustrate how a belief updating procedure can be used to incorporate

decision-making risks. We develop a causal model from the literature and, using a data set of 33 real-world software projects, we

illustrate how decision-making risks can be incorporated in the Bayesian networks. We compare the predictive performance of the

Bayesian model with popular nonparametric neural-network and regression tree forecasting models and show that the Bayesian model

is a competitive model for forecasting software development effort.

Index Terms—Bayesian belief networks, software effort estimation, probability theory.
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1 INTRODUCTION

CONTAINING the cost of software development is a major
concern faced by information systems departments

[25]. One of the approaches to contain cost is to develop
better software effort estimation techniques. There are
several software effort estimation techniques reported in
the literature [35], [31]. Among a few popular techniques
are linear regression models, cost models (COCOMO/
COCOMO II, SLIM, etc.), neural network models, and
vector prediction models [18], [31].

Chulani et al. [9] and Fenton et al. [14], [15], [16] have
criticized traditional software effort estimation models.
They argue that software engineering data sets do not
adhere to the parametric assumptions and traditional
software effort estimation models do not provide any
support for risk assessment and mitigation. They propose
a Bayesian approach to rectify the problems posed by
traditional software effort estimation models.

Even though Chulani et al. [9] and Fenton et al. [12], [13]
make a compelling case for the use of the Bayesian model,
they do not compare the performance of the Bayesian
model with other nonlinear and nonparametric forecasting
models such as neural network and regression tree models.
Pendharkar and Subramanian [31] and Pendharkar [29]
have used neural network and regression tree forecasting
models to forecast software development effort and soft-
ware size, respectively. While all three models, the
Bayesian, the neural network, and the regression tree,

may be appropriate to forecast software development effort,
they are very different in their outputs and flexibility. The
neural network models provide a point forecast of software
development effort and do not provide any probabilities or
certainty that the forecast software development effort may
be achieved. Linear regression and genetic programming
regression models have the same problem as well. The
regression tree model called the classification and regres-
sion tree (CART) also provides a point forecast. But, given
that a regression tree is provided as an output, a decision-
maker may sometimes be able to compute an upper and a
lower bound on the forecast, although it is not always
possible to compute such upper and lower bounds [29]. The
output of the Bayesian model is a joint probability
distribution and not a point forecast. However, for the
Bayesian model, a point forecast value might be computed
from the joint distribution. The Bayesian model offers other
features that make it attractive for the purpose of software
development effort estimation. Heckerman [19] highlights
four strengths of the Bayesian model. These four strengths
of the Bayesian model for data mining are

. capability of handling missing data,

. capability of learning causal relationships,

. capability of combining prior knowledge and data,
and

. capability of avoiding overfitting the data.

Despite the attractiveness of the Bayesian model for
predicting software effort, only a few studies have used the
Bayesian model for predicting software development effort.
We believe that any software effort estimate given by any
forecasting model has a degree of uncertainty associated
with it. Bayesian models, in addition to providing a forecast
of the software development effort, provide the joint
probability distribution. A decision-maker can use the joint
probability distribution information to estimate the prob-
ability that the forecast development effort will not be
achieved. Managers can estimate the lower and upper
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bounds for effort estimates that can be useful in project risk
assessment [32]. Further, Bayesian models provide a
capability of updating the probability distribution, which
might be a very useful tool in various stages of systems
development.

In addition to the probability distribution information,
Bayesian models provide several procedures to update the
probability distribution when new information becomes
available. The new information can be information obtained
from subjective expert estimates on variables, which are not
available in the historical software engineering data. The
capability of updating the probability distribution due to
the availability of new information makes the Bayesian
model suitable for software effort estimation. Software
development is a dynamic process and a manager’s beliefs
are likely to change over the development life cycle. When
new information becomes available over time, a manager
may incorporate the new information into the Bayesian
model and estimate a new probability distribution.

The objectives of this study are as follows: First, through
the review of literature, we summarize different software
effort estimation models, identify factors that may affect the
software development effort, and propose a probabilistic
model. Second, using a real-world data set, we empirically
compare the Bayesian model with two nonparametric
neural network and regression tree approaches. Third, we
illustrate how new information can be combined in a
Bayesian software effort estimation model. In the end, we
provide a summary of our findings and conclusions.

2 LITERATURE REVIEW ON SOFTWARE EFFORT

ESTIMATION TECHNIQUES, FACTORS IMPACTING

THE SOFTWARE DEVELOPMENT EFFORT, AND A

PROBABILISTIC MODEL FOR SOFTWARE

DEVELOPMENT EFFORT

Software effort estimation is a key antecedent to software
cost estimation. Software effort is defined by the equation
effort ¼ people � time [11]. Software effort estimation tech-
niques fall into four categories—empirical, regression,
theory-based, and machine learning techniques. Empirical
techniques include analogy, function points (FP), and rules
of thumb [22]. Regression techniques use parametric and
nonparametric forecasting models [17]. The theory-based
techniques use the underlying theoretical considerations
characterizing some aspects of software development
processes [11]. Examples of theory-based techniques are
the COCOMO and the SLIM model (see the Appendix for
an overview). Machine Learning (ML) techniques for
predicting software effort involve Artificial Neural Net-
works (ANNs), Classification and Regression Tree (CART),
Case-based Reasoning (CBR), Genetic Algorithm (GA),
Genetic programming (GP), and Rule Induction (RI) [7]. A
recent study by Jorgensen [23] provides a detailed review of
different studies on the software development effort.

Recently, the traditional effort estimation techniques
have been criticized for not providing appropriate causal
relationships for the prediction of software development
effort [12], [14]. Among the criticisms of traditional software
development effort estimation techniques are their lack of

support for risk assessment and reduction, inability to
combine empirical evidence and expert judgment, and
inability to handle incomplete information [14]. Fenton et
al. [13], criticizing the traditional software development
effort estimation techniques, write “There is no longer any
excuse for not building predictive models that can support
effective risk management decisions. Bayesian networks can
be used to construct models that encapsulate causal
influences on a development effort.” A few researchers
used Bayesian approaches for predicting software develop-
ment effort. For example, Moses and Clifford [26] proposed
the use of a Bayesian statistical modeling approach to
support effort estimation in small development companies.
The proposed approach allows a decision-maker to encode
estimates to improve the software effort prediction accu-
racy. The authors found the Bayesian inference makes effort
estimation very useful in small companies. The Bayesian
inference error distribution helps decision-makers compare
and adjust their effort estimates to the actual system
development effort and other estimator’s estimates. Chulani
et al. [9] used the Bayes theorem to combine prior expert
judged information with data-driven information to em-
pirically illustrate that the Bayesian approach outperforms
the multiple regression approach. Stamelos et al. [34]
illustrated how Bayesian belief networks can be used to
support expert judgment for software cost estimation.

There is some evidence that software engineering practi-
tioners have adopted Bayesian belief networks for software
effort estimation. For example, a Bayesian network-based
tool called MODIST was developed by a major grant from
the European Commission and several industry partners
(http://www.modist.org). Another tool, called Agena Risk,
developed by Agena Ltd., allows software project risk
management capabilities (Agena Ltd. at http://www.agena.
co.uk/bbn_article/bbns.html).

There are a few causal models available for prediction of
software development effort. For example, Wrigley and
Dexter [37] and Chrysler [10] proposed a general model that
causally predicts the software development effort through-
out the system development life cycle. Wrigley and Dexter’s
model consists of three independent variables: system
requirements size, personnel experience, and method and
tools. Subramanian and Zarnich [35], Nesi and Querci [27],
and Banker and Slaughter [2] report that software devel-
opment effort depends on software development tools,
software development methodology, software developers,
experience with the development tools, and the project size
and complexity. In reality, software development effort
depends on several complex variables [2], [35] whose
interrelationships are often not very clear.

Subramanian and Zarnich [35] and Pendharkar and
Subramanian [31] used three variables as predictors of
software effort. These three variables are software develop-
ment methodology, software development CASE tools, and
programmer CASE tool experience. The three independent
variables used by Pendharkar and Subramanian [35] are a
subset of the variables specified in the COCOMO II 2000
model [4]. Using the COCOMO II model variables and the
studies of Subramanian and Zarnich [35] and Pendharkar
and Subramanian [31], we propose the following causal
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model for the prediction of software effort (Fig. 1). This causal

model is limited to the three variables studied in [35], [31] and

these variables are shown in Fig. 1. As mentioned earlier, we

do understand that there are other complex variables that

could also be studied if data on these variables are available.
We use Bayesian networks for learning joint probability

distribution for the causal model illustrated in Fig. 1. Using

the principles of the Bayesian networks, joint probability

distribution of the causal model shown in Fig. 1 is given as

follows:

P ðEffort;Methodology; Tool Experience; ToolÞ
¼ P ðEffortjMethodology; Tool Experience; ToolÞ
P ðMethodologyÞP ðTool ExperienceÞP ðToolÞ:

Let IV ¼ fMethodology; Tool Experience; Toolg be the

set of independent variables with its elements, represented

as iv1 ¼ Methodology, taking one of the two possible values

from its value set of

IV V alue1 ¼fSystem Development life cycle ðSDLCÞ;
Rapid Application Design ðRADÞg;

iv2 ¼ Tool Experience one of the three possible values from

its value set of IV V alue2 ¼ flow;medium; highg, and iv3 ¼
Tool taking one of the two possible values of two computer

aided software engineering (CASE) tools, Electronic Data

Systems’ INCASE tool, and Texas Instruments’ Information

Eng i n e e r i n g Fa c i l i t y ( I EF ) c a s e t o o l . T hu s ,

IV V alue3 ¼ fINCASE; IEFg. Let DV ¼ fEffortg be the

set of dependent variable taking values from its value set

DV V alue ¼ flow;medium; highg. Further, let Examples ¼
fexamples1; . . . ; examplesng be the set of all the n historical

examples in the database. Each element of the set of

Examples consists of one example which can be represented

as the union of all the elements of the set of IV andDV , with

each element taking a certain allowable value from its value

set. For example, an element i for some i 2 f1; ::; ngmay be as

follows:

Elementi ¼fMethodology ¼ SDLC;

Tool Experience ¼ low; Tool ¼ INCASEg:

In our research, we use a standard naive Bayes network
procedure to learn and predict software development effort.
Although standard naive Bayes procedure allows managers
to learn and forecast software development effort, it is not
very adaptive. For example, Laranjeira [24] argues that
initial software project estimates are rarely correct and the
estimates can be improved during the project life cycle. One
of the reasons why initial estimates are rarely correct may
be due to the uncertainties about the selection of tools and
techniques. The joint probability distribution formula
described above is useful if a manager knows the tool type,
methodology, and programmers’ tool experience with
certainty. However, in reality, a manager may be only
partially sure about his resources and methodology. In
order to model uncertainty in managerial decision-making,
we use a belief updating procedure to complement the
naive Bayes network.

As shown in Fig. 2, let eþ and e� represent new
evidential data vectors at the parent and the leaf nodes. In
Fig. 2, we use subscripts to highlight the type of evidence
information. Further, let �ðivjÞ and �ðivjÞ 8j 2 f1; 2; 3g
represent the new prior and likelihood vectors in light of
all the new evidential information vectors eþ and e�, and 1
represent vector of 1s of appropriate dimension, two or
three in our case. Whenever new information becomes
available, belief and prior updating procedures, described
in Pearl [28], can be used to update the beliefs and priors.

3 DATA, EXPERIMENTS, AND RESULTS

For our experiments, we use a data set that has been used in
previous studies in software engineering literature [35]. The
data set used by Subramanian and Zarnich [35] consists of
40 software projects obtained from two major companies in
the northeastern US. The data set includes an assigned
project number (1 through 40), tool name (IEF or INCASE),
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methodology (RAD or SDLC), tool experience (low,
medium, or high), actual effort in man months, adjusted
function points (AFP), unadjusted function points (UFP),
and technical complexity factor (TCF). Since the original
data set of 40 projects contains projects of different sizes,
we eliminate projects with sizes greater than or close to
1,000 function points and use only 33 projects for our
data analysis. The mean size (FP) and standard deviation
of 33 projects were 223.7 and 155.01, respectively. The
TCF values of projects did not vary much across the projects
[mean = 0.905; S.D. = 0.12; max = 1.1; min = 0.7] which
would suggest that the projects were comparable.

In defining the data, methodology and tool are self-
explanatory. The methodology is defined as RAD or SDLC.
The ICASE tool experience category is broken into three
levels. This three level classification was chosen by us in
consultation with the selected project managers from these
organizations. The first level, low experience, is determined
as no project member has over 1.5 years of experience
utilizing the respective ICASE tool. The third level, high
experience, is determined as at least one-half of the project
members have over 3 years of experience utilizing the
respective ICASE tool. The second level, medium experi-
ence, is determined as the project team falling somewhere
between the low and high levels of experience.

Since there is no study that compares the performance of

the Bayesian networks with other popular forecasting

models, we benchmark the performance of the Bayesian

networks with nonparametric neural networks and CART

algorithm. Benchmarking the performance of nonpara-

metric techniques is important as there are several

commercial tools available to forecast software develop-

ment effort. It is a very difficult task to select the best

matching tool among several available commercial tools for

a given problem. Since there is a lack of a theoretical

framework that allows a decision-maker to select an

appropriate forecasting model for a given forecasting

problem, empirical studies provide the sole means for

comparative analyses [3]. Using a previous study as a basis,

we divide our original data set into 26 training and 7 test

examples [31]. The neural network size and stopping

criterion were similar to that of the Pendharkar and

Subramanian [31] study that used the same data set. Our

implementation of the CART algorithm is the same as that

of the Pendharkar [29] study. The reader is directed to the

Pendharkar and Subramanian [31] and Pendharkar [29]

studies for further information on neural network, the

CART algorithm, and their implementations. A brief

introduction for the CART algorithm is provided in the

Appendix.

Since software development effort is continuous and the

Bayesian network required the use of discrete variables, we

approximated the effort using three different discrete

intervals. Varis [36] provides a methodology for discretiza-

tion of continuous variables for Bayesian networks. Using

the Varis [36] methodology and adjusting for sparse data,

we used three discrete approximations. The three different

approximations were as follows: Effort was categorized as

low when the actual effort was less than or equal to 10 man-

months. The mean value (�L) of low effort was 2.10 man-

months. Similarly, the effort was categorized as medium

when the actual effort was higher than 10 man-months and

less than or equal to 20 man-months with a mean value (�M )

of 14.50 man-months. Last, the effort was categorized as

highwhen the actual effort was greater than 20 man-months

with a mean value (�H) of 30.6 man-months. Tables 1 and 2

illustrate the values of prior and conditional probabilities,

which were obtained by executing naive Bayes procedure.

For Table 1, the first column indicates the values for the

original data of 33 projects and the second column in italic

font indicates the values for the training data of 26 projects.

Table 2 illustrates the conditional probabilities for original

and training data sets. The columns in Table 2 list the

probability values of software effort conditioned on the

known variables listed in the rows. The original and

training data set values are listed into subcolumns of a

given software development effort type column; the first

subcolumn is the original data conditional probability. Since

our data set is relatively small, we did not have enough

projects to compute all conditional probabilities. Thus, in

Table 2, the unknown conditional probabilities are repre-

sented by “-.”

Our Bayesian network assumes that independent vari-

ables in the causal network are independent of each other

[28]. Since our variables are binary/discrete, we test for

associations among the variables using market-basket

analysis. Market basket analysis is a popular data mining

technique that tests for associations among binary variables.

More information on market-basket analysis and the

algorithm Apriori that is used for market-basket analysis

can be found in Chen et al. [8].
Since market-basket analysis requires binary variables

and the tool experience variable has three categories, we
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combine categories low and medium into one category. The

remaining two variables, methodology and tool, were

binary and kept unchanged. Using the Apriori algorithm

in the SPSS data mining package Clementine, we conducted

the market-basket analysis to test the associations among

the independent variables. For low support and threshold

values of both equal to 0.6, we did not find any associations

among the independent variables.

Since the Bayesian network provides a probability

distribution over the effort as low, medium, or high, the

results of the Bayesian network cannot be directly com-

pared to the results of the neural network and the CART

algorithm. In order to compute a point forecast, we suggest

the following procedure, shown in Fig. 3, to compute

normalized joint probability distribution over software

development effort given certain values of development

methodology, tool experience and type of CASE tool. Since

the values of development methodology, tool experience,

and type of CASE tool are known, the normalized joint

probability distribution is the belief distribution [28].
Once the belief distribution of the software development

effort is known, the point forecast for the software

development effort can be computed using the following

Lemma 1.

Lemma 1. If p ¼ ðpL; pM; pHÞ is a normalized vector represent-

ing the probability distribution of development effort for a

given methodology, tool, and tool experience and �L, �M , �H

PENDHARKAR ET AL.: A PROBABILISTIC MODEL FOR PREDICTING SOFTWARE DEVELOPMENT EFFORT 619

TABLE 2
The Conditional Probabilities

Fig. 3. A procedure to compute joint distribution of software development effort.
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are the mean values of low, medium, and high effort, then the

estimated software development effort is given as follows:

EðEffortÞ ¼ pL�L þ pM�M þ pH�H:

Proof. Using the expectation relation, the expected effort is

given as,

EðEffortÞ¼ pLEðEffort ¼ lowÞþ pMEðEffort ¼ MediumÞ
þ pHEðEffort ¼ HighÞ:

Substituting the mean values for the expected effort

equal to low, medium, and high, we get the result. tu
Using the point forecast for the Bayesian network, we

compare the out-of-sample (test data) performance for the

three forecasting techniques. We use the 26 software

projects for training the techniques and the remaining

seven projects for testing the performance of each

technique. Fig. 4 illustrates the regression tree learnt by
the CART algorithm on the training data. For leaves with
missing standard deviation values, only one case in the
training data belonged to that leaf. Fig. 4 illustrates that
the type of CASE tool is a primary antecedent for
predicting software development effort as the greatest
improvement is obtained on the tool binary split. Fig. 5
illustrates the test performance of the three techniques on
the test data set of seven projects. The bold line indicates
the actual value of the effort. The acronym ANN
indicates the (artificial) neural network technique.

Table 3 illustrates the pairwise difference in means
between the actual effort and three different forecasting
approaches and the pairwise difference in means between
the three different forecasting approaches. No significant
difference in means was observed between actual effort
and the predicted effort using the Bayesian forecasting
approach. However, the differences in means between
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actual and ANN, and actual and CART forecasting
approaches were significant. The pairwise comparisons
between all three forecasting techniques were nonsignifi-
cant, indicating that all three techniques behaved simi-
larly. The mean absolute relative errors for ANN,
Bayesian network, and CART were 2.68, 1.56, and 2.37,
respectively. Table 4 illustrates the actual values of
absolute errors for ANN, Bayesian network, and CART
techniques. The results indicate that the Bayesian techni-
que behaves similarly to ANN and CART models, but is
slightly more accurate than the ANN and the CART
forecasting models.

The Bayesian approach allows the manager to estimate
probability bounds on the forecast software effort. For
example, given vector p, the probability that the software
effort will not be high is given by the sum of pL and pM .
Table 5 illustrates the actual value and category of the
software development effort in the test data, the probability
that the effort will be less than 20 man-months (as
calculated by the Bayesian joint distribution), and the
predicted effort using the Bayes procedure. The results in
Table 5 indicate that the software development effort
category prediction accuracy of the Bayes procedure is
about 86 percent.

The capability of generating a point forecast, categorical

value of a forecast, and a probability bound for a forecast

are only a few advantages that the Bayesian forecasting

model can provide. Most researchers in the past have

noted that the main strength of a Bayesian model is its

capability of integrating uncertainties and managerial

estimate into the posterior estimates. For example, let us

assume that the development methodology, type of CASE

tool, and the programmers’ CASE tool experience is not

known with certainty. If a manager believes there is a

60 percent chance that he/she may use RAD methodol-

ogy, 80 percent chance that he/she may use INCASE tool,

and 60 percent chance that the programmers’ experience

in CASE tool will be low and 20 percent chance that the

experience may be medium, what is the expected software

development effort and the uncertainty associated with it?

Clearly, traditional forecasting models, such as neural

network and CART, cannot provide the capability to

handle uncertain information. However, the Bayesian

model can incorporate this uncertainty.
We use the entire data set of 33 projects and belief and

prior updating procedures [28] to illustrate how a Bayesian

model can provide an answer to the above question. Based
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on the given information, we identify the prior vectors as
follows:

��ðMethodÞ ¼ ð�ðMethod ¼ RADÞ;
�ðMethod ¼ NON RADÞÞ ¼ ð0:6; 0:4Þ;

��ðToolÞ¼ð�ðTool ¼ IEF Þ; �ðTool ¼ INCASEÞÞ ¼ ð0:2; 0:8Þ;
and ��ðExperienceÞ ¼ ð�ðExperience ¼ LowÞ; �ðExperience

¼ MediumÞ; �ðExperience ¼ HighÞÞ ¼ ð0:6; 0:2; 0:2Þ:

Using the prior updating procedure, we initialize likelihood
vectors as follows:

��ðMethodÞ ¼ ð1; 1Þ;
��ðToolÞ ¼ ð1; 1Þ; and
��ðExperienceÞ ¼ ð1; 1; 1Þ:

We then calculate the values of

��ðEffortÞ ¼ ð�ðEffort ¼ LowÞ;
�ðEffort ¼ MediumÞ; �ðEffort ¼ HighÞÞ:

The value for �ðEffortÞ is computed by the following
equation:

�ðEffortÞ¼
X

iv1;iv2;iv3

P ðEffort j iv1; iv2; iv3Þ�ðiv1Þ�ðiv2Þ�ðiv3Þ:

Using the conditional probability values from Table 2, we
get �ðEffort ¼ LowÞ ¼ 0:36096. Similarly, the values for
�ðEffort¼MediumÞ and �ðEffort¼HighÞ are 0.13152 and
0.05952, respectively. We also have �ðEffortÞ ¼ ð1; 1; 1Þ.
Finally, after accounting for the uncertainty, we compute
the new belief distribution on effort as,

BELBELðEffortÞ ¼ �:ð1; 1; 1Þ:ð0:39136; 0:13664; 0:072Þ
¼ ð0:65; 0:24; 0:11Þ:

Using Lemma 1, the expected effort is 8.22 man-months,
and there is an 89 percent chance that the actual effort may
be less than 20 man-months. If a manager was certain to use
RAD methodology, INCASE tool with medium program-
mer tool experience, then the expected effort would be
2.10 man-months, and the probability that the actual effort
may be less than 20 man-months would be 100 percent.

The Bayesian model, in addition to allowing for
uncertainty in input information, allows managers to
combine external information that is not used by the
Bayesian model to generate a forecast. For example, assume
that, using variables not used in the Bayesian model, an
independent forecast is available. This forecast, either using
guesstimates or function points, suggests that the effort
probability distribution is ��ðEffortÞ ¼ ð0:3; 0:5; 0:2Þ. The
Bayesian model allows a decision maker to combine this
new information with the existing information to improve
the belief distribution on effort and update the priors.

Using thebeliefupdatingprocedure [28], thenewinforma-
tion changes the likelihood ��ðEffortÞ¼ð0:3; 0:5; 0:2Þ. The
BELBELðEffortÞ changes as follows:

BELBELðEffortÞ ¼ �:ð0:3; 0:5; 0:2Þ:ð0:65; 0:24; 0:11Þ
¼ ð0:58; 0:36; 0:06Þ:

The expected effort will now be 8.28 man-months with
94 percent chance that the actual effort may be less than
20 man-months. We can compute new likelihood vectors
��ðMethodÞ, ��ðToolÞ, and ��ðExperienceÞ as described in
Pearl [28]. For example, �ðMethodÞ an element of
��ðMethodÞ vector can be calculated using the following
equality:

�ðMethodÞ ¼
X
iv2;iv3

�ðiv2Þ�ðiv3Þ
X
Effort

P ðEffortjMethod; iv2; iv3Þ�ðEffortÞ
( )

:

Substituting the values in the above equality, we get
�ðMethod ¼ RADÞ ¼ 0:164. Similarly,

�ðMethod ¼ NON RADÞ ¼ 0:303;

�ðTool ¼ IEF Þ ¼ 0:268;

�ðTool ¼ INCASEÞ ¼ 0:165;

�ðExperience ¼ LowÞ ¼ 0:174;

�ðExperience ¼ MediumÞ ¼ 0:280; and

�ðExperience ¼ HighÞ ¼ 0:128:

The new priors are as follows:

��newðMethodÞ ¼ :ð0:164; 0:303Þ:ð0:6; 0:4Þ ¼ ð0:448; 0:552Þ
��newðToolÞ ¼ �:ð0:268; 0:165Þ:ð0:2; 0:8Þ ¼ ð0:289; 0:711Þ
��newðExperienceÞ ¼ �:ð0:174; 0:280; 0:128Þ:ð0:6; 0:2; 0:2Þ

¼ ð0:561; 0:301; 0:138Þ:

4 CONCLUSIONS AND SUMMARY

There are several software effort forecasting models that
can be used in forecasting future software development
effort. The Bayesian model, when used for forecasting
software effort, offers certain unique advantages. Like most
other forecasting models, the Bayesian can be used to
provide a point forecast for a software development effort.
However, unlike most other forecasting models, the
Bayesian model allows the managers to generate prob-
ability bounds on the forecast effort and combine manage-
rial subjective estimates with the existing historical data to
improve the software effort forecast. The Bayesian model is
able to handle missing data and can be used to learn the
causal relationships [18]. Thus, the primary advantage of
using the Bayesian model over other models is its capability
of providing uncertainty in forecasted value and its
capability of handling missing data.

Our study contributes to the literature in several ways.
First, using a set of real-world software projects, we
benchmark the performance of Bayesian point software
development forecasts with popular nonparametric neural
network and the CART approaches. The results of our
benchmarking indicate that the point forecasts generated by
the Bayesian model are competitive. Second, we illustrate
how a manager can establish probability bounds on the
software effort forecast generated by the Bayesian model.
Third, we illustrate how subjective managerial estimates
(resulting from new out-of-data information) can be
incorporated into the Bayesian model to update the
probabilities in the Bayesian network.
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The aforementioned contributions are all unique con-
tributions of our study. The Bayesian model has been used
in previous studies in the literature [9], [34]. The Chulani
et al. [9] and Stamelos et al. [34] studies focused on
combining subjective managerial estimates into the Baye-
sian model. Chulani et al. [9] did not use the Bayesian
network, but used the Bayes theorem to generate posterior
distribution given a prior distribution. Stamelos et al. [34]
study did not provide the elaborate belief updating
procedure, but illustrated how the Bayesian network can
be applied to COCOMO cost factors and to deal with
productivity in the enterprise resources planning (ERP)
system localization. Thus, we believe that our study is much
broader and more comprehensive than some of the
previous studies in the literature and complements the
findings of the previous studies.

Our study, while significant, can be improved in several
ways. For example, in our project scenarios, we assumed
that the information on the uncertainty in managerial
decision-making was available. When this information is
not available, several techniques can be used to obtain such
information. One approach could be to use Analytic
Hierarchy Process (AHP) to obtain the priors. The link
between AHP and Bayesian probabilities is well established
[33]. The other approach could be to use Delphi or
guesstimates [21].

APPENDIX

SOFTWARE EFFORT ESTIMATION MODELS, THE
CART ALGORITHM, AND PROOF OF COMPUTATIONAL

COMPLEXITY PROPOSITIONS

A.1 COCOMO/COCOMO II

COCOMO was the most popular model for software cost

estimation during the 1980s and 1990s [9]. COCOMO
estimates effort for an application using the following

model form:

E ¼ aðEDSIÞb �EAF:

In the COCOMO model, the variable E is an effort estimate
in man-months, EDSI is estimated delivered source

instructions, EAF is the effort adjustment factor, and

parameters a and b are constants determined by application
complexity. COCOMO assumes the systems development

life cycle (SDLC) approach to application development, and

an application effort can be assessed in three different
levels: basic, intermediate, and advanced. The basic level

effort is determined early in SDLC, while the intermediate
and advanced levels are applied at later stages in SDLC.

Depending on the application level, the overall COCOMO

remains the same, except EAF is determined as follows:

EAF ¼ 1 ðfor basic levelÞQ15
i¼1 Ci ðfor intermediate and advance levelÞ;

�

where Ci represents the value of ith cost factor. The

COCOMO model has been very accurate in estimating

effort of applications in the intermediate level. The effort
estimations at the basic and advanced levels were not so

accurate [20].

The COCOMO II model uses software size as a primary

factor and 17 secondary factors, called cost drivers [5]. The

COCOMO II model has the following mathematical form:

E ¼ a�
�
Size

�1:01þP3

i¼1
SFi �

Y17
i¼1

EMi;

where E and a are the same as before, Size is the size of the

software project (either measured in KLOC or FP), SF is the

scale factor, and EM is the effort multiplier (cost drivers).

A.2 The SLIM (Software Lifecycle Management)
Method

The SLIM method is a theory-based technique to estimate

software development effort and schedule. The SLIM

method is based on Putman’s life-cycle analysis of the

Rayleigh distribution. The Rayleigh distribution is used to

estimate how many people should be allocated to the

development and maintenance cost during the life cycle of a

software project. The SLIM model uses two equations: the

software productivity level equation and the manpower

equation [11]. The software productivity level equation

expresses development effort in terms of project size and

development time. The manpower equation expresses the

buildup of manpower as a function of time. The SLIM

model uses the Rayleigh distribution to estimate project

effort schedule and defect rate. Two key variables used in

the SLIM method are the Productivity Index (PI) and the

Manpower Buildup Index (MBI). The PI is a measure of

process efficiency (cost-effectiveness of assets), and the MBI

determines the effects on total project effort that result from

variations in the development schedule.

A.3 Classification and Regression Tree Algorithm

Classification and Regression Trees (CART) is a binary

decision tree algorithm that is used in data mining problems

involving classification and regression. TheCART constructs

a binary decision tree by splitting a data set in such away that

the data in the descendant subsets are more pure than the

data in the parent set. For example, in a regression problem,

let ðxn; ynÞ represent nth example, where xn is the nth

example vector on independent variables and yn is the value

of the dependent variable. If there are a total of N examples,

then CART calculates a best split s� so that the following is

maximized over all possible splits S:

�Rðs�; tÞ ¼ argmax
s2S

�Rðs; tÞ;

where �Rðs; tÞ ¼ RðtÞ �RðtLÞ �RðtRÞ is improvement in

the resubstitution estimate for split s of t. The resubstitution

estimate RðtÞ is defined as follows:

RðtÞ ¼ 1

N

X
xn2t

ðyn � yðtÞÞ2:

The variables tL and tR are left and right values for split t.

The variable yðtÞ is defined as follows:

yðtÞ ¼ 1

NðtÞ
X
xn2t

yn;
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where NðtÞ is the total number of cases in t. The tree

continues to grow until a node is reached such that no

significant decrease in resubstitution estimate is possible.

This node is the terminal node.
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