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a b s t r a c t

A number of software cost estimation methods have been presented in literature over the past decades.
Analogy based estimation (ABE), which is essentially a case based reasoning (CBR) approach, is one of the
most popular techniques. In order to improve the performance of ABE, many previous studies proposed
effective approaches to optimize the weights of the project features (feature weighting) in its similarity
function. However, ABE is still criticized for the low prediction accuracy, the large memory requirement,
and the expensive computation cost. To alleviate these drawbacks, in this paper we propose the project
selection technique for ABE (PSABE) which reduces the whole project base into a small subset that consist
only of representative projects. Moreover, PSABE is combined with the feature weighting to form FWPS-
ABE for a further improvement of ABE. The proposed methods are validated on four datasets (two real-
world sets and two artificial sets) and compared with conventional ABE, feature weighted ABE (FWABE),
and machine learning methods. The promising results indicate that project selection technique could sig-
nificantly improve analogy based models for software cost estimation.

! 2008 Elsevier Inc. All rights reserved.

1. Introduction

Software cost estimation is critical for the success of software
project management. It affects almost management activities
including resource allocation, project bidding, and project planning
(Pendharkar et al., 2005; Auer et al., 2006; Jorgensen and Shepperd,
2007). The importance of accurate estimation has led to extensive
research efforts to software cost estimation methods. From a com-
prehensive review (Boehm et al., 2000), these methods could be
classified into the following six categories: parametric models
including COCOMO (Boehm, 1981; Huang et al., 2007), SLIM (Put-
nam and Myers, 1992), and SEER-SEM (Jensen, 1983); expert judg-
ment including Delphi technique (Helmer, 1966) and work
breakdown structure based methods (Tausworthe, 1980; Jorgen-
sen, 2004); learning oriented techniques including machine learning
methods (Heiat, 2002; Shin and Goel, 2000; Oliveira, 2006) and
analogy based estimation (Shepperd and Schofield, 1997; Auer et
al., 2006; Huang and Chiu, 2006); regression based methods includ-
ing ordinary least square regression (Mendes et al., 2005; Costagli-
ola et al., 2005) and robust regression (Miyazaki et al., 1994);
dynamics based models (Madachy, 1994); composite methods (Chu-
lani et al., 1999; MacDonell and Shepperd, 2003).

The analogy based estimation (ABE) which is essentially a
case-based reasoning (CBR) approach (Shepperd and Schofield,
1997) was first proposed by Sternberg (1977). Due to its concep-

tual simplicity and empirical competitiveness, ABE has been
extensively studied and applied (Shepperd and Schofield, 1997;
Walkerden and Jeffery, 1999; Angelis and Stamelos, 2000; Men-
des et al., 2003; Auer et al., 2006; Huang and Chiu, 2006; Chiu
and Huang, 2007). The basic idea of ABE is simple: when provided
a new project for estimation, compare it with historical projects
to retrieve the most similar projects which are then used to pre-
dict the cost of new project. Generally, the ABE (or CBR) consists
of four parts: a historical project dataset, a similarity function, a
solution function and the associated retrieval rules (Kolodner,
1993). One of the associated central parts in ABE is the similarity
function, which measures the level of similarity between two dif-
ferent projects. Since each project feature (or cost driver) has one
position in the similarity function and therefore largely deter-
mines which historical projects should be retrieved for final pre-
diction, there are several approaches focusing on searching the
appropriate weight of each feature, such as Shepperd and Scho-
field (1997), Walkerden and Jeffery (1999), Angelis and Stamelos
(2000), Mendes et al. (2003), Auer et al. (2006), Huang and Chiu
(2006).

However, some difficulties are still confronted by ABE methods.
Such as the non-normal characteristics (includes skewness, heter-
oscedasticity and excessive outliers) of the software engineering
datasets (Pickard et al., 2001) and the increasing sizes of the data-
sets (Shepperd and Kadoda, 2001). The large and non-normal data-
sets always lead ABE methods to low prediction accuracy and high
computational expense (Huang et al., 2002). To alleviate these
drawbacks, many research works in the CBR literature (Lipowezky,

0164-1212/$ - see front matter ! 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2008.06.001

* Corresponding author. Tel.: +65 83442816.
E-mail address: liyanfu@nus.edu.sg (Y.F. Li).

The Journal of Systems and Software 82 (2009) 241–252

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier .com/ locate/ jss

http://www.elsevier.com/locate/jss
mailto:liyanfu@nus.edu.sg
http://www.sciencedirect.com/science/journal/01641212


1998; Babu and Murty, 2001; Huang et al., 2002) have been
devoted to the case selection technique. The objective of case
selection (CS) is to identify and remove redundant and noisy pro-
jects. By reducing the whole project base into a smaller subset that
consist only of representative projects, the CS could save the com-
puting time searching for most similar projects and produce qual-
ity prediction results. Moreover, the simultaneous optimization of
feature weighting and case selection in CBR has been investigated
in several studies (Kuncheva and Jain, 1999; Rozsypal and Kubat,
2003; Ahn et al., 2006) and significant improvements are reported
from these studies.

From the discussion above, it is worthwhile to investigate case
selection technique in the context of analogy based software cost
estimation. In this study, we propose genetic algorithm for project
selection for ABE (PSABE) and the simultaneous optimization of
feature weights and project selection for ABE (FWPSABE). The pro-
posed two techniques are compared against the feature weighting
ABE (ABE), the conventional ABE and other popular cost estimation
methods including ANN, RBF, SVM and CART. For the consistency of
terminology, in rest of this paper we refer the case selection as pro-
ject selection for ABE.

To compare different estimation methods, the empirical valida-
tion is very crucial. This has led to many studies use various real
datasets to conduct comparisons of different cost estimation meth-
ods. However most published real datasets are relatively small
(Mair et al., 2005) and the small real dataset could be problematic
if we would like to show the significant differences between the
estimation methods. Another drawback of the real world datasets
is that the true properties of them may not be fully known. The
artificially generated datasets (Pickard et al., 2001; Shepperd and
Kadoda, 2001; Foss et al., 2003; Myrtveit et al., 2005) with known
characteristics provide a feasible way to the above problems. Thus,
we generate two artificial datasets and select two well known real-
world datasets for controlled experiments.

The rest of this paper is organized as follows: Section 2 pre-
sents a brief overview on the conventional ABE method. In Sec-
tion 3, the general framework of feature weight and project
selection system for ABE is described. Section 4 presents the real
world datasets and the experiments design. In Section 5, the re-
sults on two real world data sets are summarized and analyzed.
In Section 6, two artificial datasets are generated, experiments
are conducted on these two datasets, and results are summarized
and analyzed. The final section presents the conclusion, and fu-
ture works.

2. Overview on analogy based cost estimation

Analogy based method is a pure form of case based reasoning
(CBR) with no expert used. Generally, ABE model comprises of four
components: a historical dataset, a similarity function, a solution
function and the associated retrieval rules (Kolodner, 1993). The
ABE system process also consists of four stages:

1. Collect the past projects’ information and prepare the historical
dataset.

2. Select new project’s relevant features such as function points
(FP) and lines of source code (LOC), which are also collected
for past projects.

3. Retrieval the past projects, estimate the similarities between
new project and the past projects, and find the most similar
past projects. The commonly used similarities are functions of
weighted Euclidean distance and the weighted Manhattan
distance.

4. Predict the cost of the new project from the chosen analogues
by the solution function. Generally the un-weighted average
is used as solution function.

The historical dataset which keeps all information of past pro-
jects is a key component in ABE system. However, it often contains
noisy or redundant projects. By reducing the whole historical data-
set into a smaller but more representative subset, the project selec-
tion technique positively affects the conventional ABE systems.
First, it reduces the search space, thus more computing resources
searching for most similar projects are saved. Secondly, it also pro-
duces quality predictions because it may eliminate noise in the his-
torical dataset.

In the following sections, other components of ABE system
including similar function, the number of most similar projects,
and solution function are presented.

2.1. Similarity function

The similarity function measures the level of similarity between
projects. Among different types of similarity functions, euclidean
similarity (ES) and manhattan similarity (MS) based similarities
are widely accepted (ES: Shepperd and Schofield, 1997. MS: Chiu
and Huang, 2007). The Euclidean similarity is based on the Euclid-
ean distance between two projects:
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where p and p0 denote the projects, fi and f 0i denote the ith feature
value of their corresponding projects, wi = [0,1] is the weight of
the ith feature, d = 0.0001 is a small constant to prevent the situa-
tion the denominator equals 0, and n is the total number of features.

The Manhattan similarity is based on the Manhattan distance
which is the sum of the absolute distances for each pair of features
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An important issue in the similarity functions is how to assign
appropriate weight wi to each feature pair, because each feature
may have different relevance to the project cost. In the literature,
several approaches were focusing on this topic: Shepperd and
Schofield (1997) set each weight to be either 1 or 0 then apply a
brute-force approach choosing optimal weights; Auer et al.
(2006) extent Shepperd and Schofield’s approach to the flexible
extensive search method. Walkerden and Jeffery (1999) use human
judgment to determine the feature weights; Angelis and Stamelos
(2000) choose a value generated from statistical analysis as the fea-
ture weights. More recently, Huang and Chiu (2006) propose the
genetic algorithm to optimize feature weights.

2.2. K number of similar projects

This parameter refers to the K number of most similar projects
that is close to the project being estimated. Some studies suggested
K = 1 (Walkerden and Jeffery, 1999; Auer et al., 2006; Chiu and
Huang, 2007). However, we sets K = {1,2,3,4,5} since many studies
recommend K equals to two or three (Shepperd and Schofield,
1997; Mendes et al., 2003; Jorgensen et al., 2003; Huang and Chiu,
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2006) and K = {1,2,3,4,5} could cover most of the suggested
numbers.

2.3. Solution functions

After K most similar projects are selected, the final prediction
for the new project is determined by computing certain statistic
based on the selected projects. The solution functions used in this
study are: the closet analogy (most similar project) (Walkerden
and Jeffery, 1999), the mean of most similar projects (Shepperd
and Schofield, 1997), the median of most similar projects (Angelis
and Stamelos, 2000) and the inverse distance weighted mean (Ka-
doda et al., 2000).

The mean is the average of the costs of K most similar projects,
where K > 1. It is a classical measure of central tendency and treats
all most similar projects as being equally influential on the cost
estimates.

The median is the median of the costs of Kmost similar projects,
where K > 2. It is another measure of central tendency and a more
robust statistic when the number of most similar projects increases
(Angelis and Stamelos, 2000).

The inverse distance weighted mean (Kadoda et al., 2000) al-
lows more similar to have more influence than less similar ones.
The formula for weighed mean is shown in (3):

bCp ¼
XK

k¼1

Simðp;pkÞ
Pn

i¼1
Simðp; pkÞ

Cpk ð3Þ

where p denotes the new project being estimated, pk represents the
kth most similar project, Sim(p, pk) is the similarity between project
pk and p, Cpk is the cost value of the kth most similar project pk, and
K is the total number of most similar projects.

3. Project selection and feature weighting

In this section, we construct the FWPSABE system (stands for
feature weighting and project selection analogy based estimation)
which can perform feature weighting analogy based estimation
(FWABE) alone, project selection analogy based estimation (PSABE)
alone, and the simultaneous optimization of feature weights and
project selection (FWPSABE). Genetic algorithm (Holland, 1975)
is selected as the optimization tool for the FWPSABE system, since
it is a robust global optimization technique and has been applied to
optimize the model parameters by several cost estimation papers
(Dolado, 2000; Shukla, 2000; Dolado, 2001; Huang and Chiu,
2006). The framework and detailed description of FWPSABE sys-
tem are presented in Section 3.2. In order to introduce the fitness
function in GA operation, performance metrics for model accuracy
are firstly presented in Section 3.1.

3.1. Performance metrics

To measure the accuracies of cost estimation methods, three
widely used performance metrics are considered: Mean magnitude
of relative error (MMRE), median magnitude of relative error
(MdMRE) and PRED (0.25). The MMRE is defined as

MMRE ¼ 1
n
&
Xn

i¼1

MRE

MRE ¼ Ci % bCi

Ci

"""""

"""""

ð4Þ

where n denotes the number of projects, Ci denotes the actual cost
of the ith project, and bCi denotes the estimated cost of the ith pro-
ject. Small MMRE value indicates low level of estimation error.

However, this metric is unbalanced and penalizes overestimation
more than underestimation. The MdMRE is the median of all the
MREs.

MdMRE ¼ medianðMREÞ ð5Þ

It exhibits a similar pattern to MMRE but it is more likely to select
the true model especially in the underestimation cases since it is
less sensitive to extreme outliers (Foss et al., 2003). The PRED
(0.25) is the percentage of predictions that fall within 25% of the ac-
tual cost.

PREDðqÞ ¼ k
n

ð6Þ

where n denotes the total number of projects and k represents the
number of projects whose MRE is less than or equal to q. Normally,
q is set to be 0.25. The PRED (0.25) identifies the cost estimations
that are generally accurate, while MMRE is a biased and not always
reliable as a performance metric. However, MMRE has been the de
facto standard in the software cost estimation literature. Thus, the
MMRE is selected for the fitness function in GA. More specifically,
for each chromosome generated in GA, MMRE is computed across
the training dataset. Then GA searches through the parameters
space to minimize MMRE.

3.2. GA for project selection and feature weighting

The procedure of the project selection and feature weighting via
genetic algorithm is presented in this section. The system consists
of two stages: the first one is the training stage (as shown in Fig. 2)
and the second is the testing stage (as shown in Fig. 3). In the train-
ing stage, a set of training projects are presented to the system, the
ABE model is configured by the candidate parameters (feature
weights and selection codes) to produce the cost predictions, and
GA explores the parameters space to minimize the error (in terms
of MMRE) of ABE on the training projects by the following steps:

i. Encoding.
To apply GA for optimization, the candidate parameters are
coded as a binary code chromosome. As shown in Fig. 1, each
individual chromosome consists of two parts. The first part is
the codes for featureweightswith the length of 14 & n, where
n is the number of features. Since the feature weights in ABE
model are decimal numbers, the binary codes have to be
transformed into decimal values before entering ABE model.
As many authors (Michalewicz, 1996; Ahn et al., 2006) sug-
gested, the features weights is set as precisely as 1/10,000.
Thus, 14binarybits are required toexpress this precision level
because 8192 = 213 < 10,000 6 214 = 16,384. After transfor-
mation, all decimal weight values are normalized into the
interval [0,1] by the following formula (Michalewicz, 1996):

wi ¼
w0

i

214 % 1
¼

w0
i

16;383
ð7Þ

where w0
i is the decimal conversion of ith feature’s binary

weight. For example, the binary code for feature 1 of the sam-
ple chromosome in Fig. 1 is (10000000000001)2. Its decimal
value is (8193)10 and its normalized value is 8193/
16,383 ' 0.5001.The second part of the codes is for project
selection. The value of each bit is set to be either 0 or 1: 0
means the corresponding project in not selected and 1 means
it is selected. The length of first part is m, and m is the total
number of projects in the historical project base.

ii. Population generation.
After the encoding of the individual chromosome, the algo-
rithm generates a population of chromosomes. For GA pro-
cess, larger population size often results in higher chance for
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good solution (Doval et al., 1999). SinceGA is computationally
expensive, a trade-off between the convergence time and the
population sizemust bemade. In general, theminimumeffec-
tive population size growswith problem size. Based on previ-
ousworks (Huang andChiu, 2006; Chiu andHuang, 2007), the
sizeof thepopulation is set to be10VwhereV is the total num-
ber of input variables of GA search,whichpartially reflects the
problem size.

iii. Fitness function.
Each individual chromosome is evaluated by the fitness
function in GA. As mentioned in Section 3.1 MMRE is chosen
for the fitness function and GA is designed to maximize the
fitness function, as the sake of simplicity we set the fitness
function as the reciprocal of MMRE.

f ¼
1

MMRE
ð8Þ

1 2 3 … 14 1 2 3 3 …1 21 2 … 14… 14

Feature 1 Feature 2

3………

Feature n……… Projects 

m

1 0 0 … 1 0 1 1 1 …1 10 0 … 1… 1 1……… 0

Feature Weighting Project Selection

Sample 
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Fig. 1. Chromosome for FWPSABE.
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Fig. 2. The training stage of FWPSABE.
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iv. Fitness evaluation.
After transforming the binary chromosomes into the feature
weighting and project selection parameters (see step i), the
procedures of ABE are executed as follows:
Given one training project, the similarities between the
training project and historical projects are computed by
applying the feature weights into the similarity functions
in (1) or (2). Simultaneously, the project selection part of
the chromosome is used to generate the reduced historical
project bases (reduced PBs). Then, ABE uses 1–5 most sim-
ilar projects (1–NN to 5–NN) matching to search through
the reduced PB for 1–5 most similar historical projects.
Finally, the ABE model assigns a prediction value to the
training project by adopting different solution func-
tions.The error metric MMRE, PRED(0.25), and MdMRE are
applied to evaluate the prediction performance on the
training project set. Then, the reciprocal of MMRE is used
as the fitness value for each parameter combination (or
chromosome).

v. Selection.
The standard roulette wheel is used to select 10V chromo-
somes from the current population.

vi. Crossover.
The selected chromosomes were consecutively paired. The
1-point crossover operator with a probability of 0.7 was
used to produce new chromosomes in each pair. The newly
created chromosomes constituted a new population.

vii. Mutation.
Each bit of the chromosomes in the new population is cho-
sen to change its value with a probability of 0.1, in a way
that a bit ‘1’ is changed to ‘0’ and a bit ‘0’ is changed to ‘1’.

viii. Elitist strategy.
Elitist strategy is used to overcome the defect of the slow
convergence rate of GA. The elitist strategy retains good
chromosomes and ensures they are not eliminated through
the mechanism of crossover and mutation. Under this strat-
egy, if the minimum fitness value of the new population is
smaller than that of the old population, then the new chro-
mosome with the minimum fitness value will be replaced
with the old chromosome with the maximum fitness value.

ix. Stopping criteria.
There are few theoretical guidelines for determining when to
terminate the genetic search. By following thepreviousworks
(Huang and Chiu, 2006; Chiu and Huang, 2007) on GA com-
bining with ABE method, step v to step viii are repeated until
the number of generations equal to or excess 1000V trials or
the best fitness value does not change in the past 100V trails.
After the stopping criteria are satisfied, the system moves to
the second stage and the optimal parameters or chromosome
are entered into the ABE model for testing.

In the aboveprocedure, thepopulation size, crossover rate,muta-
tion rate and stopping condition are the controlling parameters of
the GA search. However, there are few theories to guild the assign-

Historical PB 

Reduced PB

Similarity function 
Feature weighting 

Project selection 

Inputs from 

last stage 

Testing projects 

Project retrieval 

Solution function 

Prediction

Optimal

parameters

Fig. 3. The testing stage of FWPSABE.
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ments of these values (Ahnet al., 2006). Hence,wedetermine the va-
lueof theseparameters in the lightof previous studies that combines
ABE and GAs. Most prior studies use 10V chromosomes as the popu-
lation size, their crossover rate ranges from 0.5 to 0.7, and themuta-
tion rate ranges from 0.06 to 0.1 (Ahn et al., 2006; Huang and Chiu,
2006; Chiu and Huang, 2007). However, because the search space
for our GA is larger than these studies, we set the parameters to
the higher bounds of those ranges. Thus, in this study the population
size is 10V, the crossover rate is set at 0.7 and themutation rate is 0.1.

The second stage is the testing stage. In this stage system re-
ceives the optimized parameters from the training stage to config-
ure ABE model. The optimal ABE is then applied to the testing
projects to evaluate the trained ABE.

4. Datasets and experiment designs

In this section, two real world software engineering datasets are
firstly utilized for empirical evaluation of our methods. Addition-
ally, all the cost estimation methods included in our experiments
are described in Section 4.2 and the detailed experiments proce-
dure is presented in Section 4.3.

4.1. Dataset preparation

The Albrecht dataset (Albrecht and Gaffney, 1983) includes 24
projects developed by using third generation languages. 18 of the
projects were written in COBOL, 4 were written in PL1, and 2 were
written in DMS languages. Six independent features of this dataset
are ‘input count’, ‘output count’, ‘query count’, ‘file count’, ‘function
points’, and ‘source lines of code’. The dependent feature ‘person
hours’ is recorded in 1000 h. The descriptive statistics of all the fea-
tures shown in Table 1.

The Desharnais dataset (Desharnais, 1989) includes 81 projects
and 11 features, 10 independent and one dependent. Since 4 out
of 81 projects contain missing feature values, they have been ex-
cluded from the dataset. This process results in the 77 complete pro-
jects for our study. The ten independent features of this dataset are
‘TeamExp’, ‘ManagerExp’, ‘YearEnd’, ‘Length’, ‘Transactions’, ‘Enti-
ties’, ‘PointsAdjust’, ‘Envergure’, ‘PointsNonAjust’, and ‘Language’.
The dependent feature ‘person hours’ is recorded in 1000 h. The
descriptive statistics of all the features are shown in Table 2.

Before the experiments, all types of features are normalized into
the interval [0,1] in order to eliminate their different influences. In
addition, the two real datasets (Albrecht and Desharnais) are ran-
domly split into three nearly equal sized sub-sets for training
and testing. The detail partitions of each dataset are provided in
Table 3. The historical dataset is utilized by ABE model to retrieve
similar past projects. The training set is treated as the targets for
the optimization of feature weights and project subsets. The test-
ing set is exclusively used to evaluate the optimized ABE models.

4.2. Cost estimation methods

Four ABE based models are included in our experiments. The
first model is the conventional ABE. The second model is feature

weighing analogy based estimation (FWABE) which assigns opti-
mal feature weights via GA (Huang and Chiu, 2006). FWABE does
not include project selection technique. The third model, project
selection analogy based estimation (PSABE) uses GA to optimize
the historical project subsets. PSABE excludes of feature weighting.
The forth model is FWPSABE which uses GA for simultaneous opti-
mization of features weighting and projects Selection. The latter
two are the proposed by our study.

For a comprehensive evaluation of the proposed models, we
compare them with other popular machine learning methods
including artificial neural network ANN (Heiat, 2002), radial basis
functions RBF (Shin and Goel, 2000), support vector machine
regression SVR (Oliveira, 2006), and classification and regression
trees CART (Pickard et al., 2001). The best variants of machine
learning methods are obtained by training these methods and tun-
ing their parameters on the historical datasets and training data-
sets presented in Section 3.1 respectively.

In ANN model, the number of hidden layers, the number of hid-
den nodes and the transfer functions are three predefined param-
eters and they have a major impact on the prediction performance
(Martin et al., 1997). Among these parameters, one hidden layer is
often recommended since multiple hidden layers may lead to an
over parameterized ANN structure. Thus, one hidden layer is uti-
lized in this study. The search spaces for the number of hidden
neurons and hidden layer transfer functions are set to be
{1,3,5,7,9,10} and {linear, tan-sigmoid, log-sigmoid} respectively.
During the training process, the ANNmodels with different param-
eter configurations are firstly trained on the historical dataset.
Then, all ANN structures are implemented on the training set and
the one producing the lowest MMRE value is selected for the com-
parisons against ABE models.

For RBF network, the forward selection strategy is utilized since
forward selection has the advantages of flexible number of hidden
nodes in advance, the tractable model selection criteria and the rel-
atively low computational expense (Orr, 1996). In this case, the
regularization parameter k is introduced. To determine k, the
search space is defined as k = {10iji = %10,%9, . . . ,0, . . . ,10}. Similar
to ANN’s training procedure, all RBFs with different k values are
trained on historical dataset and the one yielding the lowest MMRE
on training data is selected for comparisons.

For SVR model, the common Gaussian function K(x,y) = exp
{%(x % y)2d2} is used as the kernel function. The predefined param-
eters d, C and e, are selected from the same search space

Table 1
Descriptive statistics for Albrecht dataset

Feature Minimum Maximum Mean Standard deviation

Input count 7.00 193.00 40.25 36.91
Output count 12.00 150.00 47.25 35.17
Query count 3.00 60.00 17.38 15.52
File count 0.00 75.00 16.88 19.34
Function points 3.00 318.00 61.08 63.68
SLOC 199.00 1902.00 647.63 488.00
Person hours 0.50 105.20 21.88 28.42

Table 2
Descriptive statistics for Desharnais dataset

Feature Minimum Maximum Mean Standard deviation

TeamExp 0.00 4.00 2.30 1.33
ManagerExp 0.00 7.00 2.65 1.52
YearEnd 83.00 88.00 85.78 1.14
Length 1.00 36.00 11.30 6.79
Language 1.00 3.00 1.56 0.72
Transactions 9.00 886.00 177.47 146.08
Entities 7.00 387.00 120.55 86.11
PointsAdjust 73.00 1127.00 298.01 182.26
Envergure 5.00 52.00 27.45 10.53
PointsNonAjust 62.00 1116.00 282.39 186.36
Person hours 0.55 23.94 4.83 4.19

Table 3
The partition of real datasets

Dataset Sample size of Albrecht Sample size of Desharnais

Historical 8 25
Training 8 25
Testing 8 27

Total 24 77
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{10i—i|i = %10,%9, . . . ,0, . . . ,10}. SVR models with all kinds of
parameters combinations (10 & 10 & 10 = 1000 combinations) are
trained on the historical dataset. The combination producing the
minimal MMRE on the training set is chosen for comparisons.

To train CARTmodel, we first use the historical set to fit themod-
el and obtain a decision tree T. The tree T then is applied to the train-
ing set, and returns a vector of cost values computed for the training
projects. The cost vector is then used to prune the tree T into a min-
imized size. The tree with optimal size is adopted for comparisons.

4.3. Experiment procedure

For the purpose of validations and comparisons, the following
experiments procedures are conducted:

Firstly, the performances of FWPSABE are investigated by vary-
ing ABE parameters other than feature weights and project subsets.
As mentioned in Section 2, ABE has three components exclusive of
historical project base: similarity functions, K number of most sim-
ilar projects, and the solution functions. In line with the common
settings of these parameters, we define the search spaces for sim-
ilarity function as {Euclidean distance, Manhattan distance}, K
number of similar projects as {1,2,3,4,5}, and solution functions
as {closet analogy, mean, median, inverse distance weighted mean}
respectively. All kinds of parameter combinations are executed on
both the training dataset and the testing. The best configuration on
training dataset is selected out for the comparisons with other cost
estimation methods.

Secondly, other ABE based methods are trained by the similar
procedure described in the first step and the best variants on train-
ing set are selected as the candidate for comparisons. In addition,
the optimizations of machines learning methods are conducted on
the training dataset by searching through their parameter spaces.

Thirdly, the training and testing results of the best variants of all
estimation methods are summarized and compared. The experi-
ments results and analysis are presented in next section.

5. Experiment results

Table 4 presents FWPSABE’s results on Albrecht dataset with
different parameter configurations mentioned in Section 2. The re-
sults show that in general Euclidean distance achieves slightly
more accurate performances than Manhattan distance on both
the training and testing dataset. As to the solution function, there
is no clear observation which function is most preferable. The
choice of K value has some influence on the accuracies. The smaller
errors mostly appear when K = 3 and K = 4. Among all configura-
tions, the setting {Euclidean similarity, K = 4, and mean solution
function} produces best results on training dataset and so it is se-
lected for the comparisons with other cost estimation methods.

Table 5 summarizes the results of the best variants of all cost
estimation methods on Albrecht dataset. It is observed that the
FWPSABE achieves the best testing performance (0.30 for MMRE,
0.63 for PRED(0.25) and 0.27 for MdMRE) among all methods,
and followed by PSABE, and FWABE. For a better illustration, the
corresponding testing performs are presented in Fig. 4.

The results of FWPSABE with different configurations on Des-
harnais dataset are summarized in Table 6. The results show that
on this dataset the choice of different similarity functions has little
influence on both the training and testing performances. As to the
solution functions, there is no clear conclusion which solution
function is the best. The choice of K value has slight influence on
the accuracies. The smaller errors are achieved by setting K = 3.
In all configurations, the setting {Euclidean similarity, K = 3, and
mean solution function} produces best results on training dataset

Table 4
Results of FWPSABE on Albrecht dataset

Similarity K value Solution Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

Euclidean K = 1 CA 0.39 0.25 0.35 0.40 0.38 0.45

K = 2 Mean 0.37 0.54 0.34 0.55 0.13 0.58
IWM 0.40 0.58 0.34 0.57 0.32 0.42

K = 3 Mean 0.56 0.38 0.34 0.41 0.33 0.39
IWM 0.55 0.42 0.32 0.42 0.42 0.29
Median 0.55 0.38 0.33 0.38 0.46 0.32

K = 4 Mean 0.31 0.54 0.32 0.30 0.63 0.27
IWM 0.35 0.52 0.33 0.44 0.50 0.32
Median 0.40 0.54 0.37 0.37 0.58 0.28

K = 5 Mean 0.58 0.42 0.32 0.39 0.38 0.45
IWM 0.54 0.33 0.38 0.51 0.25 0.42
Median 0.51 0.38 0.45 0.42 0.25 0.45

Manhattan K = 1 CA 0.50 0.25 0.41 0.45 0.25 0.53

K = 2 Mean 0.56 0.38 0.42 0.43 0.13 0.44

IWM 0.55 0.40 0.44 0.59 0.28 0.45

K = 3 Mean 0.55 0.52 0.45 0.39 0.38 0.35
IWM 0.51 0.44 0.42 0.42 0.25 0.40
Median 0.53 0.32 0.43 0.51 0.33 0.32

K = 4 Mean 0.53 0.38 0.32 0.41 0.54 0.45
IWM 0.51 0.36 0.35 0.51 0.50 0.42

Median 0.50 0.34 0.43 0.44 0.53 0.32

K = 5 Mean 0.54 0.34 0.42 0.59 0.13 0.58
IWM 0.52 0.36 0.48 0.52 0.23 0.48
Median 0.53 0.34 0.45 0.51 0.13 0.46
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and so it is selected for the comparisons against other cost estima-
tion methods.

Table 7 presents the results of the best variants of all cost
estimation methods on Desharnais dataset. It is shown that the
FWPSABE achieves the best testing performance (0.32 for MMRE,
0.44 for PRED(0.25) and 0.29 for MdMRE), and followed by SVR
and PSABE. Fig. 5 provides an illustrative version of the testing
results in Table 7.

6. Artificial datasets and experiments results

To compare different cost estimation methods, the need for
empirical validation is very crucial. This has led to the collection
of various real world datasets for experiments. Mair et al. (2005)
conducted an extensive survey of the real datasets for cost estima-
tion from 1980 onwards. As reported, most published real world
datasets are relatively small for the tests of significance and the
true properties of them may not be fully known. For example, it
might be difficult to distinguish different types of distribution in
the presence of extreme outliers in a small dataset (Shepperd
and Kadoda, 2001).

Artificially generated datasets provide a feasible solution to the
above two difficulties. Firstly, the researchers can generate reason-
able amount of artificial data to investigate the significant differ-
ences among the competing techniques. Secondly, it provides the
control over the characteristics of the artificial dataset. Especially,
researchers could design a systematic way to vary the properties
for their research purposes (Pickard et al., 1999). In order to eval-
uate the proposed methods in a more controlled way, we generate
two artificial datasets for further experiments.

From each of the two real datasets, we extract a set of character-
istics describing its property, or more specifically its non-normal-
ity. The non-normality considered in our study includes

Table 5
The results and comparisons on Albrecht dataset

Models MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

ABE 0.38 0.49 0.50 0.13 0.36 0.49
FWABE 0.48 0.42 0.38 0.25 0.34 0.46
PSABE 0.40 0.39 0.25 0.38 0.35 0.45
FWPSABE 0.31 0.30 0.54 0.63 0.32 0.27
SVR 0.46 0.45 0.50 0.25 0.22 0.43
ANN 0.39 0.49 0.38 0.25 0.35 0.51
RBF 0.79 0.49 0.50 0.25 0.25 0.39
CART 4.77 1.70 0.13 0.13 0.58 0.89

Fig. 4. The testing results on Albrecht dataset.

Table 6
Results of FWPSABE on Desharnais dataset

Similarity K value Solution Training Testing

MMRE PRED(0.25) MdMRE MMRE PRED(0.25) MdMRE

Euclidean K = 1 CA 0.54 0.24 0.47 0.52 0.27 0.51

K = 2 Mean 0.57 0.26 0.45 0.62 0.37 0.50
IWM 0.55 0.24 0.44 0.97 0.42 0.67

K = 3 Mean 0.40 0.36 0.36 0.32 0.44 0.29
IWM 0.55 0.36 0.38 0.42 0.42 0.36
Median 0.56 0.34 0.36 0.38 0.42 0.34

K = 4 Mean 0.59 0.16 0.39 0.40 0.26 0.39
IWM 0.55 0.36 0.41 0.64 0.17 0.46
Median 0.53 0.34 0.37 0.57 0.38 0.42

K = 5 Mean 0.55 0.24 0.56 0.43 0.28 0.48
IWM 0.54 0.26 0.56 0.52 0.25 0.42
Median 0.59 0.29 0.55 0.64 0.27 0.53

Manhattan K = 1 CA 0.39 0.28 0.37 0.67 0.30 0.44

K = 2 Mean 0.54 0.32 0.48 0.47 0.25 0.51
IWM 0.55 0.40 0.34 0.52 0.25 0.53

K = 3 Mean 0.45 0.28 0.49 0.46 0.22 0.38
IWM 0.56 0.24 0.43 0.41 0.42 0.37
Median 0.58 0.20 0.46 0.51 0.20 0.45

K = 4 Mean 0.51 0.24 0.48 0.57 0.33 0.51
IWM 0.53 0.26 0.55 0.58 0.27 0.52
Median 0.60 0.30 0.53 0.54 0.28 0.52

K = 5 Mean 0.54 0.24 0.50 0.52 0.26 0.48
IWM 0.56 0.34 0.58 0.64 0.18 0.59
Median 0.63 0.36 0.55 0.55 0.23 0.52
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skeweness, variance instability, and excessive outliers (Pickard et
al., 2001). We then by using the two sets of characteristics generate
two sets of artificial data. Section 6.1 presents the details for arti-
ficial datasets generation.

6.1. Generation of the artificial datasets

To explore the non-normal characteristics of the real world
dataset, the ‘‘cost-size” scatter plot for Albrecht dataset is drawn
as Fig. 6. The scatter plot indicates the slight skewness, moderate
outliers, and slight variance instability of the Albrecht dataset.

The ‘‘cost-size” scatter plot of the Desharnais dataset is illus-
trated in Fig. 7 which shows weak skewness, extreme outliers,
and highly variance instability of this dataset.

From the analysis above, software dataset often exhibits a mix-
ture of several non-normal characteristics such as skewness, vari-
ance instability, and excessive outliers (Pickard et al., 2001).
These characteristics do not always appear in the same degree. In
some cases they are moderately non-normal such as the Albrecht
dataset, while in other cases they are severely non-normal such
as the Desharnais dataset. Without loss of generality, we adopted
Pickard’s way of modeling non-normality in this work. Other types
of techniques for artificial dataset generation are also available in
recent literature. For more details, readers can refer to Shepperd
and Kadoda (2001), Foss et al. (2003) and Myrtveit et al. (2005).

By Pickard’s way, we simulate the combination of non-normal
characteristics: skeweness, unstable variance and outliers in (7):

y ¼ 1000þ 6x1skþ 3x2skþ 2x3skþ ehet ð9Þ

The independent variables (x1sk, x2sk, x3sk) are generated by
Gamma distributed random variables x01, x02, and x03 with mean 4

and variance 8. And the skewness is explicit by the Gamma distri-
butions. In order to vary the scale of the independent variables,
we then multiply the x01 by 10 to create variable x1sk, the x02 by 3
to create variable x2sk and x03 by 20 to create the variable x3sk.

The last term ehet in the formula simulates a special form of
unstable variance: heteroscedasticity. The heteroscedasticity oc-
curs where the error term is related to one of the variables in the
model and either increase or decreases depending on the value
of the independent variable. The error term ehet is related to x1sk
by the relationship ehet = 0.1 & e & x1sk for the moderate hetero-
scedasticity, and ehet = 6 & e & x1sk for the severe heteroscedastic-
ity (Pickard et al., 2001).

The outliers are generated by multiplying or dividing the
dependent variable y by a constant. We select 1% of the data to
be the outliers. Half of the outliers are obtained by multiplying
while half of them are got by dividing. For the moderate outliers,
we set the constant value as 2, while for the severe outliers, 6 is
chosen to be the constant.

The combination of moderate heteroscedasticity and moderate
outliers is used to generate the moderate non-normality dataset
(Fig. 8). The joint of severe heteroscedasticity and severe outliers
is used to obtain the severe non-normality dataset (Fig. 9).

Table 7
The results and comparisons on Desharnais dataset

Models MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

ABE 0.62 0.62 0.28 0.22 0.51 0.50
FWABE 0.51 0.46 0.12 0.22 0.48 0.39
PSABE 0.39 0.41 0.28 0.30 0.37 0.38
FWPSABE 0.40 0.32 0.36 0.44 0.36 0.29
SVR 0.42 0.40 0.28 0.37 0.45 0.37
ANN 0.45 0.57 0.36 0.22 0.44 0.43
RBF 0.57 0.42 0.24 0.37 0.49 0.29
CART 0.97 0.52 0.28 0.30 0.50 0.35

Fig. 5. The testing results on Desharnais dataset.
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Fig. 7. Cost versus size of Desharnais dataset.

Y.F. Li et al. / The Journal of Systems and Software 82 (2009) 241–252 249



6.2. Experiments results on artificial datasets

By using the equation mentioned in Section 6.1, we generate
two artificial datasets, each with 500 projects. For a better assess-
ment of accuracy, we make the data for testing much larger by
dividing the artificial datasets into: historical set with 50 projects,
training set with 50 projects, and the testing set with 400 projects
(see Table 8).

We apply all the methods onto the two artificial datasets by fol-
lowing the same procedure presented in Section 4.3. The results
and comparisons are summarized as following.

The results on artificial moderate non-normality dataset are in
Table 9. It is shown that FWPSABE achieves the best performances

in MMRE at 0.079 and MdMRE at 0.06 and the second best value
0.98 for PRED(0.25), while ANN gets the highest PRED(0.25) value
at 0.99. Compare the prediction error curves in Fig. 4 for Albrecht
dataset to the error curves in Fig. 10 for moderate non-normality
set, it is observed that all the methods achieve much better perfor-
mance on the artificial dataset and the differences among the can-
didate methods are much smaller on the artificial dataset. These
findings imply that estimation methods in our study may converge
to good prediction results on the moderately non-normal dataset
with large size and FWPSABE is slightly better than other methods
as it eliminate the noise in the historical dataset.

Table 10 shows the results on artificial severe non-normality
dataset. FWPSABE achieves the best performances in MMRE at
0.16 and MdMRE at 0.11 and the second best value 0.80 for
PRED(0.25), while CART obtains the highest PRED(0.25) value at
0.81. Compare Figs. 10, and 11, it is shown that the all methods ob-
tain poorer performances on severe non-normal dataset. This
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Fig. 8. Y versus x1sk of moderate non-normality dataset.
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Fig. 9. Y versus x1sk of severe non-normality dataset.

Table 8
The partition of artificial datasets

Dataset Sample size of artificial moderate
non-normality data

Sample size of artificial severe
non-normality data

Historical 50 50
Training 50 50
Testing 400 400

Total 500 500

Table 9
The results and comparisons on artificial moderate non-normality dataset

Models MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

ABE 0.068 0.116 0.98 0.94 0.048 0.093
FWABE 0.090 0.110 1.00 0.98 0.081 0.098
PSABE 0.057 0.086 1.00 0.98 0.043 0.068
FWPSABE 0.055 0.079 1.00 0.98 0.044 0.060
SVR 0.069 0.095 0.98 0.98 0.055 0.077
ANN 0.065 0.088 1.00 0.99 0.061 0.077
RBF 0.099 0.115 0.94 0.93 0.075 0.092
CART 0.099 0.109 0.98 0.95 0.074 0.090

Fig. 10. The testing results on artificial moderate non-normality dataset.

Table 10
The results and comparisons on artificial severe non-normality dataset

Models MMRE PRED(0.25) MdMRE

Training Testing Training Testing Training Testing

ABE 0.32 0.20 0.68 0.73 0.18 0.14
FWABE 0.34 0.19 0.72 0.77 0.14 0.13
PSABE 0.31 0.18 0.70 0.75 0.11 0.12
FWPSABE 0.30 0.15 0.74 0.80 0.14 0.10
SVR 0.34 0.18 0.62 0.76 0.19 0.12
ANN 0.34 0.17 0.70 0.79 0.16 0.12
RBF 0.37 0.18 0.66 0.80 0.18 0.13
CART 0.38 0.18 0.72 0.81 0.16 0.14
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observation indicates that high degree of non-normality has nega-
tive impacts on the performance of estimation methods in our
study.

7. Conclusions and future works

In this study, we introduce the project selection technique to re-
fine the historical project database in ABE model. In addition, the
simultaneous optimization of feature weights and project selection
(FWPSABE) is proposed to further improve the performance of ABE.
To evaluate of our methods, we apply them on two real-world
dataset and two artificial datasets. The error indicators for methods
evaluations are MMRE, PRED(0.25), and MdMRE. The promising re-
sults of the proposed FWPSABE system indicate that it can signifi-
cantly improve the ABE model and enhance ABE as a successful
method among software cost estimation techniques.

One major conclusion of this paper is that FWPSABE system
may produce more accurate predictions than other advanced ma-
chines learning techniques for software cost estimation. In the lit-
erature, ABE is already regarded as a benchmarking method for
cost estimation (Shepperd and Schofield, 1997). First, it is not com-
plex for implementation and it is more transparent to the users
than most machine learning methods. Moreover, ABE’s prediction
can update in real time; once a project is completed, its informa-
tion can be easily inserted into the historical project database.
However, many studies reported that in practice ABE has been hin-
dered by the low prediction accuracy. According to the results in
this study, FWPSABE may be useful in practical situations because
it has the advantages of ABE and the ability to produce more accu-
rate cost estimation results.

However, there are still some limitations of study. For exam-
ple, the two real-world datasets in our experiments are quite
old though they have been frequently used by many recent stud-
ies. Experiments on recent and large size datasets such as ISBSG
database are essential for more rigorous evaluations on our meth-
ods. In addition, our methods are only validated on the projects
developed by the traditional waterfall based approach. Software
projects developed by new type of approaches such as agile
methods have additional features indicating the characteristics
of their development approaches. The accuracies of FWPSABE
for projects under newly development types should be further
investigated. Moreover, ABE based methods are intolerant of
missing features. If information of some historical projects is
incomplete, then the data imputation techniques should be taken

to process the miss values the FWPSABE system starts. Further-
more, only MMRE is used for optimization objective function,
and there is no guarantee that other quality metrics such as
PRED(0.25) and MdMRE can be optimized while optimizing the
single objective MMRE. Multi-objective optimization techniques
can be investigated in future works.
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