
When to Use Data from Other Projects for Effort Estimation

Ekrem Kocaguneli,
Gregory Gay
Tim Menzies

LCSEE, WVU, USA
ekocagun@mix.wvu.edu,

greg@greggay.com,
tim@menzies.us

Ye Yang
Institute of Software

Chinese Academy of Sciences
Beijing, People’s Republic of

China
ye@itechs.iscas.ac.cn

Jacky W. Keung
School of Computer Science

and Engineering
University of New South Wales

Sydney, Australia
jacky.keung@nicta.com.au

ABSTRACT
Collecting the data required for quality prediction within a devel-
opment team is time-consuming and expensive. An alternative to
make predictions using data that crosses from other projects or even
other companies. We show that with/without relevancy filtering,
imported data performs the same/worse (respectively) than using
local data. Therefore, we recommend the use of relevancy filtering
whenever generating estimates using data from another project.

Categories and Subject Descriptors: D.2.9 [Software Engineer-
ing]: Effort Estimation

General Terms: Economics, Measurement

Keywords: Effort estimation, data mining, cross, within

1. INTRODUCTION
When data is scarce within one project, it is tempting to use data

imported from other projects. Such cross-project data exist; for ex-
ample the PROMISE repository [2] offers a dozen effort estimation
data sets for public access.

A recent survey paper has evaluated within or cross data for effort
estimation [5]. They concluded that they could not make a conclu-
sion; that the current findings are contradictory about the relative
merits of within or cross data.

In other work [10], we have shown that it is acceptable to use
cross data sources for defect prediction, providing that data has
been pre-processed by some sort of relevancy filtering. Given a
large training set, such relevancy filters select a small subset rel-
evant to the current test case. Such filtering removes training in-
stances that create noise in the estimation process, leaving a body
of data that, in theory, follows the principle of locality.

The success of relevancy filtering for defect prediction prompts
us to apply it to effort estimation. To the best of our knowledge,
this is the first exploration in the effort estimation community of
the effects of relevancy filtering when applied to cross and within
project data. We show that cross data can usually attain estima-
tion accuracies just as high as those of within data, provided that a
relevancy filter is applied to the data, prior to making estimates.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’10 Antwerp, Belgium
Copyright 2010 ACM 978-1-4503-0116-9/10/09 ...$10.00.

2. RELEVANCY FILTERING
Our relevancy filter extends standard analogy-based estimation

methods (which we call ABE0). ABE0 generates estimates for a
test project by gathering evidence from the effort values of similar
projects in some training set. By analyzing the previous research of
experts like Shepperd et. al. [9], Mendes et. al. [8] and Li et. al. [7]
on the field of analogy-based estimation, we can come up with a
baseline technique:

• Build a training data from rows of past projects;
• The columns of this set are composed of independent vari-

ables (the features that define projects) and a dependent vari-
able (the recorded effort value).

• Decide on how many similar projects (analogies) to use when
examining a new test instance , i.e. k-values.

• For each test instance, select k analogies from training.

– While selecting analogies, use a similarity measure (such
as the Euclidean distance of features).

– Before calculating similarity, apply a scaling measure
on independent features to equalize their influence on
this similarity measure.

• Use the effort values of the k nearest analogies to calculate
an effort estimate.

We can refer to this baseline framework as ABE0. For the similarity
measure, we use Euclidean distance:

Distance =

√√√√ n∑
i=1

(xi − yi)2 (1)

ABE0 returns the median of the efforts in the k nearest analogies.
Our relevancy filter is a small variant of ABE0. It is a two-pass

system. Pass 1 removes the training instances implicated in poor
decisions; pass 2 selects those instances nearest the test instance.

In pass 1, the training projects are used to generate a binary tree.
The leaves of this binary tree are formed by the individual training
projects, which are then greedily clustered in tuples to form the
parent levels. This binary tree, which we will call BT1, is then
traversed upwards from the root to height level one (one higher
level than the leaves). The variance of the effort values in each sub-
tree (the performance variance) is then recorded and normalized to
a 0-1 interval. Pass one prunes all sub-trees with a variance greater
than 10% of the maximum variance seen in any tree.

The leaves of the remaining sub-trees are the survivors of pass
one. These move to pass 2 where the survivors are used to build
a second binary tree (called BT2). BT2 is generated and traversed
by test instances in the same fashion as BT1. This time, while
traversing the tree, instead of storing the variances of sub-trees,

Figure 1: Two pass relevancy filtering. Each tree BT1 and BT2
are binary cluster trees. The red sub-tree is pruned in pass
one due to high variance. The remaining subtrees (shown in
green) form the right-hand tree. In pass two, test instances start
at the root of this tree and traverse to the nearest child (and
so on, recursively). While the sub-tree variance continues to
decrease, the traversal continues. Estimates are generated from
the median of the instances of the right-hand-side sub-tree with
lowest variance.

we use the variance as a decision criterion. If the variance of the
current tree is larger than its sub-trees, then continue to move down
the subtree; otherwise, stop moving and select the instances in the
current tree as the relevant instances and adapt them for estimation.
Relevancy filtering is visualized in Figure 1.

This filter is similar to the NN-filter used by Turhan et.al. [10],
except that there is no need to pre-specify the number of analogies k
to be used for estimation. Each test instance selects its own relevant
analogies by traversing to different sub-trees of BT2.

For a detailed discussion on the rationale behind this filter, see [6].
All we need to say here is that this filter is known to generate low
errors for ABE0-style effort estimation [6]. Hence, it is a suitable
tool for the rest of this study.

3. METHODOLOGY
In our research, we have used subsets of three commonly-used

datasets in software effort estimation research: Nasa93, the original
Cocomo81 [1], and Desharnais [4].

We will denote the subsets of Nasa93 as Nasa93c1, Nasa93c2
and Nasa93c5. Nasa93c1, Nasa93c2 and Nasa93c5 contain projects
from different NASA development centers around the United States
(denoted as development centers 1, 2 and 5 in the complete dataset).
In a similar fashion, subsets of Cocomo81 will be denoted as Coc81o,
Coc81e and Coc81s (for organic, embedded, and semidetached).
Finally, the Desharnais dataset is split into three different subsets:
DesL1, DesL2 and DesL3 (languages 1, 2 and 3 respectively). Since
each of these subsets have certain common criteria (the develop-
ment center, development mode, or development language), each
subset will be treated as a separate within dataset. All of the datasets
used in this research are available in PROMISE data repository [2].

For each of the three main datasets (Nasa93, Cocomo81 and
Desharnais) in our research, we have conducted within and cross
experiments. Each subset became a within dataset that contains
projects sharing the particular characteristics of a single develop-
ment firm.

To understand the within and cross data formation, assume that
a dataset X with its three subsets X1, X2 and X3 is under con-
sideration. For within experiments, relevancy filtering described is

applied on each one of X1, X2 and X3 separately and the median
of the filtered project instances in the training set is stored as the
effort estimate for the test instance. For the separation of training
and testing sets, the leave-one-out method is used. Leave-one-out
selects one instance out of a dataset of n instances as the test in-
stance and uses the remaining n− 1 instances as the training set.

For the cross experiments, one of X1, X2 or X3 is chosen as the
test set and the combination of the remaining two forms the cross
dataset for training. This time, the relevancy filtering is applied on
the cross dataset, and the estimations for projects in the test set are
stored.

Each of the within and cross experiments are repeated twenty
times in order to remove any bias that would otherwise be brought
by a particular test and training set combination.

In order to compare the performance of within and cross datasets,
we have used two measures: the magnitude of relative error (MRE)
and win-tie-loss values generated by a statistical rank-sum test.

MRE =
|actuali − predictedi|

actuali
(2)

Using a Mann-Whitney test (95%), we checked how often one
treatment won/lost/tied with the others. Here, a “tie” means that
they are not statistically significant different. If statistically differ-
ent, then the method with a lower median MRE score gets one more
“win” and the other method gets one more “loss”.

4. RESULTS
In our experiment, we analyzed 3 datasets * 3 subsets = 9 treat-

ments. We evaluated cross and within performances of each partic-
ular dataset, subject to statistical tests, with and without relevancy
filtering.

4.1 Without Relevancy Filtering
In this first experiment, we have 9 treatments and for each treat-

ment we observe the estimation performances when within and
cross datasets are used. For this purpose we used a linear regression
model. Two-pass filtering was not applied.

In cross experiments, for each data set, we selected one of the 3
subsets as the test set and the remaining two as the train set. We
then built a linear regression model on the cross data and applied
this model on the test set. For the within dataset we also used a
linear regression model. The test case selection for within experi-
ment is performed in accordance with leave-one-out method, which
picks up one of the instances in the dataset as the test set and uses
the remaining instances as the train set. The linear regression model
that is built on the train set is then tested on the single test instance.
After applying linear regression model on within and cross datasets,
we calculated the win-tie-loss values for each treatment.

As shown in Figure 2, we see that in a minority of cases (4
9

,
see Nasa93c5, Coc81e, Coc81s and DesL2), cross and within data
perform just as well as each other. In the majority case (5

9
, see

Nasa93c1, Nasa93c2, Coc81o, DesL1, DesL3), within performed
better than cross data. That is, in the absence of relevancy filtering,
the within datasets yield significantly lower MRE values in majority
of cases.

4.2 With Relevancy Filtering
This section shows that for each data set, the application of rele-

vancy filtering reverses the conclusion of the previous section; i.e.
the cross data becomes useful for estimating the local project.

Figure 3, shows the the win-tie-loss values for the subsets of
Nasa93. The greedy clustering algorithm of the two pass rele-
vancy filtering uses some non-determinism (when breaking ties be-

Data set Train Set Test Set Method Win Tie Loss
Nasa93 Nasa93c1 Leave-one-out test instance Within 1

Nasa93c2 and Nasa93c5 Nasa93c1 Cross 1
Nasa93c2 Leave-one-out test instance Within 1
Nasa93c1 and Nasa93c5 Nasa93c2 Cross 1
Nasa93c5 Leave-one-out test instance Within 1
Nasa93c1 and Nasa93c2 Nasa93c5 Cross 1

Cocomo81 Coc81o Leave-one-out test instance Within 1
Coc81e and Coc81s Coc81o Cross 1
Coc81e Leave-one-out test instance Within 1
Coc81o and Coc81s Coc81e Cross 1
Coc81s Leave-one-out test instance Within 1
Coc81o and Coc81e Coc81s Cross 1

Desharnais DesL1 Leave-one-out test instance Within 1
DesL2 and DesL3 DesL1 Cross 1
DesL2 Leave-one-out test instance Within 1
DesL1 and DesL3 DesL2 Cross 1
DesL3 Leave-one-out test instance Within 1
DesL1 and DesL2 DesL3 Cross 1

Figure 2: MRE win-tie-loss results without relevancy filtering. Every odd and even line is a pair of experiments. In each pair, there is
a within and a cross experiment. In cross experiment, a linear regression model is built on cross data and tested on the within data. In
within experiment, the test instance is selected with leave-one-out, and a linear regression model is built on the remaining instances
and tested on the selected test instance. A “1” denotes which item in the pair won, lost or tied.

tween instances of similar distances), so we repeat these experi-
ments twenty times.

This results shows us that, in all three treatments, the tie values
are quite high. This indicates that, for at least 75% of the tests,
there is no statistical difference between filtered cross and within
results. In short, for Nasa93, the performance of cross data (filtered
for relevancy) is indistinguishable from the performance of within
data.

Dataset Method Win Tie Loss

Nasa93c1 within 3 15 2
Nasa93c2 and Nasa93c5 cross 2 15 3

Nasa93c2 within 3 17 0
Nasa93c1 and Nasa93c5 cross 0 17 3

Nasa93c5 within 1 19 0
Nasa93c1 and Nasa93c2 cross 0 19 1

Figure 3: MRE win-tie-loss values for Nasa93 from 20 random-
ized assessments. In all treatments tie values are quite high. For
Nasa93, the performance of cross data is mostly same as within
data.

Figure 4 shows the win-tie-loss values for the subsets of Co-
como81. In two out of the three treatments the tie values are 19,
which tells us that for these treatments, within and cross perfor-
mance are almost identical. However, the first treatment shows a
preference for within data on thirteen of the twenty tests.

The win-tie-loss values for subsets of Desharnais are given in
Figure 5. The derived results for the Desharnais subsets are similar
to those of Cocomo81 treatments: Two out of the three treatments
show identical tie values of 19, which again suggests that the per-
formance of filtered cross datasets is statistically identical to within
datasets. However, in one of the treatments, within outperforms
cross on sixteen of the twenty trials.

In summary, with relevancy filtering, in the majority case (7
9

treatments) the cross data performs as well as the within data for ef-

Dataset Method Win Tie Loss

Coc81o within 13 7 0
Coc81e and Coc81s cross 0 7 13

Coc81e within 1 19 0
Coc81o and Coc81s cross 0 19 1

Coc81s within 0 20 0
Coc81o and Coc81e cross 0 20 0

Figure 4: MRE win-tie-loss values for Cocomo81 from 20 ran-
domized assessments. In 2 treatments cross data is the same as
the within data. However, in the case of Coc81o, within outper-
forms cross data.

Dataset Method Win Tie Loss

DesL1 within 1 19 0
DesL2 and DesL3 cross 0 19 1

DesL2 within 1 19 0
DesL1 and DesL3 cross 0 19 1

DesL3 within 16 4 0
DesL1 and DesL2 cross 0 4 16

Figure 5: MRE win-tie-loss values for Desharnais from 20 ran-
domized assessments. In the case of DesL3 the within data is
much better than the cross data. For other treatments, within
and cross data are statistically the same.

fort estimation. There are only two treatments, DesL3 and Coc81o,
where within performance was significantly better than cross per-
formance. A possible explanation for those two scenarios may be
hidden in the dataset size or in the quality of the within datasets,
but the currently-available information makes it difficult to suggest
any conclusive reason for the situation.

Cross Dataset Test Set Instances selected in BT2

From Nasa93c1 From Nasa93c2 From Nasa93c5
Nasa93c2 and Nasa93c5 Nasa93c1 0 2.4 1.2
Nasa93c1 and Nasa93c5 Nasa93c2 1.4 0 1.8
Nasa93c1 and Nasa93c2 Nasa93c5 2.4 1.1 0

From Coc81o From Coc81e From Coc81s
Coc81e and Coc81s Coc81o 0 2.0 1.3
Coc81o and Coc81s Coc81e 3.6 0 1.4
Coc81o and Coc81e Coc81s 2.8 0.3 0

From DesL1 From DesL2 From DesL3
DesL2 and DesL3 DesL1 0 2.3 0.7
DesL1 and DesL3 DesL2 2.1 0 0.1
DesL1 and DesL2 DesL3 3.2 1.6 0

Figure 6: Mean number of instances used for estimation after filtering in 20 runs. Cross datasets are combinations of two within
datasets tested on another within dataset.

5. DISCUSSION
Figure 6 shows the mean number of instances used for analogy-

based estimation by our two-pass relevancy filtering algorithm. Sur-
prisingly, the number of selected analogies is very small: mean
value around 3. Further, while exceptions exist, the selected analo-
gies come from multiple other projects. For example, for the Nasa93
dataset, the data relevant to center c1 came 2

3
-rds and 1

3
-rd from

centers c2 and c5 (respectively).
This suggests that we should revisit what we mean by within and

cross:

• Effort estimation functions on a theory of locality; i.e. new
projects follow similar practices to historical projects and
should require a similar amount of effort. As Chen et. al. [3]
have shown, inconsistencies in data collection across mul-
tiple companies create locality-specific biases in cross data
sets. Such biases result in an unacceptable amount of vari-
ance in the effort calculations.

• Figure 6 is saying that similar projects may not come from
the same geographical location. Our relevance filters hunted
out handfuls of similar projects from other subsets. Perhaps
software differs on many dimensions (such as where it was
written), and the most important dimensions for finding sim-
ilar projects may not be mere geography.

Given the complex multi-dimensional nature of the software cre-
ation process, the geographical dimension may be less important
than other factors. The most similar software to what you are writ-
ing now may not be in the next office. Rather, it may be in an office
on the other side of the world.

Going forward, we would like to learn exactly why an instance
is deemed “relevant" or “irrelevant" by our filter. In other words,
we would like to know exactly which features are most influen-
tial when assigning relevancy. The ability to identify these exact
dimensions would make the selection of appropriate projects eas-
ier for any institution that uses cross data. It would also lead to
(a) more accurate filtering techniques; and (b) a better understand-
ing of the structure of software projects including where to find data
most relevant to some current project.

Acknowledgments
This work was partially supported by the National Natural Science
Foundation of China under Grant Nos. 60873072 and 90718042.

6. REFERENCES
[1] B. W. Boehm. Software Engineering Economics. Prentice

Hall PTR, Upper Saddle River, NJ, USA, 1981.
[2] G. Boetticher, T. Menzies, and T. Ostrand. PROMISE

repository of empirical software engineering data, 2007.
[3] J. Chen, Y. Yang, V. Nguyen, and Q. Li. Reducing the local

bias in calibrating the general cocomo. International Forum
on COCOMO and Systems-Software Cost Modeling, 2009.

[4] J. Desharnais. Analyse statistique de la productivitie des
projets informatique a partie de la technique des point des
fonction. Master’s thesis, Univ. of Montreal, 1989.

[5] B. A. Kitchenham, E. Mendes, and G. H. Travassos. Cross
versus within-company cost estimation studies: A systematic
review. IEEE Trans. Softw. Eng., 33(5):316–329, 2007.

[6] E. Kocaguneli. Better methods for configuring case-based
reasoning systems. Master’s thesis, 2010.

[7] Y. Li, M. Xie, and T. Goh. A study of project selection and
feature weighting for analogy based software cost estimation.
Journal of Systems and Software, 82:241–252, 2009.

[8] E. Mendes, I. D. Watson, C. Triggs, N. Mosley, and
S. Counsell. A comparative study of cost estimation models
for web hypermedia applications. Empirical Software
Engineering, 8(2):163–196, 2003.

[9] M. Shepperd, C. Schofield, and B. Kitchenham. Effort
estimation using analogy. In International Conference on
Software Engineering, pages 170–178, 1996.

[10] B. Turhan, T. Menzies, A. Bener, and J. Di Stefano. On the
relative value of cross-company and within-company data for
defect prediction. Empirical Software Engineering, 14:540 –
578, 2009.

