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AbstractÐIt is well-known that effective prediction of project cost related factors is an important aspect of software engineering.

Unfortunately, despite extensive research over more than 30 years, this remains a significant problem for many practitioners. A major

obstacle is the absence of reliable and systematic historic data, yet this is a sine qua non for almost all proposed methods: statistical,

machine learning or calibration of existing models. In this paper, we describe our sparse data method (SDM) based upon a pairwise

comparison technique and Saaty's Analytic Hierarchy Process (AHP). Our minimum data requirement is a single known point. The

technique is supported by a software tool known as DataSalvage. We show, for data from two companies, how our approachÐbased

upon expert judgementÐadds value to expert judgement by producing significantly more accurate and less biased results. A sensitivity

analysis shows that our approach is robust to pairwise comparison errors. We then describe the results of a small usability trial with a

practicing project manager. From this empirical work, we conclude that the technique is promising and may help overcome some of the

present barriers to effective project prediction.

Index TermsÐPrediction, software project effort, expert judgement, empirical data, sparse data.
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1 INTRODUCTION

DESPITE a great deal of research activity, predicting effort
for software development projects with any acceptable

degree of accuracy remains challenging. One of our growing
concerns is that of the availability of appropriate data.

Data is needed to construct models and to validate them.
However, collecting data is time consuming and difficult. In
particular, it is difficult to ensure that the data collected is
accurate, consistent, and complete. Data has to be collected
by a number of individuals and over a period of time,
increasing the opportunity for inconsistency and error. For
example, data from different sources may be kept in
different formats, or over time those recording data may
lose enthusiasm for doing so and, so, possibly be less
meticulous. There is certainly strong anecdotal evidence
that many developers do not keep accurate records of effort.

Even as simple an attribute as the number of person
hours expended upon a particular project may in practice
be difficult to ascertain with much hope of precision. Time
sheets can be completed some time after the event. An
appropriate cost code may not exist. Overtime, especially
where it is not remunerated, may lead to complications.
Staff may even be encouraged to misallocate time for
political reasons. Recently, one author was involved in
assisting an organization with its estimation practices.
Data relating to project effort was available from three
different sources so that triangulation was possible.
Unfortunately, this revealed that there were very sub-
stantialÐin excess of 30 percentÐdiscrepancies between
the different measures. This was despite the fact that, at
least in principle, the data was describing the same

commodity, namely, project effort. Resolving these dis-
crepancies has not been easy. Yet, not knowing the true
level of effort per project makes building prediction
systems a somewhat speculative activity.

An additional problem is that the value of collected data
may diminish over time due to advances in development
technology or other organizational changes. Thus, the
usefulness of such data is compromised. Even assuming
that we can be confident about the data, we will often find
there is insufficient data to construct and test a model for
effort prediction.

One possible solution is to pool or reuse data across
different measurement environments. Examples of this kind
of approach are the International Software Benchmarking
Standards Group (ISBSG) and the European Space Agency
(ESA) data sets, each of which comprises hundreds of
projects. Unfortunately, there are drawbacks. There is the
diversity between software projects. This is compounded by
different development methods, variation between staff and
data collection conventions. Two obvious examples of the
latter are person hours of effortÐis overtime (paid or
unpaid), sickness, administration, etc. to be includedÐand
lines of code (LOC) where there is not an inconsiderable
literature describing the nuances of different definitions [1].
A recent study [2] has analyzed the ISBSG data set which
comprises over 750 projects that have been submitted by a
range of different software development organizations. The
results of this study indicated that there were significant
benefits in restricting data to that which was collected
locally, as opposed to using all the pooled data.

The majority of effort prediction techniques commonly in
use have the same problem. They need systematic historical
data, preferably a good deal of it. Broadly speaking, these
techniques can be grouped into four categories:

. ªoff-the-shelfº or general purpose models,

. statistically derived local models,

. machine learning techniques, and

. expert judgement.
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ªOff-the-shelfº models are general purpose, algorithmic
prediction systems intended for usage beyond the environ-
ment in which they have been developed. Well-known
examples include COCOMO [3] and SLIM [4]. Estimators
using these techniques do not need to collect project data
other than that which is required as inputs to the model.
Unfortunately, there is little evidence to suggest these
techniques perform well outside their own environments
[5], [6], [7]. The relevance of models constructed from data
drawn from one environment to another with different
working practices, problem domains, development techni-
ques, etc., has, quite rightly, been questioned. Recalibration
has often been shown to be of value [8], [9]; however, this
necessitates data.

Statistical models are algorithmic prediction systems
derived from local data and, in contrast to the general
purpose models, are intended only for one particular
environment. Frequently, relatively straightforward meth-
ods, such as linear regression procedures, are used to
develop simple, but useful, prediction systems. Here,
historical data is needed, not only to formulate the model,
but to test the model in order to assess its accuracy. An
example is the MERMAID approach [10], which advocates
that models should be calibrated to the environment in
which they are to be used, by using local data to evolve
local models, employing techniques such as stepwise
regression.

Machine learning includes neural nets, case-based reason-
ing, rule induction, and neuro-fuzzy systems. They are
inductive learning techniques and, as such, require accurate
data for training and then validation purposes. For instance,
neural nets require training sets from which the network
learns the relationships that are implicit in that data set. A
training set will consist of an input vector and an output(s)
that have been collected from real software development
projects. The trained network can then be validated against
the validation data set. A number of experiments have
compared a neural net approach with an algorithmic
approach and have tended to conclude that neural nets
offer improved accuracy, for example [11]. Experimentation
has indicated that neural nets seem to require large
amounts1 of data [12]. Likewise, rule induction systems
require training sets to build rules, in the form of decision
trees, with a predicted range of values at each leaf node.
Another machine learning approach to software estimation
is case-based reasoning (CBR). A case is a problem that has
been solved so for cost estimation purposes is typically a
project. Each case is characterized by a set of features such
as size and development method. These are stored in a case
base. The most similar case, or cases, are then retrieved to
help solve the new problem, in this situation to make a
project prediction. Clearly, performance will be related to
the number, relevance and quality of past projects stored in
the case base. For example, our sensitivity analysis using
Albrecht's data set suggested a need for at least 15 cases
[13].

Finally, there is expert judgement. Here, there is no
formal requirement for systematic data which is potentially

advantageous. However, various concerns have been
raised, for instance, repeatability and bias. Also, there has
been relatively little research in this area; nevertheless, due
to our interest in predicting in the face of limited data
availability, we will review related work in the next section.

To summarize, the estimator faces something of an
impasse. The estimation techniques that appear to be
most effective have the greatest demands for historical
dataÐdata which is seldom availableÐwhile those tech-
niques that have no data requirement have been shown to
have many drawbacks. This is, therefore, the motivation
for our research into sparse data methods.

The next section examines, in more detail, prediction
based upon expert judgement. We then describe our new
sparse data method based on Saaty's AHP and its
application to software estimation. Next, we show the
results of applying this new technique to two industrial
data sets, followed by a sensitivity analysis. We then
provide some qualitative data based upon our experiences
with users derived from interviews with a practicing project
manager. We conclude by identifying outstanding pro-
blems and further work.

2 EXPERT JUDGEMENT

Expert judgement is a widely practiced technique for
making predictions. Although there is no strict requirement
for systematic historical data, estimators frequently make
use of remembered analogies when possible [14] and may
be hindered by recall problems if past projects are not
adequately documented. The impact of group dynamics can
have a significant impact upon expert judgement. These
problems are compounded by confusion between predic-
tion and target setting. Ideally, an estimate will have an
equal probability of being under or over whereas a goal is
intentionally challenging. For these various reasons, much
research has focused upon building more objective and
repeatable prediction systems.

Despite the fact that expert judgement is the most
commonly used means of making a prediction, there is
relatively little research in this arena. Heemstra [14]
conducted a survey over almost 600 organizations in the
Netherlands in the early 1990s and found that less than
10 percent reported that they used algorithmic models such
COCOMO or PRICE-S. Heemstra found most organizations
made some use of past experience, but, in many cases, on an
informal basis only since half the organizations surveyed
claimed not to record data concerning completed projects.

A more recent study by Hughes [15] focused upon the
details of expert judgement in a telecommunications
company. He noted that respondents indicated widely
differing levels of effort for making a prediction ranging
from four weeks to five minutes. They also indicated that
they, in the main, received little if any feedback. This would
seem to be a major obstacle to improving the practice. Better
access to past projects appeared to be another issue.

In a wider context, there has been rather more work that
has looked at the psychology of estimation. A number of
relevant findings have emerged. (For a more detailed
review of such work, see Busby and Barton [16]). A number
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1. By and large, we mean by software project data set training sets of the
order of 50 plus cases.
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of different phenomena have been observed through
experimentation and case study:

. a preference for singular as opposed to distributional
information,

. recall impacted by recency and ªvividness,º

. distortion of probabilities,

. anchoring and adjustment, and

. group dynamics and a fear of voicing ªnegativeº
opinions.

First, estimators seem to exhibit a marked preference for
case specific, or singular, information as opposed to general
statistical, or distributional, information. A good illustration
of this is given by Busby and Barton [16], where they give
the example of estimators who employed a top-down or
work breakdown approach to prediction. Unfortunately,
this approach failed to accommodate unplanned activity;
consequently, estimates were consistently underestimating
by 20 percent. The case-specific evidence for each project,
by definition, will fail to account for unplanned activities,
yet the statistical evidence across many projects suggests
that it is very real. Nonetheless, managers favored the
singular evidence and would not include a factor for
unplanned activities. This is sometimes referred to as the
ªplanning fallacyº [17], [18], [19].

A second phenomenon is the tendency of recall to be
impacted by recency and the vividness of the experience.
The further into the past a factor is, the greater the tendency
to discount its significance. Now, in one sense, this may be
sensible given that the way in which we develop software
has changed considerably over the years. On the other
hand, many risks, such as requirements being modified or
misunderstood, have changed little.

Third is a general tendency for humans to distort
probabilities such that very low probabilities are considered
more likely than is the case (this in part may explain the
popularity of lotteries), while high probabilities are con-
sidered less likely. Particularly, this may be significant if we
regard the estimate as a probabilistic statement ideally with
an equal probability of under or overshooting. This leads to
a tendency where the lower (best case) and upper (worst
case) bounds of a prediction cover too small a range of
values.

Anchoring and adjustment is a common tactic for
estimating. Here, the estimator selects an analogous situa-
tion and then adjusts it to suit the new circumstances. There
is considerable evidence to suggest that estimators are
unduly cautious when making the adjustment. In other
words, the anchoring dominates and then insufficient
adaptation is made. This tactic may also be influenced by
problems of recall such that the most suitable analogies may
be overlooked due to their lack of recency.

The impact of group dynamics and, in particular, a
reluctance to appear ªnegativeº can also have a significant
impact upon expert judgement. As DeMarco [20] has
remarked ªrealism can be mistaken for disloyalty.º A
consequence is undue optimism in making predictions. It
may also influence techniques based upon multiple experts
known as Delphi methods [21]. Since these methods revolve
around searching for group consensus, albeit often with

anonymous individual predictions, such methods must be
treated with a certain degree of caution.

This section has indicated that expert judgement is a
widespread method of making predictions. Despite its
popularity, however, it has not been a major research topic
and the limited research we have indicates a number of
problems. There appears to be a tendency for estimators to
behave in a subjective fashion preferring certain forms of
evidence to others and with a bias to more recent or
memorable analogies. These problems are compounded by
group behavior and confusion between predictions and
goals. In the next section, we describe a technique that
endeavors to impose more structure upon the expert
judgement process yet does not have heavy demands for
systematic data.

3 AHP, A NEW APPROACH TO EFFORT

PREDICTION

AHP is widely used for multicriteria decision making [22],
[23]. It provides a means of decomposing the problem into a
hierarchy of subproblems which can more easily be
comprehended and subjectively evaluated. First, we de-
scribe the relevant aspects of the AHP technique and then
consider its application to software prediction.

AHP is carried out in two phases. First, the design phase
where a hierarchy of criteria is set up and, second, the
evaluation phase which comprises making pairwise com-
parisons. The design of the hierarchy requires both a
decision maker and knowledge of the problem area though
not necessarily knowledge of the actual data. The hierarchy
is structured so that the topmost node is the overall
objective. For example, we may wish to determine which
is the best supplier of certain goods (see Fig. 1). The topmost
node would be ªChoosing a supplier.º Subsequent nodes at
lower levels in the hierarchy consist of the criteria used in
arriving at this decision, perhaps cost and quality. The
bottom level of the hierarchy consists of the alternatives
from which the choice is to be made, i.e., the suppliers. Each
element in an upper level must be a common criterion for
each element in the level immediately below it.

During the design stage, key elements of the problem
area are identified and inserted into the hierarchy, building
up a structure which represents the problem area. Complex
problems are decomposed into simpler, more manageable
portions, which proceed downward from the more general
to the more concrete and from the less controllable to the
more controllable. Such structures are fundamental to the
analysis of risk [23].
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Fig. 1. Choosing a supplier.
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The second phase is the evaluation stage in which each
alternative is compared to all other alternatives. This
determines the relative importance of each alternative with
respect to the criterion in the level immediately above it. For
example, Supplier 1 is compared with respect to cost
against Supplier 2 and then Supplier 3. The same compar-
ison is then made between Supplier 2 and Supplier 3. These
comparisons are subsequently repeated with respect to
quality. The comparisons are made by first posing the
question ªWhich of the two is the larger/more important?º
and, second, ªBy how much?º The strength of preference is
expressed on a ratio scale of 1 to 9, which keeps
measurement within the same order of magnitude. A
preference of 1 indicates indifference between two criteria,
while a preference of 9 indicates that one criterion is nine
times larger or more important than the one to which it is
being compared. Nine times larger, or smaller, is therefore
the maximum allowable difference between elements and is
one reason why Saaty has recommended limits on the
heterogeneity of the elements being compared. In this way,
comparisons are being made between criteria within a
limited range where perception is sensitive enough to make
a distinction. If the elements are more widely separated,
then homogeneous clusters should be used and compar-
isons made between clusters. These comparisons result in a
reciprocal matrix A (see Table 1), where Aii � 1 and
Aij � 1=Aji.

In this case, Supplier 1 is three times the cost of Supplier 2
and, consequently, Supplier 2 is one-third the cost of
Supplier 1.

Each judgement reflects the perception of the ratio of the
relative contributions of the two alternatives to the overall
dimension being assessed. The resulting matrix is used to
derive a ratio scale by an eigenvector technique. This is
achieved by averaging over normalized columns. In this
way, the relative weights are calculated for each of the
alternatives in relation to the dimension on which they were
compared, in this case, cost. Simply stated, each alternative
is given a value that is a measure of its contribution to the
common criterion in the level immediately above it. This
process is repeated for all criteria within a given level.
Again, in this example, the three suppliers would again be
compared with regard to quality and weightings found for
each supplier on this dimension. The next stage would be to
compare criteria in the next level with respect to the
common criterion immediately above it. In this example,
cost might be selected as being more important in choosing
a supplier along with the intensity of preference. Finally, the
overall weighting is achieved by propagating through the
hierarchy, combining the resulting weights from each level.

In this way, each supplier will be accorded a weight value
after having taken into account both cost and quality.

It is often the case that people's judgements are not
entirely consistent. Comparisons made by this method are
subjective and AHP tolerates inconsistency through the
amount of redundancy in the approach. For a matrix of
size n� n, only nÿ 1 comparisons are required to
establish weights for the n alternatives. The actual number
of comparisons performed in AHP is n�nÿ 1�=2 which is
greater than nÿ 1 for n > 2. This redundancy is a useful
feature as it is analogous to estimating a number by
calculating the average of repeated observations. This
results in a set of weights that are less sensitive to errors
of judgement. In addition, this redundancy allows for a
measure of these judgement errors by providing a means
of calculating a consistency index. If this consistency index
fails to reach a required level, then answers to compar-
isons may be reexamined. The consistency index, CI, is
calculated thus:

CI � ��Maxÿ n�=�nÿ 1�;
where �Max is the maximum principal eigenvalue of the
judgement matrix. The nearer CI is to zero, the more
consistent the judgements. This CI can be compared to that
of a random matrix, RI. The ratio derived (CI /RI) is termed
the consistency ratio (CR). Saaty suggests the value of CR
should be less than 0.1. However, caution should be
exercised with regard to the significance of this figure.
First, ªmagic numbersº should be used simply for
guidance, not as some benchmark. Second, where n is a
small number, the CR becomes less reliable.

Although AHP is a decision making process, we have
shown how it can also be used for prediction [24].2 AHP
produces weight values for each alternative based on the
judged importance of one alternative over another with
respect to a common criterion. These weights represent the
degree to which each alternative contributes to this
common criterion. This information can, therefore, be used
for prediction purposes provided one reference point
(known data) is available.

A simple example would be to deal with just one
criterion, namely, project effort. Effort becomes the topmost
node in the hierarchy and the alternatives are a set of
projects between which pairwise comparisons are per-
formed. Estimators are asked to subjectively judge which
out of two projects presented, Project 1 or Project 2, requires
more effort and then to indicate the extent to which they
believe this to be so, e.g., twice more, three times more, etc.
Then, they are asked to choose between Project 1 and
Project 3, etc., until each project has been compared with all
other projects in the data set. An example hierarchy is
shown in Fig. 2.
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2. We have recently become aware of similar, but independent, work by
Miranda [25] whose technique is also based upon AHP and solving for
projects with a single known data point. The main difference is that he uses
a geometric mean while we use Saaty's eigenvector method. Another is that
he uses semantic labels such as ªbigger;º whereas, we use more precise
terms (5x bigger or 3 times smaller, for example). Presently, we are
uncertain as to the impact of these differences; however, we are of the
opinion that they may not be very significant.

TABLE 1
Example Reciprocal Matrix A
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This determines a set of weights, which indicate the
relative contribution by each project to the overall effort of
all projects in the data set. If the effort for one of these
projects is known then the effort for the remainder of the
projects can be determined as follows:

Êi � �wi=wk�Ek;

where Êi is the estimated effort for project i, Ek is the
known effort for project k, wi is the weight of the project to
be estimated, and wk is the weight of project with known
effort. A more sophisticated example would be to utilize the
hierarchical structure of AHP to predict effort by decom-
posing the problem into a number of criteria which all
contribute to actual effort.

To summarise, our sparse data method requires the
following steps:

. Determine the elements for which a prediction is
required. These might be either tasks/phases of a
project or components/project subsystems.

. Assess whether these elements satisfy, at least
approximately, Saaty's homogeneity requirement of
less than an order of magnitude variation.

. Identify a minimum of one reference point for
which there is a known value. Ideally, the reference
point will be closer to a midpoint rather than an
extreme value.

. Identify the criteria upon which the pairwise
comparisons will be made. (In this paper, we restrict
ourselves to comparing relative effort directly;
however, estimators may construct an attribute
hierarchy if so desired.)

. Make the pairwise comparisons to the level of
granularity of equal, twice as, three times as ...

. Use Saaty's eigenvector method to compute the
relative contributions of each element to the overall
figure.

. Using the known value of the reference point, solve
for all other elements.

We have developed a prototype research tool, known as
DataSalvage, in Visual Basic to support the use of the sparse
data method for estimation purposes.

Superficially, the AHP method of prediction appears to
bear some similarity with the Software Sizing Model (SSM)
[26] which also quantifies subjective judgements. SSM is
based on ªthree key facts:º First, in the very early stages in a
project, qualitative size information is more accurate than
quantitative; second, experts' estimates of relative size of
software are more reliable than actual size; third, estimated
and actual relative size of software are strongly correlated.

SSM provides the means to estimate the size of a software
project by entering four different types of input, namely,
pairwise comparisons, PERT sizing, sorting, and ranking.
During the pairwise comparisons, the user selects the larger
of the two projects being compared but does not indicate
the degree of difference. Instead, further information is
obtained from the other methods of input. Rather than use
an eigenvector approach to derive a scale, SSM uses the
Logarithmic Least Squares Method for each of the four
types of input. The scalar product of these results is
calculated to produce a ranking vector. By assigning a
known reference point, the size of the remaining projects is
determined (in LOC). We believe our approach benefits
from being simpler and requires significantly fewer inputs
from the expert than SSM. Moreover, DataSalvage is not
restricted to LOC as a unit for size either as an output or as a
reference point. Finally, SSM is a proprietary method, so we
do not know the details of the algorithm(s) used.

4 EVALUATION USING INDUSTRIAL DATA

Having described our sparse data method, we now turn to
empirical validation. For this purpose, we utilized two
project effort data sets (see the Appendix), both derived
from the telecommunication industry. Both data sets
comprised a number of builds to a large underlying
product. They were selected on the basis that they
contained the project manager's estimate as well as the
true effort value. The estimates were based upon expert
judgement rather than using any formal process or software
tool. Unfortunately, due to this informality, we do not have
precise details as to how each estimate was arrived at.
Ideally, one might interview the managers; however, this
level of access was not possible.

A difficulty in validating our method in a post hoc
fashion is that knowledge of the actual outcome could
influence the pairwise comparison process and, thus, lead
to significant bias in favor of our technique. Consequently,
we restricted our analysis to data sets where the a priori
estimates were available. Therefore, our analysis was
limited to data that was only available at the time of
making the estimate. Such a restriction is unusual among
this type of research.

Another potential problem is that software systems will
typically exhibit requirements ªdriftº while they are still
being developed. The consequence of this is that the initial
estimate of development effort may deviate from actual
effort solely on the grounds that the system being
developed has changed from that first envisaged. While
we are unsure to what extent this occurred in our data
collection environments, it could lead to the expert
judgement being seen in a pessimistic light. This is not a
problem for our analysis since we are investigating the
question of whether our sparse data method adds value to
expert judgement using the same inputs. Therefore, if our
analysis is biased, it is equally biased for both techniques.

As we indicated earlier, an important requirement for
the use of AHP is homogeneity, such that there should be
less than an order of magnitude variation between ele-
ments. This is intended to facilitate pairwise comparison
and avoid rank reversal problems [27], [28]. In order to
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Authorized licensed use limited to: West Virginia University. Downloaded on April 11,2010 at 02:27:17 UTC from IEEE Xplore.  Restrictions apply. 



satisfy this requirement, three projects were removed from
the investigation. These were cases where the expert-
estimated effort figure fell outside the required order of
magnitude variation of the remainder of projects. The
rationale behind this was that the estimated figure, rather
than the true value, was all the user would have to go on at
the time of prediction. This meant that in our study there
was some violation of homogeneity principle and, thus,
decreased accuracy in terms of the sparse data method
prediction. It can be said, therefore, that the validation
technique does not favor our method. Parenthetically, it
should be noted that, in practice, the problem of a lack of
homogeneity can be overcome by clustering the elements
into a hierarchy of more similar matrices so this is not
severe restriction.

Our hypothesis was that our sparse data method should
result in predictions that were more accurate than simply
using expert judgement. We assessed accuracy in terms of
absolute residuals j êÿ e j since, for the purpose of this
research, we assumed indifference between over- and
underestimates, nor did we wish over- and underestimates
to cancel one another out. We set our confidence limit at
(� = 0.10), as this was an initial exploratory study and, as
already discussed, the approach did not favor the sparse
data method.

Our procedure was to randomly select one project as the
known data point or reference project. We then completed
the pairwise comparison process using the expert's
prediction and not the true value. We then generated
absolute residuals for the predictions using both techni-
ques and then applied a robust paired test using the
Wilcoxon Signed Rank test. This test indicates whether or
not the median error is greater using expert judgement
than our sparse data method. Note, a robust test was used
since absolute residuals are inevitably skewed in their
distribution. Note also that we combined the two data sets
for the purposes of analysis (i.e., after results were
obtained from the tools)Ðmade possible because the data
was naturally pairedÐin order to increase the power of
our test �n � 34 � 14� 20�.3 Elsewhere, we discuss some of
the difficulties of obtaining significant results when
analyzing small data sets [29] and this is born out by the
probabilities that the null hypothesis is true (p = 0.0736,
n=14 and p = 0.1393, n=20).

From Table 2, we see that the Sparse Data Method
appears to have a lower mean and median level of error,
however, we need to formally test for significance.

Wilcoxon Signed Rank

TestHo: Median(sparse-expert) = 0 vs

Ha: Median(sparse-expert) < 0

Rank Totals Cases Mean Rank

Positive Ranks 194 12 16.17

Negative Ranks 367 21 17.48

Ties . 1 .
Total 561 33 17

Tied differences: 6

Variance: 3132.2

Adjustment To Variance For Ties: -2.2500

Expected Value: 280.50

z-Statistic: -1.5461

p = 0.0610

Reject Ho at Alpha = 0.10

From the Wilcoxon test, we see that in 21 cases our method
was more accurate than expert judgement; in one case, there
was a tie and, in 12 cases, expert judgement performed
better than our method. This suggested that the sparse data
method tended to add value or is able to improve upon the
accuracy that can be obtained from the experts and that we
can reject the null hypothesis of no difference between the
techniques (p = 0.061).

Another aspect of prediction is to know whether there is
bias. For this analysis, we used residuals rather than
absolute residuals. Here, we found that both approaches
had a tendency to underestimate effort. The experts had an
overall bias of approximately -5 percent4 and the sparse
data method of approximately -7 percent. This possible
tendency to amplify the experts' bias, although not serious,
warrants further investigation.

5 SENSITIVITY ANALYSIS BY SIMULATION

This section uses simulation to explore two potential
problem areas. First, the method relies upon subjective
comparisons so there is clearly scope for errors. The
question then arises: How vulnerable is the method to such
errors? In order to answer this question, we performed a
sensitivity analysis in which we successively introduced
increasing numbers of erroneous pairwise comparisons.
Second, there is the question of which project to use as a
reference point and what is the impact of making different
choices. The analyses are based upon the same data sets as
described in the previous section.

First, to explore the sensitivity of our sparse data method
to erroneous judgements, the actual effort value of each
project was compared to that of every other project in a
pairwise fashion. In performing the comparisons for the
simulation, there was no subjectivity since the true values
were known. For the purposes of the sensitivity analysis,
the point chosen on the evaluation scale was the one that
most closely reflected the true situation. For example, if two
hypothetical values of 500 and 700 were being compared,
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TABLE 2
Comparison of Absolute Residuals from Expert Judgement

with the Sparse Data Method

3. Note that the actual size of the data sets were 15 and 21 projects,
respectively, but the cases used as known reference projects or data points
were removed from the analysis, again to avoid favoring the sparse data
method.

4. The bias is calculated as the ratio of the sum of the signed residuals to

the total actual effort, i.e.,

Pi�n
i�1

êiÿeiPi�n
i�1

ei
.
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then the two projects would be considered as equal since
700 is closer to 500 (equal) than it is to 1,000 (twice as great).

Initially, we started with the theoretical optimum where
all pairwise comparisons are made correctlyÐusing post
hoc knowledge5Ðwith the aim of establishing the potential
maximum accuracy. These were the best predictions that
could be achieved since all actual effort values were known.
This resulted in an accuracy level of MMRE6 = 3.9 percent.
This illustrates that the use of a quite coarse scale for the
pairwise judgements does not detract significantly from the
accuracy of the method.

The above analysis made the assumption that a correct
judgement is made every time. However, in a real life
environment, this would be very unlikely. The impact of
erroneous judgements in this analysis was examined by
simulating the problem of incorrect judgements during the
pairwise comparisons. The effect of these incorrect compar-
isons was assessed by assuming that the estimator could
provide the correct comparison for 90 percent of the time.
This was then reduced in stages to 80 percent, 70 percent,
and lastly 60 percent correct judgements. This was a similar
method of sensitivity analysis to that used by Bozoki [30]
during his testing of SSM. The cases and degree of error
were selected randomly. The errors from one level were
propagated to the next. In this way, the erroneous decisions
made at the 10 percent error level were included in the
20 percent level and those made at the 20 percent level were
carried through to the 30 percent level, and so on. Thus,
there was some comparability between different levels of
erroneous pairwise judgements.

From Fig. 3, we see that our sparse data method was
robust against comparison errors up to a level of 30 percent,
but, beyond this, there was a marked deterioration. In one
sense, this is not surprising since the comparison matrices
contain much redundancy; nevertheless, it is an encoura-
ging finding if the method is to be practically deployed.

Note that the horizontal line denotes the level of accuracy
obtained via expert judgement for comparison purposes.

The second analysis addressed the question of how

influential the choice of reference point or project is upon
the accuracy of the sparse data method. Here, we selected

four different reference points for both the BT and the
Company X data (i.e., eight in total). The points were chosen

to represent projects that were at either extreme of the range

of project sizes as well as those in the middle. Since the
purpose was to determine the effect of using different

reference points, our concern was relative accuracy rather
than determining what might be realistically achievable.

Consequently, our procedure was to use perfect knowledge
(0 percent errors) as per the initial part of the previous

simulation. We then computed the absolute residual for

each prediction.
Fig. 4a and Fig. 4b show side by side boxplots of four

reference tasks sampled from each environment. The

shaded areas show the 95 percent confidence limits for
the medians. It would seem that there is some variability in

prediction errors according to the choice of task with the
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5. This differs from the analysis in the previous section where the
objective was to determine whether the sparse data method was able to
improve upon the performance of expert estimators. By contrast, in this
sensitivity analysis, we wish to explore the impact of erroneous
comparisons and, consequently, must commence from a position of no
errors.

6. MMRE is the mean magnitude of relative error and is defined as
100
n

Pi�n
i�1

jeiÿêij
ei

.

Fig. 3. Prediction accuracy against simulated pairwise comparison error

rates.

Fig. 4. (a) Distribution of prediction errors using different reference tasks

(Company X data set). (b) Distribution of prediction errors using different

reference tasks (BT data set).
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worst errors being associated with the largest reference

points.
The mean absolute residuals are provided in Table 3 and

again confirm that the greatest problems were encountered
when the reference points were at the extreme, or

maximum, for the range of values. Obviously, further
investigation would be useful, but the finding is intuitively

reasonable that the more representative, or closer to the
midpoint, a reference project is, the better the predictions.

6 EXPERIENCES WITH USERS

Next, we turn to human evaluation of the sparse data
method. The utility of the method based upon our tool

DataSalvage was assessed by two categories of user:
students and a professional project manager. First, we

consider a small longitudinal study using students to whom
we had more access. Second, we describe the reactions of a

practicing project manager to the tool and method. Due to
limited time and access, this was a relatively informal

exercise and the method was used with historical data.
The students consisted of a group of four, involved in a

software project of approximately six months duration. The
project had two phases. The first phase, outside the scope of

this case study, involved developing a software prototype
to ascertain customer requirements for a database system to

generate questionnaires and manage responses for a
university teaching feedback system. The second phase

was to implement a fully functional system based upon the
specification derived from the prototype.

The group identified five criteria that they considered

important components of total effort. We did not seek to

influence their choices in any way. These are listed in
Table 4 together with their relative contributions deter-

mined by pairwise comparison. Interestingly, the first
three criteria were quality characteristics of the system,

while the final two relate to development phases.
Functionality, unsurprisingly, was seen as the most

important criterion. The team then made their comparisons
for each criterion between the system to be developed

(teaching feedback system) and the reference task, in this
case, the prototype from the previous phase for which the

development effort was known (120 hours).

Table 5 indicates that predicted effort was 382 hours
based upon the known effort for the prototyping task. The
team kept detailed effort records both by individual and by
task. These were reported on a weekly basis, which
provided an opportunity to seek clarification when
surprising or questionable values were supplied. Thus,
we had high confidence in the quality of the data. The
actual effort figure was 318.5 person hours, deviating from
the estimate by approximately 20 percent. Somewhat
unusually, the prediction was an overestimate. A possible
explanatory factor is that the team viewed the original
estimate as a target. Thus, they may have produced a
pessimistic estimate which they were confident they could
beat, or were motivated to ªbeatº the estimate. The
prediction using the sparse data method was a significant
improvement on previous estimates by students. A pre-
investigation questionnaire completed by students under-
taking the software development project revealed that they
had previously tended to use algorithmic methods of
estimation, notably COCOMO, or expert judgement to
produce estimates. The students reported errors in estimat-
ing ranging from 25 percent to 400 percent for such
techniques, with the majority of respondents reporting
inaccuracies of up to 100 percent.

Next, we considered the responses of a Project Manager,
who was involved with estimating the level of effort
required for future projects. The Manager worked for
British Telecom and was asked to consider some example
situations from his own projects. The Project Manager
currently estimated by subdividing the project development
into modules, then performing a bottom-up analysis for the
development of each module. During this analysis, he
would typically consider such factors as:

. the number of programs,

. functionality,

. level of difficulty,

. skill of the staff,

. number of groups,
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TABLE 3
Comparison of Accuracy Levels

Using Different Reference Projects

TABLE 4
Criteria Chosen and Their Relative Contribution

to Total Project Effort

TABLE 5
Comparison between Projects
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. similarity to previous work,

. any problems expected, and

. whether pressure could be put on a person to
complete the work more rapidly.

In order to make the pilot study manageable, three projects
familiar to the Project Manager were selected, and
comparisons were made using just three criteria, namely,
skill level of staff and number of groups of developers
involved and functionality.

The version of the DataSalvage tool, at that time, worked
on the assumption that an increase in a subcriterion and in
the higher-level criterion would share the same direction.
This assumption was true for the second and third criteria:
increasing the number of groups of people involved will
increase the effort expended in coordination and commu-
nication between the groups. Similarly, increasing required
functionality would generally lead to more development
effort. By contrast, the relationship between skill level and
effort increased inversely, i.e., the higher the skill level, the
lower the effort. Therefore, care needed to be taken in
selecting the criterion label. Using the label ªUnskilledº
meant the criteria would increase in the same direction (as a
double negative), but complicated the process of making
the comparisons since it felt less natural to the estimator.

The results presented in Table 6 did not concur with the
experience of the Project Manager since P2 had actually
required more effort than P1. This could be explained by the
way the criteria had been compared. The user had weighted
the criteria so that the level of skill (Unskilled) was regarded
as very important, (72.4 percent of the total). P2 was rated
low on lack of skills, (i.e., the team involved was considered
to be skilled), thus lowering the weightings for the effort
values. The number of groups involved was substantially
greater for P2 compared to the other two projects, but this
criterion had been rated the least important in estimating
effort, (8.3 percent of the total). This further reduced the
overall weighting for P2.

Overall, the Project Manager found comparing projects

to be relatively straightforward. He responded positively to

being allowed to choose the appropriate criteria, but found

the comparison between criteria difficult. The results

suggested that the Project Manager attached too much

importance to the level of skill of the staff as a driver for

effort. A possible explanation was that the required

functionality for a project would generally be given while

staff skill would be a major preoccupation for a project

manager. Consequently, in considering the relative impor-

tance of these factors, the manager tended to emphasize

staff skill. This indicates that the approach may be beneficial

in helping project managers assess the contribution of the

criteria chosen to overall project effort. Further experimen-

tation in varying the weightings of the criteria could

potentially improve criteria weighting for future estimation

in this environment.
For criteria with an inverse relationship with effort, e.g.,

skills, flexibility was problematic. It is far easier to think in

terms of ªmore skilledº than ªless unskilled.º This problem

has subsequently been solved in more recent versions of

DataSalvage by inverting the weightings in the matrix for

criteria with negative relationships with effort.
While the results from this very limited pilot study need

to be viewed with some caution, there are a number of

points that suggest the approach should be considered

favorably. The Project Manager involved was positive about

the approach for the following two reasons: First, it was

easier to make pairwise comparisons among projects than

to consider the set of projects as a whole; second, choosing

the criteria on which comparisons would be made was

valuable in its own right. This could potentially provide

feedback to project managers on which factors had a

significant impact on effort, allowing them to concentrate

on collecting the most useful measures. We do acknowl-

edge, however, that the second benefit indicated by the

Manager is something of a moot point since there are other

methods that might address the question of which are

important factors more directly.

7 SUMMARY AND CONCLUSIONS

The use of accurate, systematic, historical data for building

useful effort prediction systems is extremely important, yet

in practice, such data is seldom available. The sparse data

method described in this paper is based upon a multi-

criteria decision-making technique known as AHP, which

represents the problem hierarchically by decomposing it

into smaller, more meaningful chunks. It requires data for

only one reference task and has been shown to be capable of

accurate predictions. It then uses subjective pairwise

comparisons to elicit information from the estimator.
This paper has described results from an empirical

analysis derived from an industrial data set. Here, we have

been able to reject the null hypothesis in favor of our

method leading to more accurate predictions than merely

using expert judgement. In other words, the sparse data

method was able to add value to the prediction process. We
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TABLE 6
Results from the Project Manager
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also observe that we were able to generate more accurate

results than if all the data had been made available and a

least squares regression analysis performed.7 The respective

MMREs are Stepwise Refinement (SWR) = 57 percent and

sparse data method = 39 percent. If nothing else, this

indicates that expert judgement can offer a stronger basis

for prediction than possibly incomplete objective data

which can fail to capture all relevant factors. Other support

for our method comes from the small student longitudinal

study where we obtained an accuracy level of approxi-

mately 20 percent. Lastly, we note that Miranda [25], [31]

also reported encouraging results when he conducted

experiments using a similar method and using small data

structure programs. He found that more accurate size

predictions were obtained using the pairwise technique

than ad hoc methods.
Using our data and simulating errors, we have also

shown that our method is capable of yielding accurate

predictions even in the presence of up to a 30 percent

erroneous comparison rate and results better than SWR

even at a 40 percent error injection rate. Given the subjective

nature of pairwise comparison, this is an important finding.

We have also shown that the choice of reference point can

be influential upon the level of accuracy. In particular,

reference points chosen from the extremes of the range of

projects may be problematic. Further work is required here.
We believe that this technique can enable the estimator to

view the problem in a more structured and systematic way.

Clearly, our estimation method still relies upon an expert. If

the estimator has no knowledge of the project for which the

prediction is required, then any prediction becomes highly

risky; essentially, one is guessing. Those involved with the

pilots of the tool, DataSalvage, gave positive feedback. In

particular, it was felt to be useful in helping the expert to

assess which criteria measures were useful as input to effort

predictions.
We do not wish to argue that the sparse data method is

the ªbestº estimation technique. Indeed, we believe the very
notion of ªbestº technique is somewhat flawed since
effectiveness of any prediction method is intimately linked
to environment and data characteristics in which it has to
operate. Nevertheless, we believe that there is enough
encouraging evidence on this novel approach to warrant
further investigation.

Naturally, however, there remains a number of open
questions and areas for further work. One of the difficulties
we have encountered is that of validation. Unlike the
majority of other methods, the primary input is not data,
but, rather, a series of subjective pairwise comparisons
made by an expert. This is difficult to validate, although we
have attempted to do so by restricting our analysis to expert
judgements made at the time as opposed to post hoc data.
This contrasts with the more normal practice of using data
after the event that can lead to rather optimistic results.

Another problem area is the number of comparisons

required when there are many components or tasks.

Pairwise comparison matrices contain redundant judge-

ments that make the approach less sensitive to comparison

errors. However, the number of comparisons can become

burdensome if the problem is large since there will be n�nÿ1�
2

comparisons. There are various options for dealing with

large matrices. One method is to cluster tasks into a

hierarchy of smaller matrices that could have the side effect

of improving homogeneity. There are also techniques for

dealing with sparse matrices where not all judgements are

required. As the derived weights are more important than

rank for effort prediction, further investigation into sparse

matrices could be useful.
AHP is intended as a multicriteria decision-making

technique. The evaluations described in this paper have

been based on a single criterion, namely, effort. The

approach can be extended to assess a hierarchy of criteria

that contribute to effort, such as function point, novelty of

the task, expertise of the developers, etc. It then becomes

necessary to make pairwise comparisons to assess the

relative importance of each of these criteria to overall effort.

We have found in our testing of the interface of the

DataSalvage tool that estimators find it difficult to make

these particular comparisons. Further work is needed to

provide support for this aspect of using a hierarchy of

criteria. It is interesting that the Project Manager had more

success when simply comparing projects in terms of effort,

than when effort was broken down into criteria. An obvious

explanation is that we do not fully understand all of the

factors involved in effort and their relative contributions.
When using our sparse data method, it is a requirement

that data exist for at least one project and that this project is

included in the comparisons. If the calculated percentage

contribution of this particular project is accurate, then it

greatly enhances the accuracy of the values for unknown

projects. For the purposes of this test case, the known value

was randomly selected from each data set. Further work

needs to be carried out to assess the significance of the

relative size of the reference task to the other elements, in

terms of accuracy of predictions. For example, would it be

better if this value was one that contributed greatly to the

whole or whether it was midrange?
This method might also be utilized as a data elicitation

method and to recover organization memory, to structure
and remember analogies. DataSalvage could also be used as
a means to generate new cases for case based reasoning
systems, such as ANGEL [32], when more concrete data
was not available by other means.

Finally, we also feel that there is a need for further
research such as ours to integrate human and computer
based estimation techniques. In the past, there has been an
implicit goal to replace subjective experts with objective
prediction systems. This may not always either be possible
or desirable. It may be more fruitful in the future to consider
collaboration between humans and automated procedures.
Our sparse data method may be useful in this regard.
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7. The R-squared value for the regression equation is 42.8 percent,
suggesting a poor explanatory value. Since there are some outliers, it may
be that a more robust technique could improve upon these results; however,
we stress that this assumes that all the data is available which is not the
premise of this paper.
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APPENDIX

The software project data is given in Table 7.
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