
Constrained Cascade Generalization
of Decision Trees

Huimin Zhao, Member, IEEE, and Sudha Ram, Member, IEEE

Abstract—While decision tree techniques have been widely used in classification applications, a shortcoming of many decision tree

inducers is that they do not learn intermediate concepts, i.e., at each node, only one of the original features is involved in the branching

decision. Combining other classification methods, which learn intermediate concepts, with decision tree inducers can produce more
flexible decision boundaries that separate different classes, potentially improving classification accuracy. We propose a generic

algorithm for cascade generalization of decision tree inducers with the maximum cascading depth as a parameter to constrain the
degree of cascading. Cascading methods proposed in the past, i.e., loose coupling and tight coupling, are strictly special cases of this

new algorithm. We have empirically evaluated the proposed algorithm using logistic regression and C4.5 as base inducers on 32 UCI
data sets and found that neither loose coupling nor tight coupling is always the best cascading strategy and that the maximum

cascading depth in the proposed algorithm can be tuned for better classification accuracy. We have also empirically compared the
proposed algorithm and ensemble methods such as bagging and boosting and found that the proposed algorithm performs marginally

better than bagging and boosting on the average.

Index Terms—Machine learning, data mining, classification, decision tree, cascade generalization.

!

1 INTRODUCTION

C lassification is a type of prediction problem where the
dependent variable (also referred to as class) that needs to

be predicted based on several independent variables (also
referred to as features and attributes) is discrete. A related
problem is regression where the dependent variable is
continuous. A learning technique constructs a hypothetical
model, which is a mapping from the independent variables
to the dependent variable, by investigating a given set of
successfully solved cases, whose outputs on the dependent
variable are already known; the model can then be used to
predict the outputs of unseen cases on the dependent
variable. Decision tree techniques follow a “divide and
conquer” strategy and produce sequential models which
logically combine a sequence of simple tests. They have
been popular in classification applications largely because
the models they generate closely resemble human reasoning
and are easily understood [25].

While decision tree techniques have been widely used in
classification applications, a shortcoming of many decision
tree inducers is that they do not learn intermediate
concepts, i.e., at each tree node, only one of the original
features is involved in the branching decision [3], [5], [11],
[12], [14], [16], [19], [20], [25], [29]. Geometrically, the
decision boundaries in the feature space are restricted to be
orthogonal to the splitting feature’s axis. Such representa-
tional bias limits the ability of decision trees to fit the

training data. Combining other classification methods,

which learn intermediate concepts, with decision tree

inducers can produce more flexible decision boundaries

that separate different classes, potentially improving

classification accuracy. Gama and Brazdil [12] have named

such generalization of decision tree inducers as cascade

generalization.
In this paper, we propose a generic algorithm for cascade

generalization of decision tree inducers with the maximum

cascading depth as a parameter to constrain the degree of

cascading. Cascading methods proposed in the past, i.e.,

loose coupling and tight coupling, are strictly special cases of

this new algorithm. We have empirically evaluated the

proposed algorithm using logistic regression and C4.5 as

base inducers on 32 data sets for classification problems in

the UC Irvine machine learning repository [2]. Our

evaluation results show that neither loose coupling nor

tight coupling is always the best cascading strategy and that

the maximum cascading depth in the proposed algorithm

can be tuned for better classification accuracy. We have also

empirically compared the proposed algorithm and ensemble

methods such as bagging and boosting and found that the

proposed algorithm performs marginally better than bag-

ging and boosting on the average.
The paper is organized as follows: In the next section, we

briefly review some related classification methods, includ-

ing decision tree induction, logistic regression, cascade

generalization, and ensemble methods. In Section 3, we

propose a new algorithm of cascade generalization. We then

report on some empirical evaluation using UCI data sets in

Section 4. Finally, we conclude the paper and discuss future

research directions in Section 5.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004 727

. H. Zhao is with the School of Business Administration, University of
Wisconsin–Milwaukee, PO Box 742, Milwaukee, WI 53201.
E-mail: hzhao@uwm.edu.

. S. Ram is with the Department of Management Information Systems, Eller
School of Business and Public Administration, University of Arizona, 1130
E. Helen, Tucson, AZ 85721-0108. E-mail: ram@bpa.arizona.edu.

Manuscript received 3 Apr. 2003; revised 21 Oct. 2003; accepted 12 Feb. 2004.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0026-0403.

1041-4347/04/$20.00 ! 2004 IEEE Published by the IEEE Computer Society

2 BACKGROUND

Our proposed algorithm extends and generalizes previous
algorithms for cascade generalization. Our empirical evalua-
tion involves an implementation of the proposed algorithm
using logistic regression and C4.5 decision tree inducer as
base inducers and comparisons with regard to ensemble
methods such as bagging and boosting. Therefore, in the
following sections, we review such related classification
methods as decision tree inducers, logistic regression,
cascade generalization, and ensemble methods, following a
general description of the classification problem and
classification algorithms. We then discuss the bias-variance
decomposition of classification errors and compare the
classification methods with regard to this decomposition.

2.1 Classification

A p-class classification problem is described by a pair
< X; Y > , where X ¼ X1 "X2 " # # # "Xm is an m-dimen-
sional space and Y ¼ f1; 2; . . . ; pg is a discrete space. Xiði ¼
1; 2; . . . ;mÞ is called an individual feature (or attribute, or
independent variable) space and X the total feature space. In the
rest of the paper, we use the term feature space to refer to the
total feature space X when there is no danger of ambiguity.
Y is called the class (or dependent variable) space. A solved case
(also referred to as instance or example) is a pair < x; y > ,
where x ¼< x1; x2; . . . ; xm >2 X and y 2 Y . A sample is a set
of n solved cases

S ¼ f< xð1Þ; yð1Þ >;< xð2Þ; yð2Þ >; . . . ; < xðnÞ; yðnÞ >g:

A classification algorithm (or inducer) takes a training
sample as input and outputs a classifier, which is a
mapping f : X ! Y . Let x ¼ fx1;x2; . . . ;xmg and y denote
variables corresponding to the feature vector and class
membership of a case. The performance of a classifier f
can be measured by accuracy, the probability of making a
correct prediction when given a case < x;y > , denoted
accuracyðfÞ ¼ P ðfðxÞ ¼ yÞ. A related measure, error rate, is
defined as errorðfÞ ¼ 1& accuracyðfÞ. Accuracy derived
based on the training sample is called apparent accuracy
and is usually overly optimistic and not reliable. Instead,
an independent testing sample should be used to estimate
the true accuracy. There are also more reliable techniques
such as cross-validation and bootstrap for accuracy estima-
tion [17]. A problem to overcome in designing classifica-
tion algorithms is overfitting, i.e., the learned classifier has
high apparent accuracy but low estimated true accuracy.
Note that accuracy (or error rate) is a special case of a
more general performance measure, expected misclassifica-
tion cost, when the costs of different types of classification
errors are considered equal in the context [26]. In our
empirical evaluation, we use accuracy as the sole
performance measure because it is impossible to allocate
a uniform cost matrix across the data sets drawn from
different application domains.

Theoretically, an optimal classifier (called Bayes optimal
classifier) that minimizes error rate exists and is equivalent
to the following mapping:

f'ðxÞ ¼ iði ¼ 1; 2; . . . ; pÞ;
if 8j ¼ 1; 2; . . . ; p; j 6¼ i

ðP ðy ¼ ijx ¼ xÞ > P ðy ¼ jjx ¼ xÞÞ:
ð1Þ

Applying the Bayes rule, P ðBjAÞ ¼ P ðAjBÞP ðBÞ
P ðAÞ , (1) is

equivalent to:

f'ðxÞ ¼ iði ¼ 1; 2; . . . ; pÞ;
if 8j ¼ 1; 2; . . . ; p; j 6¼ i

ðP ðx ¼ xjy¼ iÞP ðy¼ iÞ>P ðx ¼ xjy¼ jÞP ðy¼ jÞÞ:
ð2Þ

Solving the problem requires determination of prior
probabilities P ðyÞ and conditional probabilities P ðxjyÞ.
However, in practical classification applications, it is rarely
possible to directly estimate P ðxjyÞ, as enumerating the
points in X requires an enormous number of sample cases,
especially when some of the features are continuous. All
practical classification methods can be seen as trying to
estimate P ðxjyÞ with various simplifying assumptions and
heuristic search strategies. The assumption with regard to
the structure of f made by a classification method is called
the representational bias of the method.

2.2 Decision Tree Inducers

Most decision tree inducers assume that the prediction
decision can be made via a sequence of small tests (or
decisions), each of which usually involves a single feature
xi. In the learned classifiers, the decision boundaries that
separate different classes in an m-dimensional feature space
are ðm& 1Þ-dimensional hyperplanes that are geometrically
orthogonal to the axes of the testing features. Most decision
tree inducers also follow a “divide and conquer” heuristic
search strategy and can be described in the following
generic algorithm (Algorithm 1):

Algorithm 1. (Build Decision Tree)
Build Decision TreeðN;< X; Y >; SÞ

N : A node in the decision tree to be learned. N is the
root node when the procedure is initially invoked.
An intermediate node may have an indefinite
number q of children, which are denoted
N:Child½i)ði ¼ 1; 2; . . . ; qÞ.

X: The feature space of the classification problem.
X ¼ X1 "X2 " # # # "Xm.

Y : The class space of the classification problem.
Y ¼ f1; 2; . . . ; pg.

S: A sample, i.e., a set of n solved cases, each of which
is a pair < x; y > , where
x ¼< x1; x2; . . . ; xm >2 X and y 2 Y .

1 Select a splitting test based on a goodness measure, by
which S is split into q subsets Siði ¼ 1; 2; . . . ; qÞ.

2 If q ¼ 1,
2.1 Mark N as a leaf node, with the majority class in S as

the predicted class.
3 Else
3.1 For i ¼ 1 To q,
3.1.1 Generate the ith child of N , N:Child½i).
3.1.2 Build Decision TreeðN:Child½i); < X; Y >; SiÞ.

728 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Different decision tree inducers mainly differ in the
goodness measure used to select the splitting feature (line 1).
ID3 selects the feature that results in the biggest information
gain [21], [22]. C4.5, a successor of ID3, replaces information
gain with a gain ratio to compensate ID3’s bias toward
highly-branching features [23]. Many other measures, such
as G-statistic and Gini index, have been adopted in other
decision tree inducers [19]. The tree building procedure is
usually followed by a pruning phase, in which some
selected subtrees are replaced by single leaves (subtree
replacement) or “raised” to replace their parents (subtree
raising), to reduce the chance of overfitting [19], [25], [27].
Pruning will certainly reduce the apparent accuracy on the
training sample, but may increase the expected accuracy
during prediction.

2.3 Logistic Regression

Logistic regression is a widely-used statistical method for
classification. A major difference between logistic regres-
sion and linear regression is that the dependent variable is
discrete in logistic regression and continuous in linear
regression. Logistic regression assumes that the logits,
logarithm of the odds ratios, are linear with regard to the
features [15], [25]. In a binary classification problem (i.e.,
p ¼ 2), the logits are the following linear functions:

giðxÞ ¼ ln
P ðy ¼ ijx ¼ xÞ

1& P ðy ¼ ijx ¼ xÞ

¼
Xm

j¼1

!ijxj þ !i0 ðfor i ¼ 1; 2Þ:
ð3Þ

Note that !1j ¼ &!2jðj ¼ 1; 2; . . . ;mÞ. The decision bound-
ary that separates the classes in the feature spaceX is linear.
The coefficients, !ijði ¼ 1; 2; j ¼ 1; 2; . . . ;mÞ, can be obtained
using an iterative weighted least squares procedure. Assuming
that the conditional distribution of x, given the class
membership y ¼ y, is multivariate normal with a covariance
matrix that is independent of y, the coefficients can also be
estimated analytically using the linear discriminant analysis
method. Because the assumptions made by linear discrimi-
nant analysis do not usually hold, it should be used instead of
logistic regression onlywhen the resource is limited and only
in preliminary analysis [15]. Logistic regression and linear
discriminant analysis both can be easily extended to deal
with multiple-class classification problems (i.e., p > 2) via
multiple pairwise comparisons.

2.4 Ensemble Classification Methods

The fact that a single classifier provides just one estimate of
the Bayes optimal classifier (2), no matter how accurate it is,
has led researchers to explore methods to obtain better
estimates by combining multiple classifiers [6]. One type of
these multiple classifier methods is called ensemble methods
(also called voting methods) [1], [6], [7], which make the final
decisions based on (weighted or unweighted) voting of a set
(called ensemble or committee) of classifiers. Ensemble
methods differ in the way base classifiers are induced and
the voting mechanism. Two of the most popular ensemble
methods are bagging and boosting. In bagging (Bootstrap
Aggregating) [4], T base classifiers fiði ¼ 1; 2; . . . ; T Þ are
induced independently using different training samples

Siði ¼ 1; 2; . . . ; T Þ and are given equal weights in the voting.
The samples are generated based on an original training
sample S using the bootstrap technique [17]; each time, jSj
cases are randomly sampled with replacement from S. In
boosting, base classifiers are learned sequentially; each new
classifier pays more attention to cases misclassified by
previous classifiers. In AdaBoost [10], a popular boosting
method, each case correctly classified by the ith classifier fi
is down-weighted by a factor of errorðfiÞ

1&errorðfiÞ before the
induction of fiþ1; each classifier fi is assigned a weight
& log errorðfiÞ

1&errorðfiÞ in the voting.

2.5 Cascade Generalization
Cascade generalization is another method for combining
classifiers [12]. While several authors have proposed similar
ideas independently, the term cascade generalization is due to
Gama and Brazdil [12]. While bagging and boosting
combine classifiers generated by the same inducer, cascade
generalization involves multiple inducers; the output of one
inducer is used to construct new features, which will be
used in addition to the original features by the next inducer.
Cascade generalization has usually been used to combine a
decision tree inducer with other classification methods.

As we have mentioned earlier, most decision tree
inducers have a representational bias; the trees they
produce are usually univariate; the splitting decision at each
internal node is based on a single feature [3], [5], [11], [12],
[14], [16], [19], [20], [25], [29]. The decision boundaries in the
feature space are restricted to be geometrically orthogonal
to the axes of the splitting features. In a two-dimensional
feature space, the decision regions are rectangles, whose
sides are parallel to one of the axes; for a linearly separable
data set, they must use numerous axis-parallel line
segments to approximate the discriminant line. Recently,
several methods have been proposed to cascade other
classification techniques, often linear model inducers, with
decision tree inducers. The generalized decision trees
generated by these methods have been named multivariate
decision trees [5], oblique decision trees [14], [20], discriminant
trees [11], and linear discriminant trees [16], [29]. The splitting
decision at an intermediate node is based on a multivariate
test, which is often a linear combination of the original
features, rather than a single feature. The multivariate tests
are based on classifiers induced by the other inducers
cascaded with the decision tree inducer. In a special case,
where the splitting decision is base on a linear combination
of at most two features, the generalized decision trees are
called bivariate decision trees [3]. The decision boundaries in
an m-dimensional feature space are ðm& 1Þ-dimensional
hyperplanes that are not restricted to be axis-orthogonal and
can be oblique. The representational bias of univariate
decision trees is relaxed; training samples can be better
fitted (i.e., apparent accuracy tends to increase).

2.6 Bias-Variance Decomposition of Classification
Errors

The bias plus variance decomposition [13] is a powerful tool
for analyzing supervised learning scenarios that have
quadratic loss functions. It has been adapted to deal with
zero-one loss functions (i.e., classification error), which is
more applicable to classification problems [8], [18]. Given a
fixed target population of cases, the expected classification
error generated by an inducer can be decomposed into three

ZHAO AND RAM: CONSTRAINED CASCADE GENERALIZATION OF DECISION TREES 729

nonnegative terms: bias2, variance, and noise. The bias2 term
measures the squared difference between the inducer’s
average guess and the target population’s average output.
The variance term measures the variability of the inducer’s
average guess across training samples given to the inducer.
The noise term measures the variance of the target
population per se and is independent of the inducer.

The bias-variance decomposition can be used to explain
how multiple classifier methods affect classification perfor-
mance. Empirical studies [1], [4], [6], [7] have shown that:
1) bagging sometimes improves the performance of the base
classifiers fiði ¼ 1; 2; . . . ; T Þ and seldom degrades their
performance and 2) bagging is more effective with unstable
(i.e., high variance) inducers such as most decision tree
inducers, whose output (i.e., classifiers fiði ¼ 1; 2; . . . ; T Þ)
fluctuates significantly given small changes in the training
sample, than with stable ones such as logistic regression. It
has been shown both analytically and empirically that the
performance gain of bagging is due to its reduction of
variance and, therefore, bagging is more productive on
unstable methods [1], [4], [6], [7].

Empirical results [1], [6], [7], [10], [26] regarding boosting
include:

1. Boosting sometimes is significantly superior to
bagging, but can also go wrong; it sometimes even
degrades the performance of the underlying inducer.

2. Boosting is unproductive or even counterproductive
with strong classifiers.

3. Boosting is sensitive to noise and does not work well
in highly noisy problems.

It has been shown both analytically and empirically that
boosting can reduce both bias and variance and, therefore,
generate larger performance gain than bagging [1], [7], [10].
However, boosting can also increase variance when base
classifiers are strong, reducing or even overwhelming its
performance gain [1]. It also places more weight on “hard”
training cases (i.e., cases misclassified by earlier classifiers),
which are likely to be noisy cases in noisy problems,
artificially increasing the noise.

Empirical studies have shown that multivariate decision
trees generated by cascading other inducers with a decision
tree inducer frequently outperform univariate decision trees
generated by the underlying decision tree inducer [3], [5],
[11], [12], [14], [16], [20], [29]. Unlike voting methods, which
mainly reduce variance, cascade generalization has been
shown to reduce bias [12].

3 CONSTRAINED CASCADE GENERALIZATION

The cascade generalization methods proposed in the past
can be categorized into two major types, loose coupling and
tight coupling [12]. In loose coupling, classification methods
such as linear discriminant analysis and logistic regression are
used first to learn T initial classifiers fiði ¼ 1; 2; . . . ; T Þ. These
classifiers are then used to construct m0 additional features
x0 ¼ fx01; x02; . . . ; x0m0 g, which are combined with the original
features x ¼ fx1; x2; . . . ; xmg to induce a decision tree. In
tight coupling, such cascading is localized to each node in
the decision tree; additional features are constructed based
on the training cases falling into each node. These constructed

features are functions of the original features and represent
intermediate concepts, which relax the representational bias
of the base decision tree inducer and allow the decision
boundaries to be oblique (rather than axis-orthogonal)
hyperplanes in the original feature space X.

Cascade generalization reduces bias and increases the
complexity fit (or flexibility) of the classifiers learned by
decision tree inducers so that training data can be fitted
better and apparent error rate is reduced. Therefore, tight
coupling is more flexible than loose coupling, which, in turn,
is more flexible than the underlying univariate decision tree
inducer in fitting the training cases. However, no classifica-
tion method can get away with the trade off between
complexity and generalizability (i.e., prediction ability on
unseen cases) [25]. Generally speaking, the more complex a
classifier is, the better it can fit training data, but, at the same
time, the easier it is to overfit training data [25]. A model that
fits training data well may not predict unseen data well. This
is especially the case with cascade generalization. As a
generalized decision tree grows, the local models at each
node are learned based on fewer and fewer training samples.
In addition, the training samples get more and more
unbalanced toward the majority class of the current branch.
The cascaded method is more and more prone to learning
spurious intermediate models, which overfit the local
training cases. One of the major tasks of classification
methods that can produce variable complexity fits is to find
the appropriate complexity fit [25]. We posit that cascade
generalization is not an exception and, therefore, the
appropriate complexity fit (i.e., degree of cascading) needs
to be determined empirically for a given application.

3.1 A Generic Algorithm for Cascade Generalization

We propose a generic algorithm for cascade general-
ization, which uses the maximum cascading depth as a
parameter to simulate the trade off between complexity
and generalizability. The parameter constrains cascading to
a given extent. An appropriate maximum cascading depth
for a particular problem can be found using a perfor-
mance estimation method such as bootstrap and cross-
validation. Our pseudocode for the generic algorithm is
presented as a recursive procedure called Build_Generalized_
Tree (Algorithm 2):

Algorithm 2. (Build Generalized Decision Tree)
Build Generalized TreeðN;< X; Y >; S; d; dcascade;!;"Þ

N;< X; Y >; S: See description under Algorithm 1.
d: The depth of N in the decision tree. d ¼ 1 when the

procedure is initially invoked.
dcascade: The maximum cascading depth. dcascade is a

parameter of the algorithm.
!: A base decision tree inducer, e.g, C4.5.
": A set of disciminant function inducers, e.g., {logistic

regression}, which takes < X; Y > and S as input
and returns a set of constructed features based on
the discriminant functions to be learned.

1 X0 :¼ #.
2 If d + dcascade,
2.1 X0 :¼ "ð< X; Y >; SÞ:
2.2 X :¼ X [X0.

730 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

2.3 S :¼ S extended with constructed features in X0.
3 Select a splitting test using the goodness measure of

!, by which S is split into q subsets Siði ¼ 1; 2; . . . ; qÞ.
4 If q ¼ 1,
4.1 Mark N as a leaf node, with the majority class in S

as the predicted class.
5 Else
5.1 For i ¼ 1 TO q,
5.1.1 Generate the ith child of N , N:Child½i).
5.1.2 Build_Generalized_Tree

ðN:Child½i); < X&X0; Y >; Si; dþ 1; dcascade;!;"Þ.
The algorithm is generic in the sense that it can be used

to cascade any number and any kind of discriminant function
inducers (i.e., the "), such as linear discriminant analysis
and logistic regression, with any classification scheme (i.e.,
the !), such as C4.5 [23], that follows a “divide and
conquer” strategy and builds sequential decision models. The
selection of the splitting test at each intermediate node is
based on the goodness measure (e.g., information gain and
gain ratio) of the underlying decision tree inducer. Loose
coupling and tight coupling proposed in the past [12] are
special cases of the algorithm when dcascade ¼ 1 and
dcascade ¼ the height of the tree, respectively. The procedure
Build_Generalized_Tree constructs a decision tree; our algo-
rithm is open to any tree pruning strategy.

The time complexity of the algorithm can be estimated in

terms of the time complexity of the base classification

methods. Assume that the training time of the base decision

tree method is a function of the number of training instances,

n, and the number of features, m, and is denoted f!ðn;mÞ.
Assume that the training timeof" is a functionofn andmand

is denoted f"ðn;mÞ. Suppose there are qd nodes, each with

niði ¼ 1; 2; . . . ; qd;
Pqd

i¼1 ni ¼ nÞ training examples, on some

leveld + dcascade of the tree. The total timeneeded to train" for

the qd nodes on level d of the tree is:

f 0
";dðn;mÞ ¼

Xqd

i¼1

f"ðni;mÞ + f"ð
Xqd

i¼1

ni;mÞ ¼ f"ðn;mÞ: ð4Þ

We reasonably assume that the inequality holds for
f"ðn;mÞ, as the time complexity functions for most, if not
all, classification methods are at least linear with regard to n
and m. The inequality approaches equality when the qd
nodes are more unbalanced (i.e., the ni’s are more different).
The total time attributed to training " on all dcascade levels of
the tree is:

f 0"ðn;mÞ ¼
Xdcascade

d¼1

f 0
";dðn;mÞ +

Xdcascade

d¼1

f"ðn;mÞ

¼ dcascadef"ðn;mÞ:
ð5Þ

The time needed to train the generalized decision tree
increases slightly, compared to training a decision tree
without cascading ", due to the additional constructed
features added to the training data during the training
process. However, when the number of original features is
much larger than the number of constructed features, m0 ¼
"ð< X; Y >; SÞj j (i.e., m >> m0), as it is usually true, this

increase is negligible and the time attributed to decision tree
training is:

f 0
!ðn;mþm0Þ ¼ f!ðn;mþm0Þ , f!ðn;mÞ: ð6Þ

The overall training time is therefore:

f 0
dcascade

ðn;mÞ ¼ f 0
"ðn;mÞ þ f 0

!ðn;mþm0Þ + dcascadef"ðn;mÞ
þ f!ðn;mþm0Þ , dcascadef"ðn;mÞ þ f!ðn;mÞ:

ð7Þ

If the time complexity of the base decision tree method is
on a higher degree than that of " (i.e., f!ðn;mÞ >> f"ðn;mÞ),
the overall training time is dominated by decision tree
training and increases only slightly:

f 0
dcascade

ðn;mÞ + dcascadef"ðn;mÞ þ f!ðn;mÞ , f!ðn;mÞ:

If the time complexity of " is on a higher degree than that of
the base decision tree method (i.e., f"ðn;mÞ >> f!ðn;mÞ),
the overall training time is bounded by dcascade times of the
training time of ":

f 0dcascadeðn;mÞ + dcascadef"ðn;mÞ þ f!ðn;mÞ , dcascadef"ðn;mÞ:

In any case, the efficiency of the cascade generalization
algorithm is considered acceptable given efficient base
classifiers, ! and ".

3.2 Finding the Best Cascading Depth
Using the generalized decision tree building algorithm, a set
of k generalized decision trees with different dcascade values
can be built, from which the best tree can be identified using
a performance estimation method such as bootstrap and
cross-validation [17]. A general procedure is described in
the following algorithm (Algorithm 3):

Algorithm 3. (BuildGeneralized Decision Trees)
Build Generalized Treesð< X; Y >; S;!;";$Þ

< X; Y >; S: See description under Algorithm 1.
!;": See description under Algorithm 2.
$: A performance estimation method, e.g.,

cross-validation.
1 i :¼ 0.
2 Loop
2.1 Generate the root node for the ith generalized

tree, Ri.
2.2 Build_Generalized_Tree

ðRi;< X; Y >; S; 1; i;!;"Þ.
2.3 Estimate the performance of Ri using $.
2.4 i :¼ iþ 1.

Until Ri&1:depth ¼ i& 1 (i.e., the last tree is fully
cascaded with ").

3 Find the best tree among the k trees, Riði ¼ 1; 2; . . . ; kÞ.
The time complexity of Build_Generalized_Trees is:

ftreesðn;mÞ ¼
Xk&1

i¼0

f 0
iðn;mÞ +

Xk&1

i¼0

ði # f"ðn;mÞ þ f!ðn;mÞÞ

¼ ðk& 1Þk
2

f"ðn;mÞ þ kf!ðn;mÞ:

ð8Þ

ZHAO AND RAM: CONSTRAINED CASCADE GENERALIZATION OF DECISION TREES 731

k is proportional to logn on the average and approaches n in

the worst case, when the generalized trees are extremely

unbalanced. If the time complexity of " is on a higher

degree than that of the base decision tree inducer (i.e.,

f"ðn;mÞ >> f!ðn;mÞ), the overall training time is bounded

by ðk&1Þk
2 times of the training time of ".

4 EMPIRICAL EVALUATION

We have implemented the proposed algorithm for con-
strained cascade generalization using logistic regression
and C4.5 as base inducers (i.e., " ¼ flogistic regressiong,
! ¼ C4:5) and evaluated the implementation using 32 data
sets for classification problems collected in the UCI machine
learning repository [2]. These data sets have been frequently
used as benchmarks to compare the performance of
different classification methods in the literature. Table 1
summarizes the characteristics of these data sets. Our
implementation was carried out by extending the Weka
machine learning toolkit [27] in Java. The empirical
evaluation was performed on a Dell Optiplex/GX260
workstation with a Pentium 4 CPU running at 2.27GHz
and 512 MB RAM.

We have conducted three experiments, identifying the
best cascading depth, evaluating the effects of two heuristics
used in the original cascade generalization paper [12], and
comparing the proposed method for constrained cascade
generalization with ensemble methods, including bagging
and boosting. In all the experiments, we used stratified 10-fold
cross validation, a recommended performance estimation

method [17], to estimate the accuracy of each learned
classifier, starting from the same seed for the random
number generator for every method in the same run. A
parameter used by C4.5, the minimum number of training
examples covered by a node, was uniformly set to 10. We
will report on some empirical results in the following
sections.

4.1 What’s the Best Cascading Depth?
In the first experiment, we ran our algorithm under
different dcascade values for each of the 32 data sets and
identified the best cascading depth. Table 2 and Table 3
summarize the apparent accuracy and cross-validated
accuracy of the various base or composite classifiers. Note
that we use cross-validated accuracy as the performance
measure in all the experiments presented in this paper and
use apparent accuracy only for the purpose of explaining
the internal effects of cascade generalization in this
experiment. We will not present apparent accuracy results
any more for the two subsequent experiments.

Apparent accuracy increases almost monotonically as
dcascade increases, except that there are occasional fluctua-
tions, due to the heuristic nature of C4.5. Apparent accuracy
decreases only 15.9 percent (22 in 138) of the times as dcascade
increases. Tight coupling provides the highest apparent
accuracy for 87.5 percent (28 in 32) of the data sets. This
confirms that the learned models tend to fit the training
data better as dcascade increases. However, this is not true for
cross-validated accuracy, which fluctuates severely without
regard to apparent accuracy. Cross-validated accuracy
decreases 45.7 percent (63 in 138) of the times as dcascade

732 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

TABLE 1
Characteristics of 32 UCI Data Sets

ZHAO AND RAM: CONSTRAINED CASCADE GENERALIZATION OF DECISION TREES 733

TABLE 2
Apparent Accuracy (%) for the 32 UCI Data Sets

The highest apparent accuracy for each data set is bolded. A drop in apparent accuracy as dcascade increases is underlined.

TABLE 3
Cross-Validated Accuracy (%) for the 32 UCI Data Sets

The highest cross-validated accuracy for each data set is bolded. A drop in cross-validated accuracy as dcascade increases is underlined.

increases. Tight coupling provides the highest cross-
validated accuracy for only 37.5 percent (12 in 32) of the
data sets. This is consistent with our proposition that
cascade generalization is subject to the complexity-general-
izability trade off, just like any other classification scheme.
Neither loose coupling nor tight coupling, but some
moderate coupling tuned to each particular application, is
the best cascading strategy.

The best dcascade in terms of cross-validated accuracy can
be found for each data set. Paired t-tests (summarized in
Table 4) show that the proposed method based on dcascade
tuning significantly improves accuracy of C4.5 (tð31Þ ¼ 3:60,
p ¼ 0:001) and is also significantly superior to both loose
coupling (tð31Þ ¼ 4:23, p ¼ 0:000) and tight coupling
(tð31Þ ¼ 3:97, p ¼ 0:000) on the average.

Table 5 summarizes the training time of the various base
or composite classification methods. Inequality (8) holds for
most of the data sets, except for five data sets, where ftrees is
over the predicted bound slightly (within 30 percent).
Testing time is negligible, compared to training time, for all
the methods and is not evaluated in this paper.

4.2 Visualizing Why Cascade Generalization Works
The central theme of our proposed algorithm for con-
strained cascade generalization is to search for an appro-
priate level of complexity fit so that the learned model fits
the training data well to an extent where it also generalizes
well to unseen data. The idea can be better understood by
visualizing the models learned by different methods in a
two-dimensional feature space. Therefore, we ran different
methods for the “Credit Card Approval” data set using two
continuous features, A8 and A11.

734 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

TABLE 4
Paired t-tests Comparing the Proposed Method with C4.5, Loose Coupling, and Tight Coupling

TABLE 5
Training Time for the 32 UCI Data Sets

The learned models are presented in Fig. 1. The decision
boundaries of the models are illustrated in Fig. 2. Logistic
regression (Fig. 2a) finds a single line to separate the two
classes. Decision tree (Fig. 2b) uses a sequence of line
segments to approximate the boundary between the two
classes; all of the line segments are restricted to be parallel
to one of the two axes. Cascading logistic regression with
decision tree (Fig. 2c, Fig. 2d, and Fig. 2e) allows some of the
line segments to be oblique; the directions of these oblique
lines are determined by the cascaded method, logistic
regression. The number of such oblique lines is controlled
by the parameter dcascade. The larger dcascade is, the more

oblique lines are allowed, the more flexible the model is.
However, when there are too many such oblique lines,
those chosen later in the process are based on only a few
unbalanced examples and become unreliable, i.e., they
describe the characteristics of the few training examples,
but may not represent the entire population well. In this
example, dcascade ¼ 1 corresponds to loose coupling and
dcascade ¼ 3 corresponds to tight coupling.

There are only four trees in this simple example. The
cascaded logistic regression models were not actually
selected at some internal tree nodes by the heuristic

ZHAO AND RAM: CONSTRAINED CASCADE GENERALIZATION OF DECISION TREES 735

Fig. 1. Classification models learned by different classification methods for the “credit card approval” data set using two features.
Log1 ¼ 0:21 'A8þ 0:37 ' A11& 1:30, Log2 ¼ 0:37 'A8þ 0:09 ' A11& 0:40. (a) Logistic regression. (b) C4.5. (c)-(e) Cascading logistic regression
and C4.5, dcascade ¼ 1& 3.

Fig. 2. Decision boundaries generated by different classification methods for the “credit card approval” data set using two features. (a) Logistic

regression. (b) C4.5. (c)-(e) Cascading logistic regression and C4.5, dcascade ¼ 1& 3.

splitting mechanism of C4.5. The tree with dcascade ¼ 2 and
the tree with dcascade ¼ 3 are identical. There will be more
trees and more cascaded models in a more complex
situation. The best dcascade needs to be determined empiri-
cally for a particular application.

Fig. 3 shows the trends of apparent accuracy and cross-
validated accuracy as dcascade increases. Apparent accuracy
monotonically increases as dcascade increases, indicating that
the models fit the training data better and better. However,
cross-validated accuracy goes down, indicating that over-
fitting occurred. In this application, the best dcascade is 0, i.e.,
no cascading at all, if only the two features A8 and A11 are
used for classification.

4.3 Effects of Additional Heuristics
The original paper on cascade generalization [12] adopted
two heuristics to restrict cascading: 1) A constructed feature
corresponding to class i is used only if the number of
examples, at the current node, belonging to class i is greater
than Nm, where m is the number of features and N is 3 by
default. 2) The error rate of the cascaded classifier should be
less than 0.5 in the training data for the classifier to be used.
The results presented in Section 4.1 were generated without
using these heuristics. We have also evaluated the effects of
these heuristics in conjunction with our proposed method
based on dcascade tuning using a factorial experiment design
shown in Table 6. The cross-validated accuracy of the
various learned classifiers is summarized in Table 7. We use
the GLM Repeated Measures procedure for analysis of
variance (ANOVA) in SPSS to test the effects of the factors.
This procedure provides ANOVA when the same measure-
ment is made several times on each case. The test shows the
following results (summarized in Table 8):

1. dcascade tuning significantly improves accuracy
(F ð1; 31Þ ¼ 22:11, p ¼ 0:000).

2. Heuristic 1 has a negative effect on accuracy
(F ð1; 31Þ ¼ 7:32, p ¼ 0:011).

3. The effect of heuristic 2 is not significant
(F ð1; 31Þ ¼ 1:17, p ¼ 0:288).

4. The interaction between dcascade tuning and heuristic
1 is significant (F ð1; 31Þ ¼ 5:98, p ¼ 0:020). Applying
heuristic 1 reduces the effect of dcascade tuning.

5. There is no significant interaction between dcascade
tuning and heuristic 2 (F ð1; 31Þ ¼ 1:42, p ¼ 0:243).

6. The two heuristics significantly interfere with each
other (F ð1; 31Þ ¼ 5:24, p ¼ 0:029).

7. There is no significant interaction among the three
factors simultaneously (F ð1; 31Þ ¼ 1:85, p ¼ 0:184).

4.4 Comparison with Bagging and Boosting

We have also compared the proposed algorithm for
constrained cascade generalization with bagging [4] and
AdaBoost [10]. The two heuristics evaluated in the previous
section were not used in cascade generalization. For
bagging, 10 classifiers generated by C4.5 were bagged. For
AdaBoost, up to 10 classifiers generated by C4.5 were
boosted. Table 9 summarizes the cross-validated accuracy
generated by the various methods. While the proposed
algorithm is marginally superior to both bagging and
AdaBoost, paired t-tests do not show significant differences
between the methods, due to the small sample size (32);
comparing cascading and bagging: tð31Þ ¼ 1:24, p ¼ 0:224;
comparing cascading and boosting: tð31Þ ¼ 0:131, p ¼ 0:897.

4.5 Discussion
While we have obtained some statistically significant results
in our empirical evaluation, these results should be
interpreted with caution, taking the following issues in
consideration:

1. Statistical significance should not be confused with
practical significance. The fact that the effect of some
technique is statistically significant shows that the
effect is very likely to be genuine rather than by
chance, but does not tell whether the effect is
practically important, large, or even useful in the
context. Interpretation of practical significance is
necessarily domain dependent. For example, in our
first experiment, cascading logistic regression re-
duced the error rate of C4.5 by 2.4 percent on the
average. An error reduction of this size can be
conceived as practically significant for some, but not
all, classification problems.

2. Since most of the empirical studies on supervised
learning in the literature, including this one, use
conveniently available data sets, such as those in the
UCI repository, rather than truly random samples,
the generalizability of the evaluation results is
dependent on the representativeness of these data
sets. In addition, our evaluation compares the
average performance of different methods across

736 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

Fig. 3. Accuracy of generalized decision trees with different dcascade’s.

TABLE 6
Experiment Design: Effects of dcascade Tuning

and Two Heuristics

classification problems, but cannot be used to
predict which method will be superior to others for
a particular problem. No method has been found so
far that is universally superior to others in all
problems; indeed, we believe, based on the “no-
free-lunch theorems” [28], that it’s likely such a
method does not exist. In practice, for a given new
classification problem, various methods need to be
empirically evaluated to find the best ones, with
previous empirical results as guidelines.

3. Note that considering the relatively small sizes of the
data sets, we have selected a relatively small value
(10) for the number of iterations in bagging and
boosting. The accuracy and training times of bagging
and boosting are dependent on this parameter. A
more elaborate comparison of accuracy and training
times of the methods should take the effect of this
parameter into account.

4. Note that the potential gain in classification accu-
racy provided by the proposed algorithm does not
come for free. As constructive features (often linear
combinations of original features) are incorporated
into decision trees, the comprehensibility of deci-
sion trees degrades. The linear combinations of
multiple features in a multivariate tree are harder to
interpret than the individual features in a univariate
tree. Indeed, any method that attempts to combine
multiple classifiers for potential performance im-
provement, including bagging and boosting, will
inevitably reduce the comprehensibility of learned
models. Accuracy and comprehensibility are un-
avoidable trade-offs; different methods need to be
evaluated for a particular classification problem to
find appropriate ones. A large reason that decision
tree techniques have been popular in practice is that
they generate simple and easily interpretable
models. In situations where comprehensibility is

ZHAO AND RAM: CONSTRAINED CASCADE GENERALIZATION OF DECISION TREES 737

TABLE 7
Cross-Validated Accuracy under dcascade Tuning and Two Heuristics

TABLE 8
Results of the GLM Repeated Measures Procedure for ANOVA in SPSS

weighted higher than accuracy, simple univariate
trees may well be preferred to more complex
models, even if the complex models are more
accurate.

5 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have proposed a generic algorithm of
constrained cascade generalization, of which cascading
methods proposed in the past, including loose coupling
and tight coupling, are strictly special cases. We have
empirically evaluated the algorithm in a number of
classification problems. Empirical results show that loose
coupling and tight coupling are not always the best
cascading strategies and that the maximum cascading
depth parameter in the proposed algorithm can be tuned
for better classification accuracy. We have also found that
the proposed algorithm is marginally better than bagging
and boosting on the average.

While we have proposed one approach to constraining
the degree of cascade generalization and empirically
evaluated a particular cascade generalization using C4.5
and logistic regression as base inducers, there are still many
issues related to cascade generalization that need to be
studied in future research. Some examples are:

1. All data sets used in our current empirical evalua-
tion are relatively small. A study on the scalability of
the proposed algorithm in large data sets is needed.

2. Some advantages of univariate decision trees, be-
sides their relatively high comprehensibility, include
that they are invariant to monotone transformations
of the input variables and can deal with missing

values and outliers. These aspects need to be
analyzed in the context of multivariate decision
trees.

3. In our current algorithm, we use the maximum
cascading depth as a parameter to constrain cascad-
ing during tree induction. There are other potential
parameters, such as statistical significance tests of
learned model, to constrain cascading. In addition,
these parameters are related to tree pruning para-
meters. The effects of different parameters and the
interactions among them need to be further analyzed
and evaluated.

4. Currently, we select the best tree (i.e., an elitist
strategy) from a set of trees with different dcascade’s.
An alternative strategy is to combine the multiple
trees via a “voting” mechanism (i.e., an ensemble
strategy). Intuitively, this strategy can potentially
reduce both bias (due to cascade generalization) and
variance (due to voting) and provide more perfor-
mance gain in particular situations. The two strate-
gies need to be analytically and empirically
compared.

5. Cascading decision tree inducers with nonlinear
model inducers, such as Naive Bayes and artificial
neural networks, needs to be investigated.

6. We developed the proposed algorithm in our
research in entity identification [24], [30] (also called
record linkage [9]), i.e., identifying records that
semantically correspond to the same entity in the
real world from different data sources. We are
evaluating the algorithm in this problem domain.

ACKNOWLEDGMENTS

The authors are grateful to Associate Editor, Dr. Paolo
Frasconi, and the three anonymous reviewers for their
many valuable suggestions.

REFERENCES

[1] E. Bauer and R. Kohavi, “An Empirical Comparison of Voting
Classification Algorithms: Bagging, Boosting, and Variants,”
Machine Learning, vol. 36, nos. 1-2, pp. 105-139, 1999.

[2] C.L. Blake and C.J. Merz, UCI Repository of Machine Learning
Databases, http://www.ics.uci.edu/~mlearn/MLRepository
.html, 1998.

[3] J.C. Bioch, O. van der Meer, and R. Potharst, “Bivariate Decision
Trees,” Principles of Data Mining and Knowledge Discovery, Lecture
Notes in Artificial Intelligence 1263, J. Komorowski and
J. Zytkow, eds., Springer Verlag, pp. 232-243, 1997.

[4] L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 2,
pp.123-140, 1996.

[5] C.E. Brodley and P.E. Utgoff, “Multivariate Decision Trees,”
Machine Learning, vol. 19, no. 1, pp. 45-77, 1995.

[6] T.G. Dietterich, “Ensemble Methods in Machine Learning,” Proc.
First Int’l Workshop Multiple Classifier Systems, pp. 1-15, 2000.

[7] T.G. Dietterich, “An Experimental Comparison of Three Methods
for Constructing Ensembles of Decision Trees: Bagging, Boosting,
and Randomization,” Machine Learning, vol. 40, no. 2, pp. 139-157,
2000.

[8] P. Domingos, “A Unified Bias-Variance Decomposition and its
Applications,” Proc. 17th Int’l Conf. Machine Learning, pp. 231-238,
2000.

[9] I.P. Fellegi and A.B. Sunter, “A Theory of Record Linkage,”
J. American Statistical Assoc., vol. 64, pp. 1183-1210, 1969.

[10] Y. Freund and R.E. Schapire, “Experiments with a New Boosting
Algorithm,” Proc. 13th Int’l Conf. Machine Learning, pp. 148-156,
1996.

738 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

TABLE 9
Cross-Validated Accuracy of Cascading, Bagging, and Boosting

[11] J. Gama, “Discriminant Trees,” Proc. 16th Int’l Conf. Machine
Learning, pp. 134-142, 1999.

[12] J. Gama and P. Brazdil, “Cascade Generalization,” Machine
Learning, vol. 41, no. 3, pp. 315-343, 2000.

[13] S. Geman, E. Bienenstock, and R. Doursat, “Neural Networks and
the Bias/Variance Dilemma,” Neural Computation, vol. 4, pp. 1-48,
1992.

[14] D. Heath, S. Kasif, and S. Salzberg, “Induction of Oblique Decision
Trees,” Proc. 13th Int’l Joint Conf. Artificial Intelligence, pp. 1002-
1007, 1993.

[15] D.W. Hosmer and S. Lemeshow, Applied Logistic Regression,
second ed. John Wiley & Sons, Inc., 2000.

[16] G.H. John, “Robust Linear Discriminant Trees,” Learning From
Data: Artificial Intelligence and Statistics V, Lecture Notes in Statistics,
D. Fisher and H. Lenz, eds., Springer-Verlag, pp. 375-385, 1996.

[17] R. Kohavi, “A Study of Cross-validation and Bootstrap for
Accuracy Estimation and Model Selection,” Proc. 14th Int’l Joint
Conf. Artificial Intelligence, pp. 1137-1143, 1995.

[18] R. Kohavi and D.H. Wolpert, “Bias Plus Variance Decomposition
for Zero-One Loss Functions,” Proc. 13th Int’l Conf. Machine
Learning, pp. 275-283, 1996.

[19] S.K. Murthy, “Automatic Construction of Decision Trees from
Data: A Multi-Disciplinary Survey,” Data Mining and Knowledge
Discovery, vol. 2, no. 4, pp. 345-389, 1998.

[20] S.K. Murthy, S. Kasif, and S. Salzberg, “A System for Induction of
Oblique Decision Trees,” J. Artificial Intelligence Research, vol. 2,
pp. 1-32, 1994.

[21] J.R. Quinlan, “Discovering Rules by Induction from Large
Collections of Examples,” Expert Systems in the Micro Electronic
Age, D. Michie, ed., Edinburgh Univ. Press, 1979.

[22] J.R. Quinlan, “Induction of Decision Trees,” Machine Learning,
vol. 1, no. 1, pp. 81-106, 1986.

[23] J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[24] S. Ram and H. Zhao, “Detecting Both Schema-Level and Instance-
Level Correspondences for the Integration of E-Catalogs,” Proc.
11th Ann. Workshop Information Technology and Systems (WITS ’01),
pp. 193-198, 2001.

[25] S.M. Weiss and C.A. Kulikowski, Computer Systems That Learn—
Classification and Prediction Methods from Statistics, Neural Nets,
Machine Learning, and Expert System. Morgan Kaufmann, 1991.

[26] J. Wickramaratna, S. Holden, and B. Buxton, “Performance
Degradation in Boosting,” Proc. Second Int’l Workshop Multiple
Classifier Systems, pp. 11-21, 2001.

[27] I.H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementation. Morgan Kaufmann,
2000.

[28] D.H. Wolpert, “The Relationship Between PAC, the Statistical
Physics Framework, the Bayesian Framework, and the VC
Framework,” The Mathematics of Generalization—Proc. SFI/CNLS
Workshop Formal Approaches to Supervised Learning, pp. 117-214,
D.H. Wolpert, ed., Addison-Wesley, 1994.

[29] O.T. Yildiz and E. Alpaydin, “Linear Discriminant Trees,” Proc.
17th Int’l Conf. Machine Learning, pp. 1175-1182, 2000.

[30] H. Zhao and S. Ram, “Entity Identification for Heterogeneous
Database Integration—A Multiple Classifier System Approach
and Empirical Evaluation,” Information Systems, 2004.

Huimin Zhao received the BE and ME degrees
in automation from Tsinghua University, China,
in 1990 and 1993, respectively, and the PhD
degree in management information systems
from the University of Arizona in 2002. He is
assistant professor of management information
systems in the School of Business Administra-
tion at the University of Wisconsin–Milwaukee.
His current research interests include data
mining, data integration, and Web services. He

has published in such journals as Information Systems and the
International Journal of Web Services Research. He serves on the
editorial board of the International Journal for Infonomics and the
editorial review board of the Journal of Database Management. He is a
member of the IEEE, the Association for Information Systems (AIS), and
the Information Resources Management Association (IRMA).

Sudha Ram received the BS degree in mathe-
matics, physics, and chemistry from the Uni-
versity of Madras in 1979, the PGDM from the
Indian Institute of Management, Calcutta, in
1981, and the PhD degree from the University
of Illinois at Urbana-Champaign, in 1985. She is
an Eller Professor of management information
systems in the College of Business and Public
Administration at the University of Arizona. Dr.
Ram has published articles in such journals as

Communications of the ACM, IEEE Expert, the IEEE Transactions on
Knowledge and Data Engineering, Information Systems, Information
Systems Research, Management Science, and MIS Quarterly. Dr.
Ram’s research deals with issues related to enterprise data manage-
ment. Her research has been funded by organizations such as IBM, Intel
Corporation, Raytheon, US ARMY, National Institute of Science and
Technology, US National Science Foundation, NASA, and the Office of
Research and Development at the CIA. Specifically, her research deals
with interoperability among heterogeneous database systems, semantic
modeling, bioinformatics and spatio-temporal semantics, business rules
modeling, Web services discovery and selection, and automated
software tools for database design. Dr. Ram serves on editorial board
of such journals as Decision Support Systems, Information Systems
Frontiers, Journal of Information Technology and Management, and as
associate editor for Information Systems Research, the Journal of
Database Management, and the Journal of Systems and Software. She
has chaired several workshops and conferences supported by the ACM,
the IEEE, the IEEE Computer Society, and the AIS. She is a cofounder
of the Workshop on Information Technology and Systems (WITS) and
serves on the steering committee of many workshops and conferences
including the Entity Relationship Conference (ER). Dr. Ram is a member
of the ACM, the IEEE, the IEEE Computer Society, INFORMS, and the
Association for Information Systems (AIS). She is also the director of the
Advanced Database Research Group based at the University of
Arizona.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHAO AND RAM: CONSTRAINED CASCADE GENERALIZATION OF DECISION TREES 739

