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Abstract—While decision tree techniques have been widely used in classification applications, a shortcoming of many decision tree
inducers is that they do not learn intermediate concepts, i.e., at each node, only one of the original features is involved in the branching
decision. Combining other classification methods, which learn intermediate concepts, with decision tree inducers can produce more
flexible decision boundaries that separate different classes, potentially improving classification accuracy. We propose a generic
algorithm for cascade generalization of decision tree inducers with the maximum cascading depth as a parameter to constrain the
degree of cascading. Cascading methods proposed in the past, i.e., loose coupling and tight coupling, are strictly special cases of this
new algorithm. We have empirically evaluated the proposed algorithm using logistic regression and C4.5 as base inducers on 32 UCI
data sets and found that neither loose coupling nor tight coupling is always the best cascading strategy and that the maximum
cascading depth in the proposed algorithm can be tuned for better classification accuracy. We have also empirically compared the
proposed algorithm and ensemble methods such as bagging and boosting and found that the proposed algorithm performs marginally

better than bagging and boosting on the average.

Index Terms—Machine learning, data mining, classification, decision tree, cascade generalization.

1 INTRODUCTION

lassification is a type of prediction problem where the

dependent variable (also referred to as class) that needs to
be predicted based on several independent variables (also
referred to as features and attributes) is discrete. A related
problem is regression where the dependent variable is
continuous. A learning technique constructs a hypothetical
model, which is a mapping from the independent variables
to the dependent variable, by investigating a given set of
successfully solved cases, whose outputs on the dependent
variable are already known; the model can then be used to
predict the outputs of unseen cases on the dependent
variable. Decision tree techniques follow a “divide and
conquer” strategy and produce sequential models which
logically combine a sequence of simple tests. They have
been popular in classification applications largely because
the models they generate closely resemble human reasoning
and are easily understood [25].

While decision tree techniques have been widely used in
classification applications, a shortcoming of many decision
tree inducers is that they do not learn intermediate
concepts, i.e., at each tree node, only one of the original
features is involved in the branching decision [3], [5], [11],
[12], [14], [16], [19], [20], [25], [29]. Geometrically, the
decision boundaries in the feature space are restricted to be
orthogonal to the splitting feature’s axis. Such representa-
tional bias limits the ability of decision trees to fit the
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training data. Combining other classification methods,
which learn intermediate concepts, with decision tree
inducers can produce more flexible decision boundaries
that separate different classes, potentially improving
classification accuracy. Gama and Brazdil [12] have named
such generalization of decision tree inducers as cascade

generalization.
In this paper, we propose a generic algorithm for cascade

generalization of decision tree inducers with the maximum
cascading depth as a parameter to constrain the degree of
cascading. Cascading methods proposed in the past, ie.,
loose coupling and tight coupling, are strictly special cases of
this new algorithm. We have empirically evaluated the
proposed algorithm using logistic regression and C4.5 as
base inducers on 32 data sets for classification problems in
the UC Irvine machine learning repository [2]. Our
evaluation results show that neither loose coupling nor
tight coupling is always the best cascading strategy and that
the maximum cascading depth in the proposed algorithm
can be tuned for better classification accuracy. We have also
empirically compared the proposed algorithm and ensemble
methods such as bagging and boosting and found that the
proposed algorithm performs marginally better than bag-
ging and boosting on the average.

The paper is organized as follows: In the next section, we
briefly review some related classification methods, includ-
ing decision tree induction, logistic regression, cascade
generalization, and ensemble methods. In Section 3, we
propose a new algorithm of cascade generalization. We then
report on some empirical evaluation using UCI data sets in
Section 4. Finally, we conclude the paper and discuss future
research directions in Section 5.
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2 BACKGROUND

Our proposed algorithm extends and generalizes previous
algorithms for cascade generalization. Our empirical evalua-
tion involves an implementation of the proposed algorithm
using logistic regression and C4.5 decision tree inducer as
base inducers and comparisons with regard to ensemble
methods such as bagging and boosting. Therefore, in the
following sections, we review such related classification
methods as decision tree inducers, logistic regression,
cascade generalization, and ensemble methods, following a
general description of the classification problem and
classification algorithms. We then discuss the bias-variance
decomposition of classification errors and compare the
classification methods with regard to this decomposition.

2.1 Classification

A p-class classification problem is described by a pair
<X,Y >, where X = X7 x Xy x --- x X,,, is an m-dimen-
sional space and Y = {1,2,...,p} is a discrete space. X;(i =
1,2,...,m) is called an individual feature (or attribute, or
independent variable) space and X the total feature space. In the
rest of the paper, we use the term feature space to refer to the
total feature space X when there is no danger of ambiguity.
Y is called the class (or dependent variable) space. A solved case
(also referred to as instance or example) is a pair < z,y >,
where v =< z1,29,...,2, >€ Xand y € Y. A sample is a set
of n solved cases

S={<z(1),y(1) > < x(2),y(2) >,...,<z(n),y(n) >}

A classification algorithm (or inducer) takes a training
sample as input and outputs a classifier, which is a
mapping f: X — Y. Let x = {x31,X2,...,X,} and y denote
variables corresponding to the feature vector and class
membership of a case. The performance of a classifier f
can be measured by accuracy, the probability of making a
correct prediction when given a case < x,y >, denoted
accuracy(f) = P(f(x) =y). A related measure, error rate, is
defined as error(f) =1 — accuracy(f). Accuracy derived
based on the training sample is called apparent accuracy
and is usually overly optimistic and not reliable. Instead,
an independent testing sample should be used to estimate
the true accuracy. There are also more reliable techniques
such as cross-validation and bootstrap for accuracy estima-
tion [17]. A problem to overcome in designing classifica-
tion algorithms is overfitting, i.e., the learned classifier has
high apparent accuracy but low estimated true accuracy.
Note that accuracy (or error rate) is a special case of a
more general performance measure, expected misclassifica-
tion cost, when the costs of different types of classification
errors are considered equal in the context [26]. In our
empirical evaluation, we use accuracy as the sole
performance measure because it is impossible to allocate
a uniform cost matrix across the data sets drawn from
different application domains.

Theoretically, an optimal classifier (called Bayes optimal
classifier) that minimizes error rate exists and is equivalent
to the following mapping:

ffx)=1i(i=1,2,...,p),
i) =1,2,...,pj#i (1)
(P(y =ilx=z)> P(y = jlx = z)).

Applying the Bayes rule, P(B|A):w, (1) is
equivalent to:

ff(z)=1i(i=1,2,...,p),
ifVj =1,2,...,p;5# @
(P(x = zly=i)P(y=1)>P(x = zly= j) P(y= j))-
(2)
Solving the problem requires determination of prior
probabilities P(y) and conditional probabilities P(x|y).
However, in practical classification applications, it is rarely
possible to directly estimate P(x|y), as enumerating the
points in X requires an enormous number of sample cases,
especially when some of the features are continuous. All
practical classification methods can be seen as trying to
estimate P(x|y) with various simplifying assumptions and
heuristic search strategies. The assumption with regard to
the structure of f made by a classification method is called
the representational bias of the method.

2.2 Decision Tree Inducers

Most decision tree inducers assume that the prediction
decision can be made via a sequence of small tests (or
decisions), each of which usually involves a single feature
x;. In the learned classifiers, the decision boundaries that
separate different classes in an m-dimensional feature space
are (m — 1)-dimensional hyperplanes that are geometrically
orthogonal to the axes of the testing features. Most decision
tree inducers also follow a “divide and conquer” heuristic
search strategy and can be described in the following
generic algorithm (Algorithm 1):

Algorithm 1. (Build Decision Tree)
Build_Decision Tree(N,< X,Y >, 5)
N: A node in the decision tree to be learned. N is the
root node when the procedure is initially invoked.
An intermediate node may have an indefinite
number ¢ of children, which are denoted
N.Child[i](i = 1,2,...,q).
X: The feature space of the classification problem.
X=X x Xgx--xXp.
Y: The class space of the classification problem.
Y ={12,...,p}
S: A sample, i.e., a set of n solved cases, each of which
is a pair < z,y >, where
=< Z1,%2,..., Ty >€ Xand y €Y.
1  Select a splitting test based on a goodness measure, by
which S is split into ¢ subsets S;(i = 1,2,...,q).
2 Ifg=1,
21  Mark N as a leaf node, with the majority class in S as
the predicted class.
3 Else
3.1 Fori=1Togq,
3.1.1 Generate the ith child of N, N.Child][i].
312 Build_Decision Tree(N.Child[i], < X,Y >, S;).
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Different decision tree inducers mainly differ in the
goodness measure used to select the splitting feature (line 1).
ID3 selects the feature that results in the biggest information
gain [21], [22]. C4.5, a successor of ID3, replaces information
gain with a gain ratio to compensate ID3’s bias toward
highly-branching features [23]. Many other measures, such
as G-statistic and Gini index, have been adopted in other
decision tree inducers [19]. The tree building procedure is
usually followed by a pruning phase, in which some
selected subtrees are replaced by single leaves (subtree
replacement) or “raised” to replace their parents (subtree
raising), to reduce the chance of overfitting [19], [25], [27].
Pruning will certainly reduce the apparent accuracy on the
training sample, but may increase the expected accuracy
during prediction.

2.3 Logistic Regression

Logistic regression is a widely-used statistical method for
classification. A major difference between logistic regres-
sion and linear regression is that the dependent variable is
discrete in logistic regression and continuous in linear
regression. Logistic regression assumes that the logits,
logarithm of the odds ratios, are linear with regard to the
features [15], [25]. In a binary classification problem (i.e.,
p = 2), the logits are the following linear functions:

_ Py =ilx =1x)
gi(z) =In Py =ik =1)
m (3)
= Zﬁijxj + Bio (fori=1,2).
=1

Note that 31; = —f2(j = 1,2,...,m). The decision bound-
ary that separates the classes in the feature space X is linear.
The coefficients, §;;(i = 1,2;j = 1,2,...,m), can be obtained
using an iferative weighted least squares procedure. Assuming
that the conditional distribution of x, given the class
membership y = y, is multivariate normal with a covariance
matrix that is independent of y, the coefficients can also be
estimated analytically using the linear discriminant analysis
method. Because the assumptions made by linear discrimi-
nant analysis do not usually hold, it should be used instead of
logistic regression only when the resource is limited and only
in preliminary analysis [15]. Logistic regression and linear
discriminant analysis both can be easily extended to deal
with multiple-class classification problems (i.e., p > 2) via
multiple pairwise comparisons.

2.4 Ensemble Classification Methods

The fact that a single classifier provides just one estimate of
the Bayes optimal classifier (2), no matter how accurate it is,
has led researchers to explore methods to obtain better
estimates by combining multiple classifiers [6]. One type of
these multiple classifier methods is called ensemble methods
(also called voting methods) [1], [6], [7], which make the final
decisions based on (weighted or unweighted) voting of a set
(called ensemble or committee) of classifiers. Ensemble
methods differ in the way base classifiers are induced and
the voting mechanism. Two of the most popular ensemble
methods are bagging and boosting. In bagging (Bootstrap
Aggregating) [4], T base classifiers fj(i =1,2,...,T) are
induced independently using different training samples

Si(1 =1,2,...,T) and are given equal weights in the voting.
The samples are generated based on an original training
sample S using the bootstrap technique [17]; each time, |S|
cases are randomly sampled with replacement from S. In
boosting, base classifiers are learned sequentially; each new
classifier pays more attention to cases misclassified by
previous classifiers. In AdaBoost [10], a popular boosting
method, each case correctly classified by the ith classifier f;
is down-weighted by a factor of % before the
induction of f;,1; each classifier f; is assigned a weight

- log% in the voting.

2.5 Cascade Generalization

Cascade generalization is another method for combining
classifiers [12]. While several authors have proposed similar
ideas independently, the term cascade generalization is due to
Gama and Brazdil [12]. While bagging and boosting
combine classifiers generated by the same inducer, cascade
generalization involves multiple inducers; the output of one
inducer is used to construct new features, which will be
used in addition to the original features by the next inducer.
Cascade generalization has usually been used to combine a
decision tree inducer with other classification methods.

As we have mentioned earlier, most decision tree
inducers have a representational bias; the trees they
produce are usually univariate; the splitting decision at each
internal node is based on a single feature [3], [5], [11], [12],
[14], [16], [19], [20], [25], [29]. The decision boundaries in the
feature space are restricted to be geometrically orthogonal
to the axes of the splitting features. In a two-dimensional
feature space, the decision regions are rectangles, whose
sides are parallel to one of the axes; for a linearly separable
data set, they must use numerous axis-parallel line
segments to approximate the discriminant line. Recently,
several methods have been proposed to cascade other
classification techniques, often linear model inducers, with
decision tree inducers. The generalized decision trees
generated by these methods have been named multivariate
decision trees [5], oblique decision trees [14], [20], discriminant
trees [11], and linear discriminant trees [16], [29]. The splitting
decision at an intermediate node is based on a multivariate
test, which is often a linear combination of the original
features, rather than a single feature. The multivariate tests
are based on classifiers induced by the other inducers
cascaded with the decision tree inducer. In a special case,
where the splitting decision is base on a linear combination
of at most two features, the generalized decision trees are
called bivariate decision trees [3]. The decision boundaries in
an m-dimensional feature space are (m — 1)-dimensional
hyperplanes that are not restricted to be axis-orthogonal and
can be obliqgue. The representational bias of univariate
decision trees is relaxed; training samples can be better
fitted (i.e., apparent accuracy tends to increase).

2.6 Bias-Variance Decomposition of Classification
Errors

The bias plus variance decomposition [13] is a powerful tool
for analyzing supervised learning scenarios that have
quadratic loss functions. It has been adapted to deal with
zero-one loss functions (i.e., classification error), which is
more applicable to classification problems [8], [18]. Given a
fixed target population of cases, the expected classification
error generated by an inducer can be decomposed into three
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nonnegative terms: bias?, variance, and noise. The bias? term
measures the squared difference between the inducer’s
average guess and the target population’s average output.
The variance term measures the variability of the inducer’s
average guess across training samples given to the inducer.
The noise term measures the variance of the target
population per se and is independent of the inducer.

The bias-variance decomposition can be used to explain
how multiple classifier methods affect classification perfor-
mance. Empirical studies [1], [4], [6], [7] have shown that:
1) bagging sometimes improves the performance of the base
classifiers fi(:=1,2,...,T) and seldom degrades their
performance and 2) bagging is more effective with unstable
(i.e., high variance) inducers such as most decision tree
inducers, whose output (i.e., classifiers f;(i =1,2,...,T))
fluctuates significantly given small changes in the training
sample, than with stable ones such as logistic regression. It
has been shown both analytically and empirically that the
performance gain of bagging is due to its reduction of
variance and, therefore, bagging is more productive on
unstable methods [1], [4], [6], [7].

Empirical results [1], [6], [7], [10], [26] regarding boosting
include:

1. Boosting sometimes is significantly superior to
bagging, but can also go wrong; it sometimes even
degrades the performance of the underlying inducer.

2. Boosting is unproductive or even counterproductive
with strong classifiers.

3. Boosting is sensitive to noise and does not work well
in highly noisy problems.

It has been shown both analytically and empirically that
boosting can reduce both bias and variance and, therefore,
generate larger performance gain than bagging [1], [7], [10].
However, boosting can also increase variance when base
classifiers are strong, reducing or even overwhelming its
performance gain [1]. It also places more weight on “hard”
training cases (i.e., cases misclassified by earlier classifiers),
which are likely to be noisy cases in noisy problems,
artificially increasing the noise.

Empirical studies have shown that multivariate decision
trees generated by cascading other inducers with a decision
tree inducer frequently outperform univariate decision trees
generated by the underlying decision tree inducer [3], [5],
[11], [12], [14], [16], [20], [29]. Unlike voting methods, which
mainly reduce variance, cascade generalization has been
shown to reduce bias [12].

3 CoONSTRAINED CASCADE GENERALIZATION

The cascade generalization methods proposed in the past
can be categorized into two major types, loose coupling and
tight coupling [12]. In loose coupling, classification methods
such as linear discriminant analysis and logistic regression are
used first to learn 7 initial classifiers f;(i = 1,2,...,T). These
classifiers are then used to construct m' additional features
x' = {x],x),...,x],}, which are combined with the original
features x = {xy,Xs,...,X;,} to induce a decision tree. In
tight coupling, such cascading is localized to each node in
the decision tree; additional features are constructed based
on the training cases falling into each node. These constructed

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 6, JUNE 2004

features are functions of the original features and represent
intermediate concepts, which relax the representational bias
of the base decision tree inducer and allow the decision
boundaries to be oblique (rather than axis-orthogonal)
hyperplanes in the original feature space X.

Cascade generalization reduces bias and increases the
complexity fit (or flexibility) of the classifiers learned by
decision tree inducers so that training data can be fitted
better and apparent error rate is reduced. Therefore, tight
coupling is more flexible than loose coupling, which, in turn,
is more flexible than the underlying univariate decision tree
inducer in fitting the training cases. However, no classifica-
tion method can get away with the trade off between
complexity and generalizability (i.e., prediction ability on
unseen cases) [25]. Generally speaking, the more complex a
classifier is, the better it can fit training data, but, at the same
time, the easier it is to overfit training data [25]. A model that
fits training data well may not predict unseen data well. This
is especially the case with cascade generalization. As a
generalized decision tree grows, the local models at each
node are learned based on fewer and fewer training samples.
In addition, the training samples get more and more
unbalanced toward the majority class of the current branch.
The cascaded method is more and more prone to learning
spurious intermediate models, which overfit the local
training cases. One of the major tasks of classification
methods that can produce variable complexity fits is to find
the appropriate complexity fit [25]. We posit that cascade
generalization is not an exception and, therefore, the
appropriate complexity fit (i.e., degree of cascading) needs
to be determined empirically for a given application.

3.1 A Generic Algorithm for Cascade Generalization

We propose a generic algorithm for cascade general-
ization, which uses the maximum cascading depth as a
parameter to simulate the trade off between complexity
and generalizability. The parameter constrains cascading to
a given extent. An appropriate maximum cascading depth
for a particular problem can be found using a perfor-
mance estimation method such as bootstrap and cross-
validation. Our pseudocode for the generic algorithm is
presented as a recursive procedure called Build_Generalized_
Tree (Algorithm 2):

Algorithm 2. (Build Generalized Decision Tree)
Build_Generalized Tree(N,< X,Y >,5,d, dcascade, Y, T')

N,< X,Y >, S: See description under Algorithm 1.

d: The depth of N in the decision tree. d = 1 when the
procedure is initially invoked.

deascade: The maximum cascading depth. degscade is a
parameter of the algorithm.

U: A base decision tree inducer, e.g, C4.5.

I': A set of disciminant function inducers, e.g., {logistic
regression}, which takes < X,Y > and S as input
and returns a set of constructed features based on
the discriminant functions to be learned.

1 X =,

2 If d S d(:n,scade/

2.1 X =T(<X,Y >,09).
2.2 X =XUX.
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2.3 S := S extended with constructed features in X'.
3 Select a splitting test using the goodness measure of

U, by which S is split into g subsets S;(i = 1,2,...,q).
4 Ifg=1,

4.1 Mark N as a leaf node, with the majority class in S
as the predicted class.
5 Else

5.1 For i =1 TO g,
511 Generate the ith child of N, N.Child][i].
51.2 Build_Generalized_Tree
(N.Child[i], < X — X',Y >,Si,d + 1, dascade, ¥, T).

The algorithm is generic in the sense that it can be used
to cascade any number and any kind of discriminant function
inducers (i.e., the I'), such as linear discriminant analysis
and logistic regression, with any classification scheme (i.e.,
the ), such as C4.5 [23], that follows a “divide and
conquer” strategy and builds sequential decision models. The
selection of the splitting test at each intermediate node is
based on the goodness measure (e.g., information gain and
gain ratio) of the underlying decision tree inducer. Loose
coupling and tight coupling proposed in the past [12] are
special cases of the algorithm when deeqe =1 and
dcascade = the height of the tree, respectively. The procedure
Build_Generalized_Tree constructs a decision tree; our algo-
rithm is open to any tree pruning strategy.

The time complexity of the algorithm can be estimated in
terms of the time complexity of the base classification
methods. Assume that the training time of the base decision
tree method is a function of the number of training instances,
n, and the number of features, m, and is denoted fy(n,m).
Assume that the training time of I is a function of n and m and
is denoted fr(n,m). Suppose there are g; nodes, each with
n1(z = 1727~~-7Qd7
leveld < d.qscade OF the tree. The total time needed to train IT" for
the ¢, nodes on level d of the tree is:

< fF Znu

We reasonably assume that the inequality holds for
fr(n,m), as the time complexity functions for most, if not
all, classification methods are at least linear with regard to n
and m. The inequality approaches equality when the ¢4
nodes are more unbalanced (i.e., the n;’s are more different).
The total time attributed to training I" on all d;qscade levels of
the tree is:

¥, n; =n) training examples, on some

qd

:Zf ng, m

1=1

= fr(n,m).  (4)

fl,",d(nv m)

deascade ascade

Zfrdnm Zfrnm 5)

= dcuseade fr (TL, m) .

fr(n,m) =

The time needed to train the generalized decision tree
increases slightly, compared to training a decision tree
without cascading I', due to the additional constructed
features added to the training data during the training
process. However, when the number of original features is
much larger than the number of constructed features, m’' =
I'(< X,Y >,9)| (i.e, m >>m/), as it is usually true, this

increase is negligible and the time attributed to decision tree
training is:

fo(n,m+m') = fe(n,m+m') = fy(n,m). (6)

The overall training time is therefore:

(n,m) = fr(n,m) + fy(n,m +m') < deascaae fr(n,m)
+ fo(n,m +m') = descade fr(n,m) + fo(n,m).
(7)
If the time complexity of the base decision tree method is
on a higher degree than that of I (i.e., fy(n,m) >> fr(n,m)),

the overall training time is dominated by decision tree
training and increases only slightly:

oo, (15

deascade

fi

cascade

fu(n,m).

If the time complexity of I is on a higher degree than that of
the base decision tree method (i.e., fr(n,m) >> fy(n,m)),
the overall training time is bounded by d.sscude times of the
training time of I':

fa

In any case, the efficiency of the cascade generalization
algorithm is considered acceptable given efficient base
classifiers, ¥ and T".

m) < dcasaadcff(n7 m) + f\I/(nv m) ~

( m) < dcas(adefl"(n m) + f\I/(n m) ~ dcuscad( fr(n m)

deascade

3.2 Finding the Best Cascading Depth

Using the generalized decision tree building algorithm, a set
of k generalized decision trees with different d.,cuq. Values
can be built, from which the best tree can be identified using
a performance estimation method such as bootstrap and
cross-validation [17]. A general procedure is described in
the following algorithm (Algorithm 3):

Algorithm 3. (BuildGeneralized Decision Trees)
Build_Generalized Trees(< X, Y >, 5,9, T, Q)

< X,Y >,S: See description under Algorithm 1.

¥, I': See description under Algorithm 2.

2: A performance estimation method, e.g.,
cross-validation.

1 7:=0.

2 Loop

2.1 Generate the root node for the ith generalized
tree, R;.

2.2 Build_Generalized_Tree
(Ri,<X,Y >,8,1,i,9,T).

2.3 Estimate the performance of R; using €.

24 i=1i+1

Until R,_;.depth =¢ — 1 (i.e., the last tree is fully
cascaded with T').
3 Find the best tree among the k trees, R;(i = 1,2,...,k).

The time complexity of Build_Generalized_Trees is:

T
L
-

—1

ftrecs(n7 TTL) - V f( ) S (

=0 i

= pr(n, m) + kfg(n,m).

- fr(n,m) + fu(n,m))

I
o

(8)
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TABLE 1
Characteristics of 32 UCI Data Sets
#Features
No. Name #Classes #Instances  Nominal Numeric Total
1 Annealing 6 898 29 9 38
2 Audiology 24 226 69 0 69
3 Automobile T4 205 10 16 26
4 Balance Scale 3 625 0 4 4
5 Wisconsin Breast Cancer 2 699 0 10 10
6 Breast Cancer 2 286 9 0 9
7 Chess (King Rook vs King Pawn) 2 3,196 36 0 36
8 Congressional Voting Records 2 435 16 0 16
9 Credit Card Approval 2 690 9 6 15
10 Statlog Project: German Credit 2 1,000 13 7 20
11 Pima Indians Diabetes 2 768 0 8 8
12 Glass Identification 7 214 0 9 9
13 Heart Disease (Cleveland) 5 303 6 7 13
14 Heart Disease (Hungarian) 5 294 6 7 13
15 Hepatitis 2 155 13 6 19
16 Horse Colic 2 368 15 7 22
17 Image Segmentation 7 2,310 0 19 19
18 lonosphere 2 351 0 34 34
19 Iris Plant 3 150 0 4 4
20 Labor Relations 2 57 8 8 16
21 Lymphography 4 148 15 3 18
22 Mushrooms 2 8,124 22 0 22
23 Primary Tumor 22 339 17 0 17
24 Sonar 2 208 0 60 60
25 Soybean 19 683 35 0 35
26 Statlog Project: Heart Disease 2 270 7 6 13
27 Statlog Project: Vehicle Silhouettes 4 946 0 18 18
28 Thyroid Disease: Hypothyroid 4 3,772 23 7 30
29 Thyroid Disease: Sick 2 3,772 23 7 30
30 Vowel 11 990 3 10 13
31  Waveform: 5000 3 5,000 0 40 40
32 Zoo 7 101 15 2 17

k is proportional to log n on the average and approaches n in
the worst case, when the generalized trees are extremely
unbalanced. If the time complexity of I'" is on a higher
degree than that of the base decision tree inducer (ie.,

fr(n,m) >> fy(n,m)), the overall training time is bounded

by (k—1)k

5— times of the training time of I'.

4 EMPIRICAL EVALUATION

We have implemented the proposed algorithm for con-
strained cascade generalization using logistic regression
and C4.5 as base inducers (i.e.,, I' = {logistic regression},
¥ = C4.5) and evaluated the implementation using 32 data
sets for classification problems collected in the UCI machine
learning repository [2]. These data sets have been frequently
used as benchmarks to compare the performance of
different classification methods in the literature. Table 1
summarizes the characteristics of these data sets. Our
implementation was carried out by extending the Weka
machine learning toolkit [27] in Java. The empirical
evaluation was performed on a Dell Optiplex/GX260
workstation with a Pentium 4 CPU running at 2.27GHz
and 512 MB RAM.

We have conducted three experiments, identifying the
best cascading depth, evaluating the effects of two heuristics
used in the original cascade generalization paper [12], and
comparing the proposed method for constrained cascade
generalization with ensemble methods, including bagging
and boosting. In all the experiments, we used stratified 10-fold
cross validation, a recommended performance estimation

method [17], to estimate the accuracy of each learned
classifier, starting from the same seed for the random
number generator for every method in the same run. A
parameter used by C4.5, the minimum number of training
examples covered by a node, was uniformly set to 10. We
will report on some empirical results in the following
sections.

41 What’s the Best Cascading Depth?

In the first experiment, we ran our algorithm under
different deyscage Values for each of the 32 data sets and
identified the best cascading depth. Table 2 and Table 3
summarize the apparent accuracy and cross-validated
accuracy of the various base or composite classifiers. Note
that we use cross-validated accuracy as the performance
measure in all the experiments presented in this paper and
use apparent accuracy only for the purpose of explaining
the internal effects of cascade generalization in this
experiment. We will not present apparent accuracy results
any more for the two subsequent experiments.

Apparent accuracy increases almost monotonically as
deascade iNcreases, except that there are occasional fluctua-
tions, due to the heuristic nature of C4.5. Apparent accuracy
decreases only 15.9 percent (22 in 138) of the times as deqscade
increases. Tight coupling provides the highest apparent
accuracy for 87.5 percent (28 in 32) of the data sets. This
confirms that the learned models tend to fit the training
data better as d ,sqqe iNcreases. However, this is not true for
cross-validated accuracy, which fluctuates severely without
regard to apparent accuracy. Cross-validated accuracy
decreases 45.7 percent (63 in 138) of the times as degscade
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TABLE 2

Apparent Accuracy (%) for the 32 UCI Data Sets

Cascading Depth

No. 0 1 2 3 4 5 6 7 8 9 10 14
] 9777  98.66 99.78 99.78 99.78 - 2 = - - - -
2 7345 7478 8142 81.86 81.86 8540 8584 - 5 2 - .
3 8098  77.07 87.32 9512 9854 - - B - . . .
4 8432 89.92 91.68 - = - . . - . . .
5 9642 9757 - . . - - B - . . .
6 7587 77.62 81.82 84.62 - - s . - . . .
7 98.50  98.40 9831 99.00 99.59 - - - N . . .
8 9563  97.47 97.93 - - . - . - . . B
9 88.84  88.26 8826 89.42 91.74 9246 - . . . _ .
10 8050  81.70 81.00 85.60 87.60 90.90 - - - . .
1 8255 82.03 7734 - s . . " } _ . .
12 7897 7850 7850 80.84 7944 8131 - . . . . .
13 8350 88.12 88.12 9373 - - . B . . _ .
14 8129 8571 8639 88.10 8878 - - - - . . .
15 8452 9097 98.06 - . = s e - . . .
16 8587 88.86 9321 9592 9837 - . = . - . .
17 9697 97.01 97.10 97.10 97.58 98.14 97.66 97.84 9823 9879 99.05 -
18 9259 9573 99.15 - - , B 3 - . . .
19 9600 96.00 98.67 - - . . - - . . .
20 8772 100.00 - « % s - . : . . B
21 81.08  97.97 9595 - . . 8 . - . . .
22 100.00 100.00 - - . - B . B . . .
23 46.02 4690 4690 52.80 53.09 5428 5457 5516 5546 - . i
24 9087 100.00 - E 2 . s s - . . .
25 87.55  85.65 88.14 90.04 9224 9488 92.83 92.83 03.85 9429 93.56 95.61
26 8556 8630 88.15 88.15 90.00 - B - - . _ .
27 83.57 8144 8546 8593 8522 8546 8747 8475 86.64 - . =
28 9936  99.18 99.18 99.13 9928 - = - - . . .
29 99.05 9833 98.70 98.83 99.05 99.18 9923 - - - 3 .
30 8293 8172 81.82 8646 89.09 95.15 9323 95.66 9636 96.77 97.47 -
31 89.38  90.64 91.00 90.08 9042 9280 95.16 95.78 96.74 97.00 - -
32 83.17 83.17 83.17 83.17 - - - ) - . . .

The highest apparent accuracy for each data set is bolded. A drop in apparent accuracy as d..sc.q. increases is underlined.

TABLE 3

Cross-Validated Accuracy (%) for the 32 UCI Data Sets

Cascading Depth

No. 0 1 2 3 4 5 6 7 8 9 10 11
1 96.88 98.44 9922 98.89 98.89 - - - - - - -
2 69.03 6549 6637 6593 66.81 6593 6593 - - - - -
3 67.32 6341 69.27 70.73 71.71 - - - - = = -
4 76.80 86.56  90.08 - - - E = & = = =
5 94.85 97.00 - - - - = - - - - =
6 74.83 6993 69.58 69.93 - - = - = - - -
7 97.97 97.68 97.59 9747 97.87 - = = - = - -
8 95.63 95.63 95.17 - - - = = o 3 = =
9 86.38 8522 8551 84.06 83.77 83.04 - . B - B B,
10 70.50 72.00 7220 71.60 6830 66.60 = = = = - -
11 75.52 75.00 75.52 - = - z = i = - -
12 64.95 65.89 67.76 67.29 66.82 64.95 - - - - - .
13 75.91 83.83 81.52 82.84 - N - - - - _ -
14 79.93 7993 8095 81.29 81.29 - = = = - o -
15 8452 8194 8129 - - = = . ) .
16 85.87 80.16 77.17 7391 7391 - - - - - - =
17 95.06 95.06 9558 9558 9576 9589 9558 9571 95.63 95.50 95.58 -
18 90.60 89.17 85.19 - S - = w = = = =
19 94.67 94.67 96.67 - - - = = - N - o

20 78.95 80.70 - - - - - - - - - -
21 72.97 77.70  77.70 - - - - = - -
22 100.00 100.00 - - - & 7 = = . . -
23 40.12 4159 4159 4572 4248 4071 3894 3746 37.17 - - -
24 7548 7115 - - i - B B - B ) _
25 84.48 81.55 83.75 83.60 84.63 8448 8448 8448 8477 85.65 84.92 85.65
26 83.70 81.48 81.48 80.74 78.89 - & s & = = -
27 73.88 71.87  71.39 7270  70.09 7470 76.12 7470 76.24 - - -
28 99.31 98.65 98.33 9838 98.06 - = - - - - -
29 98.59 9791 97.93 9772 97.61 97.67 97.64 - . = B -
30 68.99 6646 6838 7263 7556 81.52 8273 8222 8293 8343 83.64 -
31 76.18 78.92 81.88 8380 84.08 83.72 82.00 81.46 81.16 81.32 -
32 83.17 83.17 83.17 83.17 - - = - - = - -

The highest cross-validated accuracy for each data set is bolded. A drop in cross-validated accuracy as d..s..q. increases is underlined.
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TABLE 4
Paired ttests Comparing the Proposed Method with C4.5, Loose Coupling, and Tight Coupling

Method S:ér_nple Aversige StdDev Comparedto d_, ., Tuning
1ze t Sig.
C4.5 32 81.66 13.08 3.60 0.001
Loose Coupling 32 81.51 13.32 4.23 0.000
Tight Coupling 32 82.03 13.43 3.97 0.000
d ysoaqe TUNING 32 84.06 11.94
TABLE 5
Training Time for the 32 UCI Data Sets
Training Time (Seconds)
#Trees Logistic C45 Cascade -1 Inequality ~ Error
No. k Regression ’ ; E-Dk fr+kfy  (8)holds (%)
fr ¥ J trees 2
1 5 5.78 0.36 42.13 59.60 Yes
2 7 4.92 0.27 109.87 105.21 No 4.24
3 5 3.03 0.14 22.39 31.00 Yes
4 3 0.64 0.09 2.05 219 Yes
5 2 0.58 0.09 0.73 0.76 Yes
6 4 1.08 0.05 6.16 6.68 Yes
7 5 47.14 0.38 235.27 473.30 Yes
8 3 0.73 0.06 2.22 2.37 Yes
9 6 2.53 0.13 42.02 38.73 No 7.83
10 6 3.02 0.17 65.84 46.32 No 29.65
11 3 0.47 0.13 1.68 1.80 Yes
12 6 2.25 0.14 30.20 34.59 Yes
13 4 0.88 0.09 6.71 5.64 No 15.95
14 5 0.86 0.08 8.94 9.00 Yes
15 3 0.45 0.08 1.35 1.59 Yes
16 5 2.13 0.09 17.80 21.75 Yes
17 11 50.45 0.89  1548.50 2784.54 Yes
18 3 1.38 0.23 3.75 4.83 Yes
19 3 0.63 0.05 1.74 2.04 Yes
20 2 0.30 0.03 0.36 0.36 Yes
21 3 0.63 0.06 1.87 2.07 Yes
22 2 265.51 0.31 281.11 266.13 No 5.33
23 9 25.03 0.19 680.91 902.79 Yes
24 2 0.72 0.20 1.04 1.12 Yes
25 12 113.81 0.45  3260.47 7516.86 Yes
26 5 0.36 0.08 3.77 4.00 Yes
27 9 13.44 0.28 243.12 486.36 Yes
28 5 348.55 0.50 2127.00 3488.00 Yes
29 7 31.60 0.69 563.28 668.43 Yes
30 11 66.05 0.59 1852.57 3639.24 Yes
31 10 88.42 4.50 2611.11 4023.90 Yes
32 4 1.19 0.06 6.30 7.38 Yes

increases. Tight coupling provides the highest cross-
validated accuracy for only 37.5 percent (12 in 32) of the
data sets. This is consistent with our proposition that
cascade generalization is subject to the complexity-general-
izability trade off, just like any other classification scheme.
Neither loose coupling nor tight coupling, but some
moderate coupling tuned to each particular application, is
the best cascading strategy.

The best d qscade in terms of cross-validated accuracy can
be found for each data set. Paired t-tests (summarized in
Table 4) show that the proposed method based on dcqscade
tuning significantly improves accuracy of C4.5 (¢(31) = 3.60,
p = 0.001) and is also significantly superior to both loose
coupling (#(31) =4.23, p=0.000) and tight coupling
(t(31) = 3.97, p = 0.000) on the average.

Table 5 summarizes the training time of the various base
or composite classification methods. Inequality (8) holds for
most of the data sets, except for five data sets, where fis is
over the predicted bound slightly (within 30 percent).
Testing time is negligible, compared to training time, for all
the methods and is not evaluated in this paper.

4.2 Visualizing Why Cascade Generalization Works

The central theme of our proposed algorithm for con-
strained cascade generalization is to search for an appro-
priate level of complexity fit so that the learned model fits
the training data well to an extent where it also generalizes
well to unseen data. The idea can be better understood by
visualizing the models learned by different methods in a
two-dimensional feature space. Therefore, we ran different
methods for the “Credit Card Approval” data set using two
continuous features, A8 and All.
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Log1>0

Fig. 1.
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Classification models learned by different classification methods for the “credit card approval” data set using two features.

Logl =0.21 * A8 +0.37 %« A11 — 1.30, Log2 = 0.37 « A8 4+ 0.09 x A11 — 0.40. (a) Logistic regression. (b) C4.5. (c)-(e) Cascading logistic regression

and 0451 duasmdu =1-3.

o o o
+ + +

< < <

0 A8 10 0 A8 10 ¢ A8 10

(a) (b) (c)

= =
+ +

b b

Y A8 10 0 A8 10

(e)

Fig. 2. Decision boundaries generated by different classification methods for the “credit card approval’ data set using two features. (a) Logistic
regression. (b) C4.5. (c)-(e) Cascading logistic regression and C4.5, d.,scade = 1 — 3.

The learned models are presented in Fig. 1. The decision
boundaries of the models are illustrated in Fig. 2. Logistic
regression (Fig. 2a) finds a single line to separate the two
classes. Decision tree (Fig. 2b) uses a sequence of line
segments to approximate the boundary between the two
classes; all of the line segments are restricted to be parallel
to one of the two axes. Cascading logistic regression with
decision tree (Fig. 2¢, Fig. 2d, and Fig. 2e) allows some of the
line segments to be oblique; the directions of these oblique
lines are determined by the cascaded method, logistic
regression. The number of such oblique lines is controlled
by the parameter d.iscade- The larger degscade is, the more

oblique lines are allowed, the more flexible the model is.
However, when there are too many such oblique lines,
those chosen later in the process are based on only a few
unbalanced examples and become unreliable, i.e., they
describe the characteristics of the few training examples,
but may not represent the entire population well. In this
example, degscade =1 corresponds to loose coupling and
deascade = 3 corresponds to tight coupling.

There are only four trees in this simple example. The
cascaded logistic regression models were not actually
selected at some internal tree nodes by the heuristic
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Fig. 3. Accuracy of generalized decision trees with different d.sscaqe’s.

splitting mechanism of C4.5. The tree with degscaqe = 2 and
the tree with d.4sqe = 3 are identical. There will be more
trees and more cascaded models in a more complex
situation. The best desscade Needs to be determined empiri-
cally for a particular application.

Fig. 3 shows the trends of apparent accuracy and cross-
validated accuracy as dc,scde increases. Apparent accuracy
monotonically increases as degscade increases, indicating that
the models fit the training data better and better. However,
cross-validated accuracy goes down, indicating that over-
fitting occurred. In this application, the best dc4scade is 0, i.€.,
no cascading at all, if only the two features A8 and A1l are
used for classification.

4.3 Effects of Additional Heuristics

The original paper on cascade generalization [12] adopted
two heuristics to restrict cascading: 1) A constructed feature
corresponding to class i is used only if the number of
examples, at the current node, belonging to class i is greater
than Nm, where m is the number of features and N is 3 by
default. 2) The error rate of the cascaded classifier should be
less than 0.5 in the training data for the classifier to be used.
The results presented in Section 4.1 were generated without
using these heuristics. We have also evaluated the effects of
these heuristics in conjunction with our proposed method
based on dcqscade tuning using a factorial experiment design
shown in Table 6. The cross-validated accuracy of the
various learned classifiers is summarized in Table 7. We use
the GLM Repeated Measures procedure for analysis of
variance (ANOVA) in SPSS to test the effects of the factors.
This procedure provides ANOVA when the same measure-
ment is made several times on each case. The test shows the
following results (summarized in Table 8):

1. degscade tuning significantly improves accuracy
(F(1,31) = 22.11, p = 0.000).

2. Heuristic 1 has a negative effect on accuracy
(F(1,31) = 7.32, p = 0.011).

3. The effect of heuristic 2 is not significant
(F(1,31) = 1.17, p = 0.288).

4. The interaction between dcqscqde tuning and heuristic
1 is significant (F'(1,31) = 5.98, p = 0.020). Applying
heuristic 1 reduces the effect of d;4scade tuning.

TABLE 6
Experiment Design: Effects of d.;sc.qe Tuning
and Two Heuristics

Setting d.ese TUNING Heuristic 1 Heuristic 2
1 No No No
2 No No Yes
3 No Yes No
4 No Yes Yes
5 Yes No No
6 Yes No Yes
7 Yes Yes No
8 Yes Yes Yes

5. There is no significant interaction between degscade
tuning and heuristic 2 (F'(1,31) = 1.42, p = 0.243).
6. The two heuristics significantly interfere with each
other (F(1,31) = 5.24, p = 0.029).
There is no significant interaction among the three
factors simultaneously (F'(1,31) = 1.85, p = 0.184).

4.4 Comparison with Bagging and Boosting

We have also compared the proposed algorithm for
constrained cascade generalization with bagging [4] and
AdaBoost [10]. The two heuristics evaluated in the previous
section were not used in cascade generalization. For
bagging, 10 classifiers generated by C4.5 were bagged. For
AdaBoost, up to 10 classifiers generated by C4.5 were
boosted. Table 9 summarizes the cross-validated accuracy
generated by the various methods. While the proposed
algorithm is marginally superior to both bagging and
AdaBoost, paired t-tests do not show significant differences
between the methods, due to the small sample size (32);
comparing cascading and bagging: t(31) = 1.24, p = 0.224;
comparing cascading and boosting: ¢(31) = 0.131, p = 0.897.

4.5 Discussion

While we have obtained some statistically significant results
in our empirical evaluation, these results should be
interpreted with caution, taking the following issues in
consideration:

1. Statistical significance should not be confused with
practical significance. The fact that the effect of some
technique is statistically significant shows that the
effect is very likely to be genuine rather than by
chance, but does not tell whether the effect is
practically important, large, or even useful in the
context. Interpretation of practical significance is
necessarily domain dependent. For example, in our
first experiment, cascading logistic regression re-
duced the error rate of C4.5 by 2.4 percent on the
average. An error reduction of this size can be
conceived as practically significant for some, but not
all, classification problems.

2. Since most of the empirical studies on supervised
learning in the literature, including this one, use
conveniently available data sets, such as those in the
UCI repository, rather than truly random samples,
the generalizability of the evaluation results is
dependent on the representativeness of these data
sets. In addition, our evaluation compares the
average performance of different methods across
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TABLE 7
Cross-Validated Accuracy under d.qsc.q. Tuning and Two Heuristics

737

Experiment Setting

No 1 2 3 4 5 6 7 8
1 98.89 98.89 97.77 97.77 99.22 99.22 97.77 97.77

2 65.93 65.93 65.93 65.93 69.03 66.81 69.03 69.03

3 71.71 71.71 63.41 63.41 71.71 71.71 69.27 69.27

4 90.08 90.08 90.08 90.08 90.08 90.08 90.08 90.08

5 97.00 97.00 97.00 97.00 97.00 97.00 97.00 97.00

6 69.93 68.88 68.88 68.88 74.83 69.93 74.83 69.93

7 97.87 97.81 97.81 97.81 97.97 97.87 97.97 97.87

8 95.17 95.17 95.17 95.17 95.63 95.63 95.63 95.63

9 83.04 83.04 83.04 83.04 86.38 85.51 86.38 85.51

10 66.60 66.60 66.60 66.60 72.20 72.20 72.20 72.20

1 75.52 75.00 75.00 75.00 75.52 75.52 75.52 75.52

12 64.95 64.95 64.49 64.49 67.76 67.76 66.82 66.82

13 82.84 81.52 81.52 81.52 83.83 83.83 83.83 83.83

14 81.29 80.95 80.95 80.95 81.29 81.29 81.29 81.29

15 81.29 80.65 77.42 77.42 84.52 81.94 84.52 84.52

16 73.91 73.91 73.91 73.91 85.87 80.16 85.87 80.16

17 95.58 95.54 95.54 95.54 95.89 95.89 95.89 95.89

18 85.19 85.19 85.19 85.19 90.60 89.17 90.60 89.17

19 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67

20 80.70 80.70 66.67 66.67 80.70 80.70 78.95 78.95

21 77.70 77.70 77.70 77.70 77.70 77.70 77.70 77.70

22 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

23 37.17 37.17 39.23 39.23 45.72 45.72 42.18 42.18

24 71.15 71.15 75.00 75.00 75.48 71.15 75.48 75.48

25 85.65 85.80 87.99 87.99 85.65 85.80 88.14 88.14

26 78.89 78.52 78.52 78.52 83.70 81.48 83.70 83.70

27 76.24 76.12 76.24 76.12 76.24 76.24 76.24 76.24

28 98.06 97.96 97.99 97.99 99.31 98.65 99.31 98.65

29 97.67 97.64 97.64 97.64 98.59 97.93 98.59 97.93

30 83.64 83.64 83.64 83.64 83.64 83.64 83.64 83.64

31 81.32 82.40 82.40 82.40 84.08 84.08 84.08 84.08

32 83.17 83.17 83.17 83.17 83.17 83.17 83.17 83.17

Average 82.03 81.92 81.33 81.33 84.06 83.26 83.82 83.38
StdDev 13.43 13.47 13.74 13.74 11.94 12.23 12.43 12.49
TABLE 8
Results of the GLM Repeated Measures Procedure for ANOVA in SPSS

Factor(s) F Hypothesis df Error df Sig.

d yseaae TUNING 22.11 1 31 0.000
Heuristic1 7.32 1 31 0.011
Heuristic2 1.17 1 31 0.288

(/Lm_m‘h, Tuning * Heuristic1 5.98 1 31 0.020

([/.m.(,”d(, Tuning * Heuristic2 1.42 1 39 0.243
Heuristic1 * Heuristic2 5.24 1 31 0.029

d e TUNING * Heuristic1 * Heuristic2 1.85 1 31 0.184

classification problems, but cannot be used to
predict which method will be superior to others for
a particular problem. No method has been found so
far that is universally superior to others in all
problems; indeed, we believe, based on the “no-
free-lunch theorems” [28], that it’s likely such a
method does not exist. In practice, for a given new
classification problem, various methods need to be
empirically evaluated to find the best ones, with
previous empirical results as guidelines.

Note that considering the relatively small sizes of the
data sets, we have selected a relatively small value
(10) for the number of iterations in bagging and
boosting. The accuracy and training times of bagging
and boosting are dependent on this parameter. A
more elaborate comparison of accuracy and training
times of the methods should take the effect of this
parameter into account.

Note that the potential gain in classification accu-
racy provided by the proposed algorithm does not
come for free. As constructive features (often linear
combinations of original features) are incorporated
into decision trees, the comprehensibility of deci-
sion trees degrades. The linear combinations of
multiple features in a multivariate tree are harder to
interpret than the individual features in a univariate
tree. Indeed, any method that attempts to combine
multiple classifiers for potential performance im-
provement, including bagging and boosting, will
inevitably reduce the comprehensibility of learned
models. Accuracy and comprehensibility are un-
avoidable trade-offs; different methods need to be
evaluated for a particular classification problem to
find appropriate ones. A large reason that decision
tree techniques have been popular in practice is that
they generate simple and easily interpretable
models. In situations where comprehensibility is
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TABLE 9
Cross-Validated Accuracy of Cascading, Bagging, and Boosting
No Cascading Bagging Boosting
1 99.22 96.77 99.55
2 69.03 68.14 70.80
3 71.71 72.20 74.15
4 90.08 82.72 83.36
5 97.00 94.99 95.71
6 74.83 73.78 69.93
7 97.97 98.31 99.56
8 95.63 95.86 96.09
9 86.38 85.94 83.77
10 72.20 75.10 70.00
11 75.52 75.78 73.96
12 67.76 72.43 73.83
13 83.83 78.88 78.55
14 81.29 80.61 79.93
15 84.52 79.35 83.23
16 85.87 85.60 83.70
17 95.89 95.84 98.01
18 90.60 90.88 91.74
19 96.67 94.67 92.67
20 80.70 84.21 78.95
21 77.70 80.41 81.08
22 100.00 100.00 100.00
23 45.72 42.18 40.12
24 75.48 77.88 79.81
25 85.65 89.17 93.12
26 83.70 81.85 78.52
27 76.24 75.30 76.48
28 99.31 99.31 99.63
29 98.59 98.44 98.78
30 83.64 80.00 89.49
31 84.08 81.68 80.54
32 83.17 83.17 92.08
Average 84.06 83.48 83.97
StdDev 11.94 11.90 12.69

weighted higher than accuracy, simple univariate
trees may well be preferred to more complex
models, even if the complex models are more
accurate.

5 CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have proposed a generic algorithm of
constrained cascade generalization, of which cascading
methods proposed in the past, including loose coupling
and tight coupling, are strictly special cases. We have
empirically evaluated the algorithm in a number of
classification problems. Empirical results show that loose
coupling and tight coupling are not always the best
cascading strategies and that the maximum cascading
depth parameter in the proposed algorithm can be tuned
for better classification accuracy. We have also found that
the proposed algorithm is marginally better than bagging
and boosting on the average.

While we have proposed one approach to constraining
the degree of cascade generalization and empirically
evaluated a particular cascade generalization using C4.5
and logistic regression as base inducers, there are still many
issues related to cascade generalization that need to be
studied in future research. Some examples are:

1. All data sets used in our current empirical evalua-
tion are relatively small. A study on the scalability of
the proposed algorithm in large data sets is needed.

2. Some advantages of univariate decision trees, be-
sides their relatively high comprehensibility, include
that they are invariant to monotone transformations
of the input variables and can deal with missing

values and outliers. These aspects need to be
analyzed in the context of multivariate decision
trees.

3. In our current algorithm, we use the maximum
cascading depth as a parameter to constrain cascad-
ing during tree induction. There are other potential
parameters, such as statistical significance tests of
learned model, to constrain cascading. In addition,
these parameters are related to tree pruning para-
meters. The effects of different parameters and the
interactions among them need to be further analyzed
and evaluated.

4. Currently, we select the best tree (i.e.,, an elitist
strategy) from a set of trees with different desscade’s-
An alternative strategy is to combine the multiple
trees via a “voting” mechanism (i.e.,, an ensemble
strategy). Intuitively, this strategy can potentially
reduce both bias (due to cascade generalization) and
variance (due to voting) and provide more perfor-
mance gain in particular situations. The two strate-
gies need to be analytically and empirically
compared.

5. Cascading decision tree inducers with nonlinear
model inducers, such as Naive Bayes and artificial
neural networks, needs to be investigated.

6. We developed the proposed algorithm in our
research in entity identification [24], [30] (also called
record linkage [9]), i.e., identifying records that
semantically correspond to the same entity in the
real world from different data sources. We are
evaluating the algorithm in this problem domain.
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