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Optimal Project Feature Weights
in Analogy-Based Cost Estimation:
Improvement and Limitations
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Abstract—Cost estimation is a vital task in most important software project decisions such as resource allocation and bidding.
Analogy-based cost estimation is particularly transparent, as it relies on historical information from similar past projects, whereby
similarities are determined by comparing the projects’ key attributes and features. However, one crucial aspect of the analogy-based
method is not yet fully accounted for: the different impact or weighting of a project’s various features. Current approaches either try to
find the dominant features or require experts to weight the features. Neither of these yields optimal estimation performance. Therefore,
we propose to allocate separate weights to each project feature and to find the optimal weights by extensive search. We test this
approach on several real-world data sets and measure the improvements with commonly used quality metrics. We find that this
method 1) increases estimation accuracy and reliability, 2) reduces the model’s volatility and, thus, is likely to increase its acceptance
in practice, and 3) indicates upper limits for analogy-based estimation quality as measured by standard metrics.

Index Terms—Software cost estimation, analogy-based cost estimation, project clustering, project features.

1 INTRODUCTION

SOFTWARE cost estimation [1] is a vital task in software
project management. It affects all major management
decisions such as resource allocation, bidding, start sche-
duling, and risk management. Good cost estimation
requires experience and judgment due to human factors
(like stakeholder incentives and team dynamics) and
continuous technological change in any software develop-
ment environment. Formal estimation methods can provide
valuable support.

Formal estimation methods measure observable project
characteristics, project features, and derive cost estimates
from these features. Typical examples of project features
include the number of function points, number of user
interface masks, number of developers, and the experience
level of developers. In order to derive cost estimates from
the chosen project features, a model relating features and
costs is required. In the typical scenario of a multiproject
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environment, a project portfolio, such a model can include
the features and observed costs of past projects, in order to
obtain estimates in line with historical project costs. Over
time, a project portfolio grows as a company takes on more
new projects. When those projects are completed, their
features and observed costs are added to a historical project
feature database. The typical estimation procedure in a
growing portfolio is thus to:

1. select and measure project features of the project to
be estimated;

2. estimate the project costs using the features observed
and the model derived from past completed projects;
and

3. upon a project’s completion, add the project’s
features and final costs to the historical feature
database and recalibrate the model based on this
new, larger database.

For any cost estimation method to be useful, it should
both produce sound estimates and be accepted and trusted
by the practitioner. One method that meets these conditions
is analogy-based cost estimation [2]. The analogy-based
approach is reported to perform well with respect to
estimation accuracy when compared to other estimation
methods [3]. In addition, it is by nature transparent (as
opposed to, for example, black-box approaches like neural
networks) and, therefore, likely to be accepted by practi-
tioners [4].

It works as follows: Given a new project to be estimated
along with its features, analogy-based cost estimation tries
to find projects with similar features in the historical feature
database. Those projects’ costs are then used to create the
new estimate. For example, consider estimating a new
project with two features: “number of developers” and
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“number of user interface masks.” There may be several
projects in the historical feature database with a similar
number of developers and interface masks (given a
sufficient number of historical projects). The average of
those similar projects” known costs is the new estimate.

However, conventional analogy-based cost estimation
methods are inadequate when dealing with individual
project features, as it is reasonable to assume that some
features should be more influential than others. Yet often,
this issue is either not addressed [5], or handled by merely
trying to identify the most dominant project features [2].

Therefore, this paper proposes an improved analogy-
based cost estimation algorithm. Our approach uses
extensive search to optimally weight individual project
features, in order to find a more realistic measure of project
similarity. In this way, some features become more
influential in determining project similarities. By extending
earlier attempts presented in [6], this paper:

e describes an extensive search algorithm for optimal
project feature weights,

e applies the approach to several real-world portfolio
data sets and compares it to a conventional analogy-
based approach, and

e quantifies the obtained quality improvements.

Our approach produces better estimates, as measured by
commonly used estimation accuracy and reliability metrics.
Furthermore, it is acceptable to practitioners in environ-
ments that allow for consistent collection of project features:
It keeps the transparency of the conventional analogy-based
approach, but adapts more flexibly to real-world project
features of varying importance.

The proposed approach requires extensive computation
for model calibration. However, this takes place only upon
project completion, i.e., at step 3 of the estimation procedure.
At that time, a completed project’s features and observed
costs are stored in the historical feature database, and the
model is recalibrated. At the time of estimation, however, no
substantial computation is required—the estimate is given in
realtime.

Section 2 presents an overview of related work. Section 3
describes the algorithm and how to deal with high-
dimensional portfolio data sets that require extensive
computation. Section 4 gives the data sets used to analyze
the proposed approach. Section 5 presents the results, and
Section 6 discusses the implications regarding estimation
quality, model volatility, and estimation quality barriers.
Section 7 concludes the paper and provides directions for
further research.

2 REeLATED WORK

There are various formal methods that have been proposed to
support software cost estimation, for example, COCOMO [7],
neural networks [8], pattern recognition [9], and expert
judgment [10].

Most methods rely on the same assumption: Similar
projects are likely to have similar cost characteristics. This is
implemented in the most straightforward way by the
analogy-based estimation method [11], [12]. Wieczorek [3]
compares several cost estimation approaches and the

analogy-based method ranks among the best. Shepperd
and Schofield [2] claim that analogy-based estimation out-
performs regression techniques for several real-world data
sets. Myrtveit and Stensrud [13] compare the analogy
approach to regression methods. Their results indicate that
the analogy-based method may not be the best choice in some
environments if only estimation accuracy is considered.
However, there are other equally important criteria to
consider when selecting an estimation method, especially
the method’s transparency and its acceptance by practi-
tioners (as noted by Mendes et al. [14]). In these cases, the
analogy method is considered to be preferable to black-box
approaches such as neural networks (see, for example, Finnie
and Wittig [4]).

When estimating a new project, the analogy-based
method consists of several steps. First, measure the
observable features of the new project at the time of
estimation. Then, identify projects with similar feature
values from the historical feature database. Finally, deter-
mine the new estimate using the known costs of the chosen
historical projects.

More precisely, a project p is described by a list of
features (e, dy,...,d;), where dy, ..., d; denote those features
that are observed at the time of estimation, and e denotes
the project’s costs upon completion [15] (because the
features’ value ranges differ, they are first scaled to the
interval [0, 1]). The similarity of two projects can be defined
as a weighted Euclidean distance 6 over the features
dl, ey d]Z

(1)

A small distance indicates a high degree of similarity.
When a new project is estimated, its distances to each
project in the historical feature database are calculated. The
costs of the most similar projects then determine the new
cost estimate.

A fundamental question in this model is how to set the
feature weights w; since individual features should influ-
ence project similarity to a different degree. Various
approaches have been proposed:

e Set all project feature weights to identical values:
wi=1,i=1,...,1[5]

e  Seteach project feature weight to a value determined
by human judgment [16].

e Set each project feature weight to a value obtained
by statistical analysis, such as inverse variance or
range values [12], or to values that depend on the
correlation of a feature with historical costs (for
example, w; = 1 or w; = 2, depending on a threshold
correlation) [5].

e  Set each project feature weight to either 0 or 1 so that
an estimation quality metric is maximized. This
brute-force approach proposed by Shepperd and
Schofield [2] tries to identify a subset of important
features. Once these features are identified, they are
all given the same weight.
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Treating all feature weights the same is not optimal, as
some features influence project costs more than others; this is
supported by Mendes et al. [5]. Experts, on the other hand,
may be reluctant to set the weights manually due to the
additional effort required to analyze and set the weights.

In turn, it remains difficult to agree on the correct
statistical analysis and on the corresponding feature weight
values (for example, the proposed values “1” and “2” seem
rather arbitrary). In addition, this approach makes the
model less transparent and acceptable in real-world
environments—eliminating a key advantage of analogy-
based cost estimation [4].

The last approach—searching for a subset of important
features—fails to account for each feature’s individual
influence on project similarity. Also, the resulting feature
weights are highly volatile over the lifetime of a growing
portfolio, which may make the model less acceptable.

This paper extends Shepperd et al’s feature subset
approach [11]. It proposes to use flexible weights to account
for the individual influences of project features without
sacrificing the transparency and simplicity of analogy-
based estimation. The paper also tests the new approach on
real-world project feature sets, and compares its estimation
quality to that of Shepperd and Schofield’s approach.

3 EXTENSIVE FEATURE WEIGHT SEARCH

This section describes an algorithm to determine optimal
feature weights with respect to estimation quality metrics
and explains how to handle high-dimensional data sets that
require extensive computation.

3.1 Method and Metrics

In analogy-based estimation, a new project’s cost is
estimated by identifying the most similar past projects—i.e.,
projects with similar feature values—and taking their mean
observed costs as the new estimate.

A completed project p, member of a portfolio P, can be
described by values (e, dp1,...,dp;), where e, denotes the
final cost observed upon project completion, and
dy1,...,d,; denote [ feature values observed at the project’s
time of estimation. For a new project p*, whose costs are to
be estimated, only the d, ; are known. To create an estimate
é, for the new project’s costs, the weighted Euclidean
distance 6 (see Section 2) over the known features d_; is first
used to determine the set )+ of projects that are similar to
p*, i.e., those with a minimal distance:

Qp =A{p € P\{p"}é(p,p") = minyep\(y6(p', p")}-

The cost estimate é, for the new project p* is then given
by the average costs of the projects in that set:
&y = |Qp - ZpEQP* ep-l

Several estimation quality metrics can be used to assess
the performance of estimation methods. Commonly used
metrics are the “mean magnitude of relative error”
(MMRE), and the “percentage of predictions that fall
within 25 percent of the actual value” (Predss). Although

1. The set often contains only one project, especially if some project
features are not categorical features. By modifying the strict equality
condition for @, larger sets can be selected.

their application has been criticized, they remain widely
used and are considered to have no simple generic
replacement (see, for example, Foss et al. [17]).

These metrics are obtained in a so-called jackknifing
approach: For a given portfolio P, a completed project with
known final costs is treated as if its costs were still to be
estimated, and the remaining projects in the portfolio are
used to create that estimate. This is repeated for every
project in the portfolio, and the obtained relative errors are
aggregated. Formally, for each p € P, the estimate ¢, is
calculated, yielding the relative error r, = (&, — e,)/ep. The
quality metrics are then defined as follows:

MMRE = [P Y |r, . (2)
peP
Predss = |P| | {p e P‘|rp| < 25]. (3)

In addition, Var,, the variance of the relative error, can
be used as a measure of the estimation method'’s reliability.
The choice of a particular metric depends on the preference
of the estimator: Large estimation outliers, for example,
influence the average-based MM RE more than Predys.

These quality metrics can be used to calibrate an
estimation model. In our case, the model parameters are
the weights wy, ..., w; that are associated with the [ features
in the weighted Euclidean distance function 6. As pre-
viously outlined, these weights are usually either set
manually by experts, or—in the case of the tool ArchAngel
[2]—they are set to 0 or 1 in a brute-force search for a subset
of important features. Yet, these methods provide only
crude approximations for the features’ individual weights.

This paper proposes to extensively search for weights
that maximize certain standard estimation quality metrics.
Each weight takes a value in the interval [0, 1]. The weights
(wy,...,w;) are called optimal with respect to a quality
measure (for example, MM RE-optimal) if, for a given
portfolio P, they yield the best quality metric value of all
examined combinations of weight values. This corresponds
to a minimum value in the case of MMRE, or to a
maximum in the case of Predss.

Project portfolios grow as new projects are started. We
use the term “portfolio growth stage” to denote the
intermediate portfolios obtained by adding one new project.
The optimal feature weights can be different at each such
growth stage, as more and more projects are completed and
their cost information becomes available for model calibra-
tion. If only two possible weight values are used (as in the
approach of Shepperd and Schofield [2]), changes in
optimal feature weights appear very discontinuous:
Weights are turned from 1 to 0 or vice versa. This makes
the model’s overall behavior appear highly volatile and its
estimates untrustworthy. A higher number of possible
weight values should reduce this volatility.

Thus, a volatility measure is used to determine the impact
of extensive weight search on weight volatility. If P, indicates
an intermediate portfolio stage of ¢ projects (¢ ranges from
initial size s, to total number of projects n) and, if
(w),...,w}) denote the optimal weights for each P, then

Authorized licensed use limited to: West Virginia University. Downloaded on December 28, 2009 at 18:11 from IEEE Xplore. Restrictions apply.



86 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO.2, FEBRUARY 2006

the mean feature weight volatility (MFWV) of the
portfolio P is:

l 1 i—
Z;l:sm,;nﬂ 2,7:1 |w) — w i

MFWV =
l(n - smm)

(4)

This metric describes the mean absolute change of weights
over the lifetime of a portfolio.

3.2 Implementation

The proposed approach allocates separate weights w; to the
l project features d;. If w denotes the number of possible
weight values, then each weight w; can be set to a value
from the set {0,1/(w —1),2/(w—1),...,(w—2)/(w—1),1}.
For example, with w =3, each project feature can be
assigned a weight of either 0, .5, or 1. To search for the
optimal weight combination for a given portfolio, w'
combinations of weights must be analyzed. We analyze
the cases w=2,3,5,7,9: w=2 corresponds to the tradi-
tional approach, while the larger, odd values for w allow for
the feature weight value .5.

In a real-world portfolio that grows over time, model
calibration takes place whenever a project is completed and
its features and observed costs are stored in the historical
feature database. To analyze the improvements of our
approach over the lifetime of a portfolio, the basic algorithm
is therefore applied at each stage of a growing portfolio:

1. Given a portfolio P = {p1,...,p,}, choose an initial
portfolio size s,,;, and the number of possible
weights w, set the current portfolio stage to
P, ={p1,...,ps,, |, and select a quality metric (for
example, MMRE).

2. Determine the optimal weight values for the current
portfolio P, with respect to the chosen quality metric
by extensive search. To cross-check the improve-
ment, determine additional quality metrics, for
example, Predy; or Var,, for this weight configura-
tion. Note, the weights may not be optimal with
respect to these additional metrics.

3. Go to the next portfolio growth stage—while there
are projects left in the portfolio, add one project to
the current portfolio (i.e., increase t), and repeat
Steps 2 and 3.

The computational effort required is proportional to w'.
If the algorithm is computationally feasible (i.e., computable
on a given system within a specified amount of computa-
tion time) for some number of possible weight values w, its
computation time 7" can be observed and used to predict the
computation time for larger values of w. For example, to
increase w by 1, a computation time of Tw™!(w + 1) would
be required.

If this prediction exceeds the available computational
resources, a simple modification to the above algorithm gets
rid of features that seem to be less relevant; features are
dropped until the expected computation time becomes
feasible. We propose to drop those features whose weights
are 0 during all stages of the growing portfolio, for the
previous, smaller value of w. If there are none, we drop
those whose weights were 0 during at least 90 percent of the
portfolio stages. While it could be that a higher number of

possible weight values “activates” some of those features,
they can be considered less important than other features
(much like covariates with small coefficients in regression-
based models). If several features qualify, the one with the
highest index is dropped.

Consider the following example: Limited computational
resources make it necessary to drop two features in order to
increase w from 4 to 5. For w < 4, the weight w; of feature d
is zero in all portfolio stages, and the weights ws and w7 of
features ds and d; are zero for all but one stage. Then,
features ds and d; are dropped before increasing w.

Practitioners might be reluctant to apply methods that
require such high computational effort. This approach,
however, is still usable for the following reasons:

e  First, and most importantly, the effort is required at
model calibration, not at the time of estimation. At
the time of estimation, the estimates are given in
realtime. The expensive recalibration takes place
only when a project is completed and its features
and observed costs are stored to the historical
feature database. This can even be implemented
transparently, for example, by a stored procedure
that is triggered automatically when new project
information is stored.

e The method is even acceptable if for some reason
model recalibration is required during the estima-
tion. Any real-world cost estimation process takes
place over several days, usually involving the
feedback of several team members, procedures such
as top-down or bottom-up estimation, and time-
consuming budget politics. Thus, during this proce-
dure, it is easily possible to apply time-intensive
algorithms (typically, they are scheduled to run
overnight). Similar approaches are, for example,
very common in price and risk analysis applications
in financial engineering.

e In addition, the algorithm can easily be parallelized
even on low-cost hardware. The data set character-
istics are also often favorable: The data sets usually
contain only few project entries, typically between 20
and 100, and the number of features is usually small
(6 to 18 in the analyzed data sets).

The algorithm is implemented as a Java tool, Amber-
Angel. Unlike other analogy-based estimation tools, it is a
command line tool specifically designed to operate in batch
mode; its output is suited for further processing in
spreadsheet applications. By setting the number of possible
feature weight values to 2, the conventional feature subset
approach is simulated (this produces the same results as
Shepperd and Schofield’s tool). The computation is per-
formed on one processor of a Dual AMD Opteron 2GHz
Linux system.

4 DATA SETS AND ANALYSIS PROCEDURE

We apply the proposed approach to several real-world
portfolio data sets. Some sets are available in the public
domain [18], [19], [20]. In addition, our partners at the
Fraunhofer Institute were able to get access to several data
sets not published in detail, the Esa and Laturi data sets.
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TABLE 1
Portfolio Data Sets
Data set #Features, [ | #Projects, n
Albrecht24 [18] 6 24
Desharnais44 [19] 7 44
Desharnais23 [19] 7 23
Desharnais10 [19] 7 10
Esa29 [3] 11 29
Esal3 [3] 11 13
Kemerer15 [20] 3 15
Laturil2 [3] 18 12
Laturill [3] 18 11
LaturilOa [3] 18 10
Laturil0b [3] 18 10

The former data set contains multiorganizational data from
the European Space Agency, in the domains of space,
military, and business applications; it is administered by the
international business school INSEAD. The latter data set
contains data from the Laturi project, a collection of project
metrics from several companies in Finland in the domain of
business application systems; the database is administered
by the Software Technology Transfer Finland Ltd.

Many authors point out that portfolio data sets are most
valuable if used to estimate within the very same company
or development environment [21], [22]. Therefore, the larger
data sets were broken into company-specific ones, yielding
11 data sets. Table 1 gives an overview on the number of
features and number of projects of these portfolios.

Table 2 lists the features of the first projects of the
Albrecht data set. The first column, “name,” is the project
identifier; it is not used in the calculation. The second
column, “effort,” is the estimation target. The remaining
six columns are the six project features describing this
portfolio’s projects: lines of code (sloc), number of function
points (fp), file handles (file), and masks for input (in),
output (out), and inquiries (inq). Note that analogy-based
cost estimation does not depend on certain types of
features, it just operates on quantitative and (in our case)
categorical data. Please refer to [3] for more details about
the data sets used.

Some minor preliminary preparations are made to the
data sets:

e One column (usually, “effort”) is chosen as the
estimation target; additional effort-related measures
like productivity or duration are dropped.

e Categorical features (for example, “type of program-
ming language”) are denoted so that our tool is able
to apply a special distance function to such features
(0 for same, 1 for different categories).

e No projects are removed from the data sets, even if
they appear to be outliers.

In Section 3, a modification of the extensive search for
optimal weights is described, which deals with portfolios

TABLE 2
Albrecht Data Set (Partial)
name | effort in | out | file | inq fp sloc
1 10240 | 25 | 150 | 60 | 75 | 1750 | 130
2 10520 | 193 | 98 | 36 | 70 | 1902 | 318
3 1110 70 | 27 | 12 0 428 20
4 2110 | 40 | 60 | 12 | 20 759 54
5 2 880 10 | 69 9 1 431 62
6 1 000 13 19 | 23 0 283 28

containing a large number of features. Finding optimal
weights for these portfolios may require extensive compu-
tation, because the effort is proportional to w!. To be able to
increase w and to find weights within a given maximum
computation time, we propose to decrease [ by removing
features that are 0 in all or most portfolio stages analyzed
with a lower w.

We use a maximum computation time of 24 hours.
Removing some features is then necessary for some of the
Esa and Laturi data sets. For example, for data set Esal3,
one feature has to be removed at w =6, w="7, and w =9,
respectively, to make these w values computationally
feasible. Here, w = 10 is the maximum number of possible
weight values; no more features can be removed under the
criteria described in Section 3. The data sets Lat12 and Lat11
are analyzed up to w = 5 possible weight values; no more
features can be removed under the used criteria.

5 REsSuLTS

Fig. 1 shows the improvement of the extensive feature
weight search versus the feature subset approach proposed
by Shepperd and Schofield [2]. Each portfolio is analyzed at
all stages of the growing portfolio (s, = 5). The solid line
gives the improvement, i.e., the reduction, of MMRE in
percent at each stage. The dashed line gives the improve-
ment, i.e., the increase, of Predys. Finally, the dotted line
gives the improvement, i.e., the reduction, of Var,.

Fig. 1 also gives the number of possible weight values w
for each portfolio. It varies due to the different computa-
tional requirements of the various portfolios: Some portfo-
lios have more features, and some have more features that
can be removed.

Table 3 summarizes the same data and gives the average
improvements of the three estimation quality metrics
MMRE, Predys, and Var, over all intermediate stages of
a growing portfolio.

Fig. 2 shows the impact of different numbers of possible
weight values in the case of the Albrecht data set. The box
plots show the distributions of the improvements in all
intermediate stages of the growing portfolio, for two
(conventional approach, i.e., no improvement), three, five,
seven, and nine possible weight values, respectively.

Table 3 gives the improvement of the volatility measure
MFEWYV in percent. There are n — s,,;, + 1 MM RE values in
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Albrecht24 9 possible weight values Desharnais44 9 possible weight values
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3

Desharnais23 9 possible weight values Desharnais10 9 possible weight values
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8

Portfolio growth stage

Laturi10b 7 possible weight values
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—— — Pred25s

mmmmm= \/g

Improvement in %
8

Portfolio growth stage

Fig. 1. MMRE, Predss, and Var, improvement in percent for all data sets and portfolio growth stages.

a growing portfolio, but there is just one M FWYV value for To better illustrate the concept of weight volatility, Fig. 3
an entire growing portfolio, as it is derived from the shows how, in a growing portfolio, the higher number of
absolute changes of the MMRE-optimal weights at all possible weight values affects the weights’ volatility. It
intermediate stages. shows the values of the MM RE-optimal weights at each
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TABLE 3
Mean MM RE, Predy;, and Var, Improvement in Percent;
MFWYV Improvement in Percent

Data set MMRE | Predss | Var, | MFWV
Albrecht24 [18] 15 20 21 34
Desharnais44 [19] 12 11 20 43
Desharnais23 [19] 13 19 23 65
Desharnais10 [19] 21 20 30 18
Esa29 [3] 8 7 1 58
Esal3 [3] 3 4 9 29
Kemerer15 [20] 2 16 3 34
Laturil2 [3] 6 14 3 8
Laturill [3] 16 25 20 27
LaturilOa [3] 7 4 21 36
LaturilOb [3] 11 30 25 10

intermediate stage of the growing Desharnais23 portfolio
(read the diagram from right to left, as more projects are
being added to the initial portfolio). In this case, there are
seven features. The upper part shows the behavior of the
M M RE-optimal feature weights if only w = 2 weight values
are allowed (0 or 1); the lower part depicts the case of w =9
possible weight values.

6 DiscussIiON

Our proposed method extends Shepperd and Schofield’s
feature subset approach by searching for optimal feature
weights. The two approaches are compared using estima-
tion quality metrics on several real-world data sets. (Note:
to keep the tests independent of human judgment, outliers
are not removed from the data sets.) We found three main
results:

Accuracy and reliability is improved. Our approach
determines optimal feature weights by minimizing a
standard error metric, MMRE, at all stages of a
growing portfolio. Over these intermediate portfolio
stages, the MM RE is improved, i.e., reduced, by 2 to
21 percent on average for all analyzed data sets.

Optimizing a model with respect to one quality
metric may adversely affect other metrics. For
example, accuracy (measured by MMRE) may be
optimized at the expense of reliability (as measured
by Var,). Therefore, two other estimation quality
metrics—Predy; and Var,—are also analyzed.

The Predys-value oscillates in the growing portfo-
lios and, in some instances, performs worse. How-
ever, over all growing portfolios, the average
Predys-value is improved (see Fig. 1). The same
holds for Var,, a measure of estimation reliability.
Thus, on average, both accuracy and reliability are
improved in all tested data sets, as measured by
different metrics.

The average improvement depends on the initial
portfolio size. This is best illustrated by the Kemerer
data set. In the final stages of its growing portfolio,
the MMRE is improved by 10 percent or more.
However, since there is no improvement in the
initial stages of the growing portfolio, the average
MM RE improvement is just 2 percent.

Another factor to consider is the number of
possible weight values. For data sets with many
features, fewer weight values are used due to
computational constraints. Some high-dimensional
data sets, such as Laturil2, are analyzed with a
maximum of five possible weight values. Other sets,
such as Esa29, can be analyzed using up to
10 possible weight values. Fig. 2 shows how an
increasing number of weight values affects the
distribution of MM RE improvements in a growing
portfolio. While using more feature weight values is
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Fig. 2. Distributions of MM RE improvement over all growth stages of the Albrecht portfolio, for different number of possible weight values (the

traditional approach uses two values).
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Fig. 3. Weight values for the seven features in the growing Desharnais23 portfolio—two versus nine possible weight values.

better, the improvements typically level off after five
or seven possible weight values.

For high-dimensional data sets, the new algo-
rithm removes features that appear unimportant, in
order to make an increased number of weight values
computationally feasible (here, those features with a
weight value of 0 in at least 90 percent of portfolio
stages are removed). As stated before, the improve-
ments gained by increasing the number of weight
values levels off. As a result, the new approach
performs worse in some rare instances. One example
is Esa29 (Fig. 1), where the MMRE actually
deteriorates at portfolio stages n =7 and n = 8.
Volatility is improved. A measure for the average
changes of feature weights in the case of a growing
portfolio is M FWV. In all data sets, this measure is
reduced by 8 percent to 65 percent. Fig. 3 illustrates
this well: While the weights oscillate in a seemingly
random way in the case of two possible weight
values, the higher number of nine possible weight
values yields a more continuous behavior over the
lifetime of the growing portfolio. For example,

consider weight w;: For two possible weight values,
it changes five times from 0 to 1 or from 1 to 0
between the 8th and 16th project added; yet it stays
very stable during the same portfolio stages in case
of nine possible weight values.

This indicates that feature weights are related
directly to the estimation quality and are not just
arbitrary parameters determined during the opti-
mization procedure. We expect the less volatile
behavior of the feature weights over the portfolio
lifetime to inspire more confidence in the estima-
tion model, leading to greater acceptance by
practitioners.

The improvements depend on a data set’s characteristics,

such as the number of outliers and the number of features,
and in our case are around 10 percent if measured by
MMRE. These improvements also provide a limit to
analogy-based estimation quality:

Obtained estimates represent upper limits of analogy-
based estimation quality as measured by standard metrics.
Analogy-based cost estimation relies on several
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assumptions: Euclidean distance is used, most
similar projects determine the Estimate, and
MMRE is a reasonable quality metric. Under these
basic assumptions, the proposed approach yields
optimal feature weights—not even expert calibration
can determine weight values that result in better
quality metrics.

It is worthwhile to remember that in the real
world, formal methods such as the proposed
approach are just supporting tools for human
estimation. However, human estimation uses the
same data and applies a similar logic to the analogy-
based method—that of relating unknown outcomes
to known comparable experiences. Therefore, the
absolute performance of the proposed approach can
indicate whether human estimation is likely to
perform well in a given environment.

This approach can be refined in several ways,
especially when it comes to the handling of outliers.
However, at least the question of which feature
weight values to use can be answered in a formal
way that is both transparent and independent of
human judgment.

7 CoONCLUSION AND OUTLOOK

The method proposed in this paper uses extensive search to
find optimal project feature weights for analogy-based cost
estimation. In this approach, every feature has a distinct
influence on the search for similar projects in a historical
feature database. It eliminates the need for experts to set the
weights manually, based on their own experience. For high-
dimensional data sets, a simple procedure is proposed to
eliminate those features that are unlikely to influence the
estimation quality. The approach is tested on several real-
world portfolio data sets and compared to the feature
subset approach proposed by Shepperd and Schofield [2].

The new approach outperforms existing methods with
respect to commonly used estimation quality metrics. It
results in a less volatile and, thus, more acceptable,
behavior of the feature weights over the typical lifetime of
a growing portfolio. Also, the achieved estimation quality
represents an upper limit to estimation quality under the
typical assumptions of the analogy approach—even experts
can not allocate weights that yield better metrics. Although
model calibration is computationally expensive, this only
takes place when the historical feature database is updated
—at the critical time of estimation, estimates are obtained in
realtime.

Our future research will deal with outliers in portfolio
data sets by analyzing more industrial data. We especially
look forward to analyzing more recent project feature sets
from different application environments; a possible target is
the growing number of open-source projects with standar-
dized project measurement procedures. Furthermore, since
real-world application of the proposed method requires an
easy-to-access user interface, one goal is to provide a
spreadsheet plug-in to perform the model calibration
seamlessly. Another aim is to extend the approach to deal
with more fine-grained project feature sets, allowing for
clustering of project components.
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