
The Impact of Lessons-Learned Sessions on
Effort Estimation and Uncertainty Assessments

Magne Jørgensen and Tanja M. Gruschke

Abstract—Inaccurate estimates of software development effort is a frequently reported cause of IT-project failures. We report results

from a study that investigated the effect of introducing lessons-learned sessions on estimation accuracy and the assessment of

uncertainty. Twenty software professionals were randomly allocated to a Learning group or a Control group and instructed to estimate
and complete the same five development tasks. Those in the Learning group but not those in the Control group were instructed to

spend at least 30 minutes on identifying, analyzing, and summarizing their effort estimation and uncertainty assessment experience
after completing each task. We found that the estimation accuracy and the realism of the uncertainty assessment were not better in the

Learning group than in the Control group. A follow-up study with 83 software professionals was completed to better understand this
lack of improvement from lessons-learned sessions. The follow-up study found that receiving feedback about other software

professionals’ estimation performance led to more realistic uncertainty assessments than receiving the same feedback of one’s own
estimates. Lessons-learned sessions, not only in estimation contexts, have to be carefully designed to avoid wasting resources on

learning processes that stimulate rather than reduce learning biases.

Index Terms—Cost estimation, process implementation and change, review and evaluation, software psychology.

Ç

1 MOTIVATION

A recent questionnaire-based survey of more than
1,000 IT professionals [1] reports that two out of

the three most important causes of IT-project failure are
perceived to be related to poor effort estimation. This
perception is supported by empirical studies of software
development effort overruns and overconfidence. The
typical effort overrun seems to be about 30 percent [2]
and 90 percent confidence (or “almost sure”) that the
actual effort will be included in a minimum-maximum
effort interval typically corresponding to a 60-70 percent
interval hit rate [3]. Overconfidence in the accuracy of
effort estimates typically means that the project plan is
not reflecting the underlying uncertainties related to the
use of effort. Clearly, both software vendors and clients
would benefit from more accurate effort estimates and
more realistic assessments of the uncertainty of these
estimates. One possible way of achieving higher accuracy
and more realistic uncertainty assessments is to develop
and adopt better learning processes. One candidate for
improved learning is the use of individual lessons-
learned sessions, i.e., structured reviews of one’s own
estimation experience. The learning effect of such lessons-
learned sessions is the topic of this paper.

Judging by the number of scientific studies, it seems that
software engineering researchers believe that estimation
learning processes should focus on improving formal

estimation models. This has been the main approach to
learning and improvement among software researchers
since at least the 1960s [4]. This strong focus on the
improvement of formal estimation models can hardly be
defended by its success. Even the use of unstructured and
unsupported judgment-based effort estimation (“expert
estimation”) seems, on average, to yield effort estimates
that are just as accurate as those generated by the use of
sophisticated formal estimation models (see our review in
[5]). In addition, formal effort estimation models are not
much used by the software industry [6]. The use of the
Personal Software Process (PSP) [7] provides, in our
opinion, an illustration of the limitations of an estimation
learning process that is based mainly on the improvement
of formal effort estimation models. Independent studies
with control groups report a surprising lack of improve-
ment in estimation accuracy when applying the PSP process
[8], [9]. Note that, irrespective of these results, we believe
that the PSP is based on many sound learning principles
and may be useful for several purposes. The PSP and the
lessons-learned sessions that we introduce in our study
share many of the same learning principles, e.g., the
tracking and feedback of estimates and actual effort, the
tracking of estimation problems, and emphasis on reflec-
tions on how to avoid the problems in the future.

There has been much work on learning from experience
in software organizations, e.g., work on experience data-
bases [10], [11], [12], [13] and work on project experience
reviews [14], [15]. However, none of these studies report
results on how the use of different types of lessons-learned
processes improves judgment-based effort estimation and
few of them compare the learning effect with on-the-job
learning. The comparison with on-the-job learning is, we
believe, essential if we are to avoid attributing to the
introduced change in learning processes learning that
would have happened without it. Therefore, in our study,

368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

. M. Jørgensen is with the Simula Research Laboratory and the University of
Oslo, Statsråd Ihlensv. 14A, 2010 Strømmen, Norway.
E-mail: magnej@simula.no.

. T.M. Gruschke is with KnowIT Objectnet, Ruseløkkveien 14, 0251 Oslo,
Norway. E-mail: tanjagru@gmail.com.

Manuscript received 30 Apr. 2008; revised 10 Nov. 2008; accepted 10 Dec.
2008; published online 9 Jan. 2009.
Recommended for acceptance by A. Mockus.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-04-0164.
Digital Object Identifier no. 10.1109/TSE.2009.2.

0098-5589/09/$25.00 ! 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

we decided to compare the improvement in learning that
followed lessons-learned sessions with that of a control
group that represented on-the-job learning.

The study reported in [16] compares the accuracy of the
estimation of software development effort of those that
receive explicit feedback that compares the estimated and the
actual effort (feedback on outcome), with that of a nonfeed-
back group. The results from that study suggest that
estimators that received feedback on outcome produced
estimates that were no more accurate than those that did not
receive such feedback. Studies on human judgment from
other domains support this disappointing lack of improve-
ment in estimation accuracy as a result of feedback on
outcome; see, for example, [17], [18], [19]. The unsatisfactory
effect of feedback on outcome motivated us to emphasize
lessons-learned sessions, i.e., a process that includes more
analysis than examination of the outcome feedback alone.
The structure we imposed on these lessons-learned sessions
(see Section 2) is basedon the finding that informationonhow
different events and variables are related to effort overruns
are reported to be required for improved judgment accuracy
in several domains [17], [18], [19], [20].

Lessons-learned sessions should be designed to solve
problems pertaining to learning from experience that are
typically part of on-the-job learning, such as those reported
in [21]:

. High time pressure. The next task should be started
as soon as possible.

. Low reflection on mistakes.

. Lack of objective feedback.

. Lack of knowledge about how to summarize lessons
learned.

. Perception of the task as unique and not relevant to
learn from.

The lessons-learned sessions we introduce in Section 2
address at least three of these problems. They remove the
high time pressure, force the software professionals to
reflect on mistakes, and provide some relevant objective
feedback. It is, however, possible that the two remaining
problems, i.e., the lack of knowledge about how to
summarize lessons learned and the perception of the task
as unique and not relevant to learn from, are not addressed
sufficiently. If these two problems are essential to achieving
positive effect from lessons-learned sessions, if there is
insufficient objective feedback, or if there are other learning
problems that are not addressed by lessons-learned ses-
sions, we may observe no or even negative learning from
our lessons-learned sessions.

The remainder of this paper is organized as follows:
Section 2 describes the design of the study, including the
format of the lessons-learned sessions. Section 3 describes
the results of the study. Section 4 discusses limitations of
the study and tries to explain the findings. That section
includes a description of a follow-up study that was
intended to shed more light on the findings. Section 5
concludes.

2 DESIGN

2.1 Main Research Question

The main research question addressed in this study is the
following:

To what extent do lessons-learned sessions (of the type imple-
mented in this study) lead to improved accuracy of effort
estimation and improved realism of uncertainty assessment in
comparison to on-the-job learning?

2.2 Structure of Lessons-Learned Sessions

The lessons-learned sessions evaluated in this study contain
the following elements, provided immediately after the
completion of each development task:

. Feedback on the estimated effort, the actual effort,
and the estimation error of the task just completed.

. Feedback on the realism of the uncertainty
assessments.

. Feedback on the mean estimation error of all
preceding tasks.

. A required 30-minute learning session in which the
following information should be provided by the
software professional:

- Perceived reasons for good/poor estimation
performance.

- Perceived realism of confidence in estimation
accuracy.

- Perceived reasons for realism/lack of realism of
confidence in estimation accuracy.

- Suggested lessons learned that are relevant for
estimation and uncertainty assessment.

- Suggestions on how the lessons learned should
affect the estimation and uncertainty assessment
of future task(s).

The feedback about the estimation performance and the
format of the lessons-learned session is illustrated in Fig. 1.
The fields on the left side of the vertical bar in Fig. 1 contain
the feedback collected by the study-responsible researcher
and given to the developer, i.e., the feedback about the
estimated effort, the actual effort, the estimation error, the
assessed likelihood of including the actual effort in different
interval, the actual inclusion in the same intervals, and the
mean estimation error of all previously completed tasks. No
other feedback or performance information was given, but
the developers themselves were, of course, free to collect all
types of information. The fields on the right side of the
vertical bar in Fig. 1 contain the analysis and lessons
learned as provided by the developer. The questions on the
right side, to be completed in sequence, provide the
structure of the lessons-learned session. The feedback and
lessons-learned-related information of all previous tasks
was included in the same spreadsheet and easily accessible.

Notice that our lessons-learned session raises the same
type of questions as in common industrial project review
meetings. The postmortem reviews at Microsoft, for
example, raise the questions: “What worked well in the
last project, what went wrong, and what should the group
do to improve in the next project?” [22]. An essential
difference from many other types of project reviews is that
we focus solely on individual learning in our study, while

JØRGENSEN AND GRUSCHKE: THE IMPACT OF LESSONS-LEARNED SESSIONS ON EFFORT ESTIMATION AND UNCERTAINTY... 369

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

most other project reviews focus on individual learning,
group-based learning, and experience sharing. Our focus on
individual learning is similar to that of the PSP.

It can be argued that reflecting on and learning from
one’s own work is the basis of many learning processes. If
individual learning is not present, there is frequently not
much experience of value to share either. However, the
focus on individual learning in this study also means that
the potential improvement in estimation accuracy that may
result from group-based learning and experience sharing in
lessons-learned sessions is not evaluated.

2.3 Measures

The measures used to evaluate estimation accuracy are the
following:

Magnitude of Relative Error ¼ MRE ¼ jactual effort"
estimated effortj=actual effort

Relative Error ¼ RE ¼ ðactual effort" estimated effortÞ=
actual effort:

The median MRE is our main measure of estimation
accuracy. The lower the median MRE, the better is the
estimation accuracy. We use the median RE as our main
measure of estimation bias. A positive median RE indicates
a tendency toward overoptimism, a negative median RE a
tendency toward overpessimism, and an RE close to zero
unbiased estimates. From previous experience, we expected
that there would be a few MRE and RE-values (outliers)
with a strong impact on the mean MRE and mean RE, i.e.,
that the mean MRE and RE would be misleading as the
central value of a set of observations. That motivates our
use of the more outlier-robust median MRE and RE.

The MRE and RE have their limitations and a lot of
alternative accuracy measures have been proposed. For an
overview and discussion, see [23]. We tested different
variants of these accuracy measures on the data collected in

this study, e.g., more symmetric accuracy measures, but
found that they did not change the main results. We,
therefore, decided to use the measures that are best known
by the software engineering community, i.e., MRE and RE.

We measure the assessed uncertainty of an effort
estimate by means of an effort prediction interval. An effort
prediction interval is the combination of a stated confidence
level (CL) and an effort minimum-maximum interval (EI).
For example, a software developer may estimate that the
most likely effort of a development task is 300 work-hours
and it is 80 percent probable that the actual effort will be
between 50 percent (150 work-hours) and 200 percent
(600 work-hours) of the estimated most likely effort. Then,
the minimum-maximum interval [150; 600] work-hours is
the 80 percent confidence, prediction interval of the
developer’s effort estimate of 300 work-hours. In order to
ease the analysis in our study, we standardized on the
following three effort minimum-maximum intervals:

EI-1 ¼ ½90% & estimated effort; 110% & estimated effort'
EI-2 ¼ ½60% & estimated effort; 150% & estimated effort'
EI-3 ¼ ½50% & estimated effort; 200% & estimated effort':

These three effort minimum-maximum intervals were
selected to reflect what we believed were typical narrow,
medium-wide, and wide minimum-maximum effort inter-
vals. For each task, we asked the developers to assess how
confident he was, i.e., how probable he thought it was that
the actual effort would fall inside each of these three
minimum-maximum intervals. If, as in the previous
example, a software developer estimated that the most
likely effort was 300 work-hours, he would be asked to
provide the (subjective) probabilities that the actual effort
would fall inside the intervals [270; 330] work-hours
(E1-1), [180; 450] work-hours (EI-2), and [150; 600] work-
hours (EI-3). The developer may, for example, believe that

370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Fig. 1. The feedback and the lessons-learned session format.

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

it is 50 percent probable that the actual effort will be
inside EI-1, 70 percent probable that it will be inside EI-2,
and 95 percent probable that it will be inside EI-3. The CL
of EI-1 is consequently 50 percent, the CL of EL-2 is
70 percent, and the CL of EL-3 is 95 percent.

The frequency of including the actual effort in an effort
minimum-maximum interval is termed the “hit rate.” In
the long run, i.e., when estimating and assessing the
uncertainty of many tasks, a developer who has realistic
uncertainty assessments will have a mean confidence level
that is similar to his hit rate. If his mean confidence level
is higher than his hit rate, we describe the developer’s
uncertainty assessments as overconfident. If it is lower
than the hit rate, we describe the developer’s uncertainty
assessments as underconfident. In earlier studies, e.g.,
[3], we have documented a strong tendency toward
overconfidence in the accuracy of the effort estimates.

We measure the level of overconfidence of an effort
minimum-maximum interval, e.g., EI-1, and a set of tasks as
follows:

OverConfidence ¼
ðmean confidence level" }hit rate}Þ=}hit rate}:

An OverConfidence value close to zero indicates that the
uncertainty assessments, on average, are realistic, a negative
value that they are underconfident, and a positive value
that they are overconfident. Assume, for example, that a
developer has provided the confidence levels (subjective
probabilities) 80, 60, 90, 90, and 80 percent related to the
E1-1 effort interval, for the estimates of the tasks T1 . . . T5,
respectively. The mean confidence level of the developer’s
estimates related to E1-1 and T1 . . . T5 is then (80 percent +
60 percent þ 90 percent + 90 percent + 80 percent)/5 =
80 percent. If the developer’s uncertainty assessments are
realistic, we would expect a hit rate of 80 percent, i.e., that
four out of the five estimates lay inside the E1-1 minimum-
maximum effort intervals. If the EI-1 minimum-maximum
effort intervals, for example, included only one out of the
five actual effort values, i.e., if we observed a hit rate of only
20 percent, his level of overconfidence would be (80 percent
" 20 percent)/20 percent = 3.0 and would suggest a high
level of overconfidence in the accuracy of his estimates.
Notice that our measure of overconfidence may not work
well as an indicator of overconfidence for as small a set of
tasks as in the above example. Consequently, we will only
use this measure as an indicator of differences in levels of
confidence between groups that include the uncertainty
assessments of larger sets of tasks.

The definedmeasure of overconfidence indicates only the
ability of developers to assess the mean level of estimation
uncertainty of a set of tasks. Also, relevant is the ability to
distinguish between high and low uncertainty effort esti-
mates in a set of tasks. For example, it is possible that the
developers are strongly overconfident about the uncertainty
of their effort estimates but are nevertheless able to
distinguish between high and low uncertainty effort esti-
mates. To assess the ability to distinguish between high and
low uncertainty effort estimates, we apply the rank order
correlation (Spearman rank order correlation) between

confidence level and the estimation accuracy (MRE) for a
minimum-maximum interval, e.g., EI-1, and a set of tasks:

CorrConfAcc ¼ rank order correlation between confidence

level and MRE:

This measure uses the level of confidence as the
uncertainty of an estimate as perceived by the software
professional and the MRE-value as a substitute of the actual
uncertainty of the effort estimate, i.e., the measure is based
on the reasonable assumption that the higher the actual
uncertainty of an effort estimate, the higher the typical
estimation error will be. If a developer is able to rank his
estimates in relation to the degree of uncertainty perfectly,
we would expect a correlation of "1. Positive or low
correlations would suggest that for the evaluated set of
tasks, the developer is not good at separating effort
estimates with high and low uncertainty.

2.4 Research Hypotheses

We designed the study to test the following four
hypotheses.

Hypothesis 1. Lessons-learned sessions improve estimation
accuracy in comparison with on-the-job learning (lower
median MRE).

Hypothesis 2. Lessons-learned sessions reduce estimation bias in
comparison with on-the-job learning (median RE closer to 0).

Hypothesis 3. Lessons-learned sessions improve the realism of
uncertainty estimation in comparison with on-the-job learning
(OverConfidence closer to 0).

Hypothesis 4. Lessons-learned sessions improve the ability to
separate low and high uncertainty estimates in comparison
with on-the-job learning (CorrConfAcc closer to "1).

2.5 The Research Design

2.5.1 Subjects
The subjects were recruited via a request for consultants
that was sent to Norwegian consulting companies. The
request specified a flexible range of time for which the
consultants would be needed, along with the required
education and expertise. Companies replied with curricula
vitae of potential candidates and these were then screened
to verify that they complied with the requirements. The
subjects were required to at least have a Bachelor’s
degree in informatics (or equivalent) and familiarity with
the technology (UML, Struts, JSP, Java, HTML, the Eclipse
IDE, and MySQL) of the system on which they were
supposed to complete development tasks.

In total, 20 software professionals (all male) were
selected. The software professionals were paid close to
ordinary fees for their work and asked to treat the
development work as ordinary consultancy work. The
software professionals did not know that developers other
than themselves were asked to complete the tasks. The
decision to include 20 software developers was mainly a
practical, budget-related decision. It was also based on the
belief that when studying learning processes, it would be
better to let few developers complete more tasks than more
developers fewer tasks.

JØRGENSEN AND GRUSCHKE: THE IMPACT OF LESSONS-LEARNED SESSIONS ON EFFORT ESTIMATION AND UNCERTAINTY... 371

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

2.5.2 Tasks

The experiment was conducted on the BESTweb system [4].
The BESTweb system is a Web-based system developed in
Java using the Struts framework. The system supports the
research on software cost and effort estimation through a
database front-end client that gives access to information
about journal and conference papers on software effort
estimation. An essential part of the system’s functionality is
the identification of relevant papers through the use of
categories related to, for example, type of estimation
methods. As an illustration of the size of the software, the
BESTweb software consists of about 50 classes and 3,000 lines
of Java code. The BESTweb system can be accessed at
www.simula.no/BESTweb.

All software professionals were instructed to estimate
and complete the same five tasks in the same sequence. A
brief description of the development tasks is given below.

. Task 1: Requires the addition of functionality to save
a user’s search query to persistent memory. In
addition, the user’s last search query must be
displayed and reexecuted automatically when they
next log on to the system.

. Task 2: Requires that the system be extended to
handle an additional piece of data from an input file
(in XML format) used to update the publications in
the BESTweb system. The system already partially
handles the data: If it encounters the presence of the
data in the file, it warns the user that data are not
supported. The developer is asked to add support
for this data by extending the domain model, the
GUI, and the search functionality.

. Task 3: Requires the developer to add functionality
to the system that extends the manner in which cost
and effort estimation metadata associated with each
publication are dealt with, specifically, the ability to
add publication categories and corresponding codes.

. Task 4: Requires the developer to add caching logic
to the system so that if statistics for all the
publications in the system are requested, the cached
results are used (so as to decrease the computational
load on the system).

. Task 5: The developers are asked to add function-
ality such that the users could delete existing
publication codes from the system.

2.5.3 Experiment Process

The software professionals were allocated randomly, by the
toss of a coin, to the Control or Learning group. The groups
were the same size, 10 software professionals in each group.
Each software professional was instructed to:

1. Read the description of the work process to be
followed.

2. Complete an initial questionnaire that captured
professional background and experience.

FOR i ¼ 1 TO 5 BEGIN

3. Read the specification of Task i.
4. Estimate themost likely effort needed to complete the

specified task and assess the perceived uncertainty of

that effort estimate, i.e., the subjective probabilities
(confidence levels) of including the actual effort in the
minimum-maximum intervals EI-1, EI-2, and EI-3.

5. Describe, in brief, the strategy used for the estima-
tion and the assessment of uncertainty.

6. Complete Task i (design, program, test, and
document).

7. Upon completion of the task, send in the task for
acceptance testing, based on a predefined system
acceptance test plan:

a. If the test fails, fix the problem to submit the
solution again (GOTO Step 6).

b. If the test passes and the software professional
belongs to the Learning group, receive the
feedback on estimation accuracy and spend
about 30 minutes in a lessons-learned session,
i.e., filling out the fields on the right side of the
vertical bar, as illustrated in Fig. 1.

c. If the test passes and the software professional
belongs to the Control group, then proceed.

END /* for-loop */

8. Participate in a study debriefing session, where the
purpose of the experiment was explained and the
researchers tape-recorded responses to questions
about estimation strategies and learning processes
used.

The Control group process is meant to represents on-the-
job learning, i.e., a process where no explicit steps are taken
to increase learning. On-the-job learning is not a well-
defined process and includes all types of processes where
no explicit learning steps are taken. We expect, for example,
that the developers use quite different learning processes
during their estimation and programming work (the “on-
the-job” part) in our study.

3 RESULTS

3.1 Analysis of the Comparability of the Groups

A random allocation of as few as 20 subjects into two
groups of the same size does not guarantee that the groups
are similar with respect to estimation-relevant background
and skill. Fortunately, we observed no essential differences,
as illustrated in Table 1.

Table 2 extends the analysis of potential differences
between the groups by comparing the performance on
Task 1, i.e., the performance before the first exposure to the
lessons-learned session.

It seems to be safe to claim, on the basis of Table 2, that
both the effort and quality indicators of Task 1 were similar,
which indicate that there were no large differences in
programming skill. The higher mean MRE of the Control
group is mainly due to one outlier, and the small difference
in median values is probably more representative for the
difference in estimation accuracy between the two groups.

A comparison of the uncertainty assessment-related
values for IE-1, IE-2, and IE-3 for Task 1 (see Table 3),
shows that there were no large difference here, either.

An informal analysis of the described strategies for
estimating and assessing uncertainty (Step 5 of the

372 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

JØRGENSEN AND GRUSCHKE: THE IMPACT OF LESSONS-LEARNED SESSIONS ON EFFORT ESTIMATION AND UNCERTAINTY... 373

TABLE 1
Comparison of the Subjects’ Backgrounds

TABLE 2
Group Comparison for Task 1: Effort, Quality, Estimation Accuracy, and Bias

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

experiment process) used for Task 1 showed no essential
differences. All of the developers relied on expert
judgment supported by a separation of the task into
subactivities, i.e., a bottom-up strategy. The processes
used to assess uncertainty were poorly described and
difficult to evaluate. This may indicate that the software
professionals had no explicit strategy for uncertainty
assessments, i.e., that the process was based more or less
on expert judgment.

We also analyzed the information about the estimation
processes and the reasons for accurate/inaccurate effort
estimates on Task 1 with regard to references to similar
tasks completed earlier. If, for example, some of the
developers had conducted very similar tasks immediately
before, difference learning progress may be expected. We
found no such differences based on the estimation strategy
descriptions provided for Task 1. None of the developers
knew the software application before, but all had extensive
experience with the technology applied.

In total, we find no essential differences between
the Learning and the Control group harmful for our
analysis purpose.

3.2 Estimation Accuracy and Bias

3.2.1 Hypothesis 1

Our first hypothesis states that the Learning group will
improve the accuracy of their estimates more than the
Control group, which will be indicated by the median MRE
of the estimates being lower for Tasks 2-5 (the tasks following
the first lessons-learned session). Fig. 2 shows that this was
hardly the case. The median MREs of the Learning and the
Control group across Tasks 2-5 are about the same (0.50 vs.
0.49). A Kruskal-Wallis test on difference in median MRE of
the two groups for Tasks 2-5 gives p ¼ 0:88.

Fig. 2 suggests that the MRE decreases over time for both
groups, with the exception of Task 1, which may be easier
than the other tasks. The actual estimation accuracy
improvement is hard to evaluate properly without adjust-
ing for the complexity of the tasks and is not the main topic
of this study. In the absence of a proper control group, as is
the case in typical field settings and poorly designed
experiments, any observed improvement in MRE may
falsely have been credited to the lessons-learned sessions.

This supports our emphasis on introducing proper control
groups in effect studies of this type. Notice also that a
control group, as we use it here, enables much stronger
cause-effect analyses than the introduction of a so-called
baseline typically recommended for field studies (see, for
example, [7]). While baseline data are typically collected
before the process change takes place, our control group
assumes a random allocation of process change and the
parallel use of old and new processes. This means that any
improvement that is measured in comparison to the
baseline data must be able to isolate the effect of
the process change from all other changes that took place
in the relevant period. In our experience, this is a very
difficult analysis with many challenges.

As can be seen in Fig. 2, the variation of MRE is not
systematically lower in the Learning group. This result
differs from the findings reported in [9], where the use of the
Personal Software Process on students did lead to lower
variance in estimation error (although not lower mean
estimation error). This difference in results from those
reported in [9] may have been caused by the use of formal
effort estimation models when applying the Personal Soft-
ware Process, as opposed to the use of judgment-based effort
estimation process that was the case in our study. As pointed
out in our review comparing models and expert judgment
(see [5]), estimation models sometimes reduce the number of
very large estimation errors and, consequently, the variance
in estimation error. An increased level of consistency is also
expected from the use of formal estimation models.

3.2.2 Hypothesis 2

Our second hypothesis states that the Learning group’s
estimates would be less biased, which would be indicated
by the RE of the estimates provided by those in the
Learning group being closer to zero than those in the
Control group for Tasks 2-5. Fig. 3 shows that this was not
the case. The total median RE of the Learning and the
Control group turned out to be almost the same ("0:01
versus 0.00), which shows that the median effort estimate
was unbiased in both groups. Unbiased effort estimates are
not untypical when the tasks to be performed are small and
payment is made on a per work-hour basis [6], as was the

374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

TABLE 3
Group Comparison for Task 1: Uncertainty Assessment

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

case in our study. A Kruskal-Wallis test on difference in
median RE of the two groups for Tasks 2-5 gives p ¼ 1:0.

Notice the zigzag pattern of the RE in Fig. 3. This pattern
suggests that overoptimism on one task (e.g., Tasks 1) is
easily followed by overpessimism on the next task (e.g.,
Tasks 2). If this suggestion is correct, it may be that there is a
tendency to overreact to the experience of the task
immediately before the one to be estimated.

3.3 Uncertainty Assessment

3.3.1 Hypothesis 3

Our third hypothesis states that the Learning group would
improve the realism in their uncertainty assessment, which

would be indicated by the OverConfidence of those in the
Learning group being closer to zero than that of the Control
group. We considered the number of observations to be too
low for meaningful use of the OverConfidence measure on
individual tasks; see the discussion in Section 2.3. That
being so, the values presented are based on the distribution
of OverConfidence of the developers on the combined set of
Tasks 2-5.

Fig. 4 illustrates that the Learning group did not make
more realistic uncertainty assessments than the Control
group. Both groups were strongly overconfident. A
Kruskal-Wallis test of difference in median OverConfi-
dence values for IE-1, IE-2, and IE-3 gives p ¼ 0:6, p ¼ 0:1,

JØRGENSEN AND GRUSCHKE: THE IMPACT OF LESSONS-LEARNED SESSIONS ON EFFORT ESTIMATION AND UNCERTAINTY... 375

Fig. 2. Box plot of MRE (all tasks included).

Fig. 3. Box plot of RE (all tasks included).

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

and p ¼ 0:9, respectively. In other words, the only
difference in overconfidence between the groups with a
low p-value, i.e., IE-2, is in favor of the Control group. If
anything, the lessons-learned sessions seem to have
resulted in an increase, rather than reduction, in the level
of the participants’ overconfidence in the accuracy of
their estimates.

3.3.2 Hypothesis 4

Our fourth hypothesis states that the Learning group would
be better able to separate low and high uncertainty
estimates than the Control group, i.e., that those in the
Learning group would be better than those in the Control
group to provide low confidence levels when the estimation
error (MRE) was high. We measure this ability through the
Spearman rank-order correlation for each developer and
each type of minimum-maximum interval (CorrConfAcc),
i.e., three correlations per developer. The first relative
uncertainty evaluation is on Task 2, where the confidence in
the accuracy of Task 2 is compared with the confidence in
the accuracy of Task 1. Given that the first relative

uncertainty assessment is on Task 2 but involves Task 1,
we include all five tasks in the rank-order correlation
analysis. The presented median correlation of each group’s
minimum-maximum interval, e.g., the EI-1 interval, is
consequently based on 10 individual correlation coeffi-
cients. The motivation and explanation of the CorrConfAcc
measure are described in Section 2.3.

Descriptive statistics for the rank-order correlations are
displayed in Table 4. We ranked the MRE and confidence
values so that the highest values get the highest ranks. This
means, as described earlier, that we should expect strong
negative correlations if the developers are good at separat-
ing high and low uncertainty tasks, i.e., when a high
confidence in the accuracy of an estimate correlates with a
low estimation error (MRE). A perfect correlation between
confidence and estimation error gives the value "1.

An analysis of the median values suggests that the
Learning group is somewhat worse than the Control
group for EI-1 and EI-3, but better for EI-2. However, the
general conclusion is that the software professionals,
regardless of group, were, in general, not very good at
separating high and low uncertainty effort estimates. If

376 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

TABLE 4
Rank-Order Correlation between Confidence and MRE

Fig. 4. Box plots of overconfidence (Tasks 2-5).

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

anything, the Control group participants were slightly
better. The ability to separate high and low uncertainty
effort estimates depends on the similarity of the tasks [3],
i.e., it is easier to separate low from high uncertainty
estimates when the differences in uncertainty are larger.
This means that our study does not exclude that the
software professionals would perform better in other
contexts. What we can claim based on the data in Table 4
is mainly that the lessons-learned session did not lead to
improvement in the low ability to separate high and low
uncertainty tasks in the studied context with five tasks
completed on the same system.

4 DISCUSSION

Our results show that the introduced lessons-learned
session did not improve the learning in comparison with
on-the-job learning. While our study may be the first on
lessons-learned-based improvement of judgment-based
effort estimation and uncertainty assessment, there are
several other studies that report a similar lack of positive
effects from lessons-learned sessions in other software
project contexts, e.g., [24], [25], [26], and other project
domain contexts, e.g., [27]. Shortcomings of software
professionals’ analyses of reasons for errors of estimation,
such as the tendency to neglect indirect and contributing
reasons and the tendency toward a biased attribution of
causes (such as the tendency to claim that success factors
are controlled by oneself, while failures are due to external
events [28]), may contribute to this lack of learning from
lessons-learned sessions.

Our results and those of previous studies on the use of
lessons-learned sessions should, of course, not be used to
claim that lessons-learned sessions will never result in
improved estimation accuracy or more realistic assessment
of uncertainty. There are many ways of designing lessons-
learned sessions. It may well be that imposing other
learning structures, other types of feedback, better training
in advance of the lessons-learned sessions, or other
measures, will yield different results. To understand how
to improve lessons-learned sessions and other learning
processes, it may be useful to look at possible reasons for
the observed lack of improved learning from the lessons-
learned session in our study. After all, to give up on
learning from previous experience of estimation is not an
attractive option.

To structure this discussion, we will analyze the
following three types of possible reasons for the observed
lack of improved learning:

. Limitation of the chosen study design (Section 4.1).

. Limitations of the lessons-learned process studied
(Section 4.2).

. Observed problems related to learning from experi-
ence of the estimation of software development
effort and the assessment of uncertainty (Section 4.3).

Wewill apply the qualitative data thatwe collected as part
of our study to support this analysis. We collected this data
(see description in Section 2) immediately after each estimate
(where all the software professionals described their estima-
tion processes) and as a part of the lessons-learned sessions
(where the software professionals in the Learning group

summarized their reasons for estimation errors and what
they had learned). In addition, we will describe and apply
the results from a follow-up experiment. In this experiment,
other software professionals were asked to assess the
uncertainty of the estimates provided in the main study.
The purpose of the experimentwas to examinewhether there
is a difference in realism between assessing the accuracy of
one’s own estimates and those of others, whichwould enable
us to determinewhether some of the observed problemswith
learning were due to the learning from one’s own estimation
performance as opposed to that of others.

4.1 Limitations of the Study Design

We assess that the major limitations of our study design are
as follows:

. Individual learning. The software developers
worked and learned individually, not as part of a
development team. For example, two of the devel-
opers remarked in the debriefing session that in an
ordinary work context they would have asked for
some support by a colleague on at least one of the
estimation tasks. Instead, they had to spend time to
figure out the problem by themselves. This means
that our results may mainly be representative for
individual estimation learning and working, not so
much for team learning. However, as argued earlier
in this paper, individual learning is an essential
component of group learning and, consequently, of
relevance too.

. Pseudorealistic context. The software professionals
were paid close to their ordinary fees, instructed to
behave as close to normal as possible, and did not
know that several others were completing the same
tasks. However, the extensive logging (data about
themselves, estimation strategy used, detailed time
logging, etc.), the lessons-learned sessions (for the
Learning group), and the fact that we as researchers
were the clients meant that the situation was hardly
perceived to be the same as in ordinary software
development work. The software professionals ex-
pressed different opinions about the effect of the
unusual process elements in the debriefing session.
Our main impression from observing the work and
analyzing the debriefing interviews is that, in spite
of the unusual process elements, the estimation and
programming work had the same challenges as
ordinary programming work and, hence, the differ-
ences from ordinary work situations had only small,
if any, effect on the learning processes. By observing
the developers and talking with them in the debrief-
ing sessions, we found no indications of low
motivation or that they found the system or the
tasks artificial.

. Representativeness. The high cost of hiring software
professionals placed restrictions on the number of
tasks that we could assign and the number of
subjects that we could use. This means that we
should be careful when extrapolating the results to
tasks and situations that are different from those we
have studied.

JØRGENSEN AND GRUSCHKE: THE IMPACT OF LESSONS-LEARNED SESSIONS ON EFFORT ESTIMATION AND UNCERTAINTY... 377

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

Notice that many of the unusual process elements of the
study, e.g., the requirement to write down the lessons
learned, may have led to a stronger focus on learning than
in typical field situations. Thus, we find it difficult to see
how individual, lessons-learned session-based learning
would lead to improvements in typical field situations
similar to the one we studied if it did not succeed here. Of
course, this belief assumes that the software professionals
were motivated to learn. We find that this assumption is
likely to be true, judging from our observation of their
behavior and the documents that were produced in the
lessons-learned sessions. As an illustration, the software
professionals wrote, on average, about 1,000 words each
when describing lessons learned (about 200 words per
lessons-learned session). The amount of lessons-learned
work was impressive. It was also of good quality (more on
this in the next section). Consequently, despite the limita-
tions of the study, we interpret the findings of the study as
describing a situation in which those in the Learning group
really tried to use the learning sessions to learn, but
nevertheless did not improve effort estimation accuracy
more than the Control group, and were at least as
overconfident in the accuracy of their effort estimates.

4.2 Limitations of the Learning Process

To examine what actually took place in the lessons-learned
session, we examined the provided:

. reasons for good/poor estimation performance and
uncertainty assessment (Section 4.2.1) and

. lessons learned relevant for estimation and uncer-
tainty assessment and how the lessons learned may
affect the estimation and uncertainty assessment of
future tasks (Section 4.2.2).

4.2.1 Reasons for Accuracy/Inaccurate Estimates and
Realistic/Unrealistic Uncertainty Assessments

The reasons described by the developers were as expected
from previous studies on this topic; see [28] for an overview
of typically provided reasons. The most common responses
related to reasons for inaccurate estimates in the current
study were:

. Spent too little time on effort estimation and
uncertainty assessment work.

. Too little knowledge about the problem or the
technology.

. Unexpected events or problems.

. Forgotten/strongly underestimated activities (such
as documentation).

. Fewer and less severe problems than expected (led
to overestimation).

. More complex task than expected.

. Task specification unclear or misunderstood the
specification.

. Error corrections needed.

. Poor impact analysis of consequences of code
changes.

. Design errors made.

. Incorrect assumptions about the code.

Typical responses related to reasons for accurate estimates
were:

. Good impact analysis of consequences of code
changes.

. Task similar to the one previously completed (on the
same system).

. Good understanding.

. Luck.

. Simple task and no problems.

When we asked for reasons for realistic/unrealistic
uncertainty assessments, we expected to be provided with
reasons that were directly related to the uncertainty, such
as insufficient risk analysis and lack of learning from the
actual uncertainty of the previous effort estimates. Instead
of these types of reason, the reasons for realistic/
unrealistic uncertainty assessments provided by the devel-
opers were, almost without exception, related to the
accuracy/inaccuracy of the effort estimate. This suggests
that they believed that the dominant means to improve the
realism of the uncertainty assessment was to improve
estimation accuracy. The alternative, which would have
been to change their level of confidence in the effort
estimates, was hardly considered. An analysis of the
confidence levels supports this suggestion. The analysis
indicated that the software professionals changed their
levels of confidence only a little in response to feedback
about the accuracy of their previous estimate. If this
observed uncertainty assessment improvement strategy is
typical for software professionals, this may severely hinder
learning. More studies should be conducted to examine the
robustness of this finding and, if the improvement strategy
is common among software professionals, how to change it
to more appropriate strategies.

4.2.2 Lessons Learned

The main lessons learned related to estimation accuracy
provided by those in the Learning group were the following:

. Spend more time on estimation work (including a
more detailed impact analysis).

. Add more time for unknown events.

. Add more time for debugging, testing, and error
correction.

. Add more time for documentation.

. Assess more carefully the ripple effects of a change.

. Add more time when the task involves changes at
many different places in the code (“distributed”
task).

. Read the requirement specification and system
documentation more carefully and check the as-
sumptions made.

. Pay special attention to the parts where the knowl-
edge and experience is low.

. Trust one’s instincts more.

. Expect unexpected problems.

. Control the use of effort better (do not do more than
that which is required by the task specification).

All of these lessons learned were reasonable and have
the potential to improve estimation accuracy. In that sense,
our lessons-learned session process was a success in

378 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

relation to the estimation of the most likely effort. The same
cannot be said in relation to the lessons learned regarding
the assessment of uncertainty. In spite of a direct instruction
to summarize the lessons learned that were related to
uncertainty assessment, we found, as noted in Section 4.2.1,
no lessons learned that could be interpreted as practical
changes in the process of assessing uncertainty.

We find it especially strange that the software profes-
sionals did not update their levels of confidence in response
to feedback strongly suggesting overconfidence. Consider
the following example: One software developer had as-
sessed the probability of including the actual effort in the
minimum-maximum interval IE-1 ([90 percent of estimate;
110 percent of estimate] to be about 50 percent of all of the
first three tasks. The developer then received feedback that
told him that none of the IE-1 intervals had included the
actual effort. A proper lesson learned would then be for him
to admit that he had a tendency toward overconfidence and
he had to be less confident that he would to include the
actual effort in IE-1 of future estimates. Instead, we observed
that he typically responded with no or only a small
adjustment and a strong emphasis on what he needed to
do to achieve more accurate effort estimates. We discuss
possible reasons for this unwillingness to update confidence
levels in spite of accurate, relevant, and timely data on
estimation error in [29], [30]. Possible reasons include: 1) The
software professionals do not have proper, probabilistic
mental models to enable proper learning and 2) there is a
conflict between the developers’ self-images of being
predictable and skilled developers and providing realistic
uncertainty assessments that suggest the opposite (the so-
called “cognitive dissonance” effect). We discuss these two
reasons in more detail in Section 4.3.

Given the intuitively meaningful lessons learned that
were provided by the developers in relation to the
estimation of most likely effort, why did the accuracy of
their estimates not get better than that of the estimates of
those in the Control group? Possible reasons for this include:

1. the software developers did not translate the
identified lessons learned into practical actions;

2. the Control group developers learned as much as
those in the Learning group without the lessons-
learned session (the actual progress in learning, if
any, is hard to evaluate due to the difference in
complexity of the five tasks, but there may have been
an improvement in estimation accuracy in both
groups; see our discussion in Section 3.2.1);

3. there were negative consequences of the lessons
learned that canceled out the positive ones; or

4. the lessons-learned sessions led the Learning group
developers to believe that they had learned more
than they actually had.

It is not easy to assess the importance of these possible
reasons in isolation. The estimation strategy descriptions
provided by the software professionals did not contain as
much valuable information about the practical use of the
lessons learned in the estimation work as we had hoped for.
Nevertheless, it was clear that at least a few of the software
professionals actually applied the lessons learned. As an
illustration, when a developer stated that he needed to

spend more time on the effort estimation work, we
observed that he typically did so.

We counted the number of references to previous
experience in the software professionals’ description of
the processes that they used for estimating and assessing
uncertainty (Step 5 in the experiment process) and found no
large differences in the number and/or types of references.
This similarity in the amount of use of experience, together
with the observed similarity in the improvement in the
estimates of the Control and the Learning group, does
provide some support for reason 2 above. Those in the
Control group seemed to learn quite a lot from experience
without spending time on lessons-learned sessions.

We also found some evidence in support of reason 3,
namely, that the software professionals in the Learning
group may have overreacted more strongly to the
experience of the previous task. While the median absolute
difference in RE between two tasks for those in the Control
group was 0.6, the corresponding value of these in the
Learning group was 0.8. A high difference in median RE
is, for example, a result of going from strong under-
estimation to a strong overestimation of effort. This
observation provides (weak) support that lessons learned
may lead not only to positive effects, but also to stronger
overreactions to previous experience. More studies are
needed to examine whether this is true and, if so, the
extent to which this is a typical effect of lessons-learned
sessions or an effect that is caused by the particular context
in our study. As reported in Section 1, however, our study
is not the only one to observe possible negative effects of
lessons-learned sessions. An important message, sup-
ported by our results, is, consequently, that meant-to-be-
constructive learning processes may have negative con-
sequences if not designed carefully. Preferably, such
processes should be designed based on available knowl-
edge about learning biases and limitations.

Reason 4 may be particularly interesting because it
points at a difference between learning processes leading to
improved effort estimation and, for example, improved
programming skills. To estimate more accurately, a soft-
ware developer not only has to learn from experience, but
also assess the effect of the lessons learned on the future
work and estimates. As an illustration, a software developer
may through experience learn about limitations of the
programming tools in use. This learning will most likely
lead to improved programming efficiency and more
predictable work on future tasks. The learning is, however,
not sufficient for an improvement of the estimation
accuracy. To improve the estimation accuracy, the devel-
oper also has to properly assess how much the learning
about the development tool will lead to reduced effort and
decreased uncertainty in use of effort on the next task. If the
developer is overoptimistic about the reductions, the result
may be a continued or even higher estimation inaccuracy
and increased overconfidence in the effort estimates. This
added step, i.e., the need for assessment of the effect of the
learning, means that we should be careful about general-
izing the lack of effect of lessons learned in estimation
contexts to other learning contexts.

JØRGENSEN AND GRUSCHKE: THE IMPACT OF LESSONS-LEARNED SESSIONS ON EFFORT ESTIMATION AND UNCERTAINTY... 379

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

4.3 Learning Problems

Learning from experience is documented to be difficult
both in software development [31] and other contexts.
Hammond [32, p. 278] summarizes the situation: “Yet in
nearly every study of experts carried out within the judgment
and decision-making approach, experience has been shown to be
unrelated to the empirical accuracy of expert judgments.”

Reasons for the learning problems include the following:

. The “hindsight bias,” e.g., the tendency to interpret a
cause-effect relationship as more obvious after it has
happened than before [33], [34].

. The tendency to confirm rules and disregard
conflicting evidence, as illustrated in studies on
human judgment [35], [36].

. The tendency to apply a “deterministic” instead of a
“probabilistic” learning model. This ability to think
in probability-based terms can, according to [37],
hardly be derived from experience alone, but must
be taught. Hammond [32] suggests that the ability to
understand relationships in terms of probabilities
instead of purely deterministic connections is im-
portant for correct learning in situations in which the
level of uncertainty is high. When assessing the
uncertainty of effort estimates, probabilistic thinking
and learning models are essential. The observed
problems with proper learning from feedback on
uncertainty assessment in our study may be caused
by a lack of training in the use of proper probabilistic
learning models.

. The high amount of complex interconnected reasons
for high or low estimation accuracy. In practice, we
may need to include both system dynamics and
game theory to understand the network of reasons
for high or low estimation accuracy.

In many situations in which human judgment is used
that has high uncertainty and unstable task relations, there
are indications that even feedback of high quality, e.g.,
high-quality task-relation-oriented feedback, is not suffi-
cient for learning [20], [38]. The underlying reason is that it
is frequently difficult to transfer experience from one
context to another. For this reason, it is important to
recognize when there is nothing to learn from experience, as
reported in the software estimation studies [31], [39].

On the basis of our previous experience, reported in [40],
we believed that one essential reason for the sustained
strong tendency toward overconfident uncertainty assess-
ments could be related to the difference between assessing
the uncertainty of one’s own and others’ effort estimates.
When assessing one’s own estimate of one’s own work,
there may be, for example, as pointed out earlier, learning
problems related to the cognitive dissonance effect. This
effect is, for example, present when the software profes-
sional tries to avoid a conflict between his image of himself
as a skilled and predictable developer and historical data
that suggest that the opposite is the case. A possible way to
avoid this conflict is, for each new task, to assume either
that one has learned much from previous experience or that
the feedback about previous performance was, in some
way, not relevant for the future. To test whether the

problem of uncertainty assessment learning was related to
this effect, we conducted a follow-up experiment at a
seminar on effort estimation with software professionals as
participants. If the assessment of other software profes-
sionals estimates, applying the same feedback and informa-
tion, improves the learning, this may be used to improve
the lessons-learned sessions. Alternatively, if the learning
problems remain, this supports the belief that the lack of
proper probabilistic learning models is the main obstacle to
uncertainty assessment learning and that better training in
probability and statistics are needed.

4.3.1 The Follow-Up Experiment

Participants. Eighty-three software professionals, about
90 percent male, who attended an estimation seminar at
Simula Research Laboratory. These software professionals
were similar to those in the main experiment with respect to
length of experience and background.

Hypothesis. Assessment of the uncertainty of other
developers’ effort estimates based on the feedback about
the estimation error of previous estimates will be more
realistic than the assessment of the uncertainty of effort
estimates of one’s own work. (The realism of the un-
certainty assessment will, as before, be indicated by the
OverConfidence measure. The hypothesis implies that the
participants in the follow-up experiment achieve an Over-
Confidence closer to zero than that of those in the main
experiment.)

Process. Each of the 83 software professionals:

1. was randomly allocated to the estimates and feed-
back related to one of the 20 developers who
participated in the main experiment.

2. read the description of what he was supposed to do,
i.e., that he was to evaluate the uncertainty of effort
estimates produced by a software developer on real
software maintenance tasks.

3. read the description of the BESTweb system. (A
short version of the description given to the
developers in the main experiment.)

4. read the instruction on how to assess the uncertainty
of the effort estimates. This instruction was the same
as the one in the main experiment.

5. received a database with information about the
estimation and uncertainty assessment of Tasks 1-3
as completed by the allocated developer in the main
experiment. This database contained the task de-
scriptions, the estimates of most likely effort, the
actual use of effort values, and the estimation errors
of all the three tasks. It did not contain the original
effort uncertainty assessments.

6. received a description of Task 4 and the allocated
developer’s effort estimate of that task.

7. assessed the probability that the actual effort of
the allocated developer would fall within IE-1
([90 percent;110 percent] of the estimate), IE-2
([60 percent;150 percent] of the estimate), and IE-3
([50 percent;200 percent] of the estimate) for Task 4.

8. received the allocated developer’s actual use of effort
of Task 4.

380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

9. received an updated version of the database, now
including information about the first four tasks.

10. received a description of Task 5 and the allocated
developer’s effort estimate of that task.

11. assessed the probability that the actual effort
would fall within IE-1 ([90 percent;110 percent] of
the estimate), IE-2 ([60 percent;150 percent] of the
estimate), and IE-3 ([50 percent;200 percent] of the
estimate) for Task 5.

Table 5 compares the mean OverConfidence of the

developers’ assessment of the uncertainty of others (data

from the follow-up experiment) and their own (data

from the main experiment) estimates. As can be seen in

Table 5, the uncertainty assessments of other developers’

effort estimates, when supported by the same feedback

of previous performance, are much more realistic

(OverConfidence closer to zero) and less biased (both

negative and positive OverConfidence values). While the

uncertainty assessments in the main experiment, which
were based on the developers’ assessment of the accuracy of
their own estimates, were strongly biased toward over-
confidence, the assessments in the follow-up experiment,
which were based on other developers’ estimates, were
more realistic, and even tended toward underconfidence for
one of the tasks (Task 4).

Fig. 5 displays the distributions of confidence levels of
Tasks 4 and 5 and all three uncertainty intervals. The
horizontal, dotted line is the Hit rate for all 20 of the original
developers for the different tasks and intervals. As before,
the closer the median confidence level is to the Hit rate, the
more realistic is the uncertainty assessment.

In the follow-up experiment, the developers focused
only on performing well on assessing the uncertainty of
effort estimates, while those in the main experiment tried
to improve estimation accuracy and, perhaps even more,
the performance of their programming work as well. It is
for this reason, possibly, that the strong focus on

JØRGENSEN AND GRUSCHKE: THE IMPACT OF LESSONS-LEARNED SESSIONS ON EFFORT ESTIMATION AND UNCERTAINTY... 381

TABLE 5
Mean OverConfidence of Others (Follow-Up Experiment Data) versus Own (Main Experiment Data) Estimates

Fig. 5. Box plot of the IE-1, IE-2, and IE-3 confidence levels of Tasks 4 and 5.

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

uncertainty assessment in the follow-up experiment and
not the difference between assessing the accuracy of one’s
own compared with other developers effort estimates
explains the observed difference in realism. While this is a
possible explanation and may contribute to the difference,
we do not think that it is able to lead to the observed
differences in realism alone. Those in the main experiment
completed paid work, they spent more time on the
uncertainty assessments, they knew that they would be
evaluated on the realism of the uncertainty assessment
(those in the follow-up experiment knew, on the other
hand, that their assessments would not be evaluated), and
they described and analyzed their uncertainty assessment
performance and processes. This means that, even though
those in the main experiment had a less narrow improve-
ment focus, they also had more time, more support, and
stronger motivation to perform well on the uncertainty
assessment tasks.

While the software professionals in the main experiment
were only male, the participants in the follow-up experi-
ment included a small proportion (assessed, informally, to
be about 10 percent) of female developers. We did not
collect gender information and consequently could not
analyze the effect of more female developers. There were,
however, not enough female developers to explain the
observed difference in realism between the main and the
follow-up experiment. In addition, our previous, unpub-
lished, analyses in similar estimation contexts suggest that
the female population among software developers is not
representative of the general female population. Female
software developers seem to be just as overconfident as
male developers.

The results from the follow-up experiment suggest,
therefore, in our opinion, that the uncertainty assessment
learning problems observed in the main experiment are not
so much related to lack of proper probabilistic mental
models, i.e., to lack of understanding of probabilities and
how to adjust them, but more to psychological biases
related to evaluation of one’s own estimation accuracy
performance. This suggests, for example, that learning
processes related to performance improvement may be
improved with the use of other developers.

5 CONCLUSIONS

Lessons-learned-based processes, such as postmortem
analyses and project reviews, are frequently suggested for
the purposes of improving processes [14], [41], [42]. Our
results suggest that the type of individual lessons-learned
processes examined in this study may have no, or even a
negative, effect on the accuracy of estimates and the realism
of assessments of the uncertainty of effort estimates in
comparison with on-the-job learning due to, for example,
learning biases related to the assessment of one’s own
estimation performance. Without better lessons-learned
processes, there may be a substantial risk of wasting a lot
of resources with no, or even a negative, effect in
comparison with pure on-the-job learning. We recommend
that there be a shift from the current tendency to propose
lessons-learned processes that assume that it is sufficient to
ask questions of the type “what can you learn from this”

toward evidence-based learning processes that take into
account, for example, the learning biases related to
interpretation of one’s own estimation performance.

Our study is conducted in the context of individual
estimation and uncertainty assessment learning, and it is
speculative to generalize to other software engineering
contexts, e.g., group-based learning, from this study alone.
There are, however, other studies that also report worrying
results related to common lessons-learned processes (see
Section 1). In total, we interpret this to strongly suggest that
there is a need for improved lessons-learned processes and
further studies. We believe that an appropriate study type
for studies on learning processes is a controlled experiment
with randomized treatment in close to field settings. Other
study types may, however, also be applicable as long as the
study design is able to convincingly attribute observed
learning to the learning process or adjust for on-the-job
learning that would have been present anyway.

ACKNOWLEDGMENTS

The authors thank James Dzidek, Hans Christian Benestad,
Stein Grimstad, Erik Arisholm, Dag Sjøberg, and other staff
at Simula Research Laboratory for their contributions to
this study.

REFERENCE

[1] CompTIA, Survey: Poor Communication Causes Most IT Project
Failures. Inadequate Resource Planning, Unrealistic Deadlines Also
Cited in CompTIA Study in Computerworld, 2007.

[2] K. Moløkken and M. Jørgensen, “A Review of Software Surveys
on Software Effort Estimation,” Proc. Int’l Symp. Empirical Software
Eng., pp. 223-230, 2003.

[3] M. Jørgensen, K.H. Teigen, and K. Moløkken, “Better Sure than
Safe? Over-Confidence in Judgement Based Software Develop-
ment Effort Prediction Intervals,” J. Systems and Software, vol. 70,
nos. 1/2, pp. 79-93, 2004.

[4] M. Jørgensen and M. Shepperd, “A Systematic Review of Software
Cost Estimation Studies,” IEEE Trans. Software Eng., vol. 33, no. 1,
pp. 33-53, Jan. 2007.

[5] M. Jørgensen, “Estimation of Software Development Work Effort:
Evidence on Expert Judgment and Formal Models,” Int’l J.
Forecasting, vol. 23, no. 3, pp. 449-462, 2007.

[6] M. Jørgensen, “A Review of Studies on Expert Estimation of
Software Development Effort,” J. Systems and Software, vol. 70,
nos. 1/2, pp. 37-60, 2004.

[7] W.S. Humphrey, Introduction to the Personal Software Process.
Addison-Wesley, 1996.

[8] P. Abrahamsson and K.H. Kautz, “Personal Software Process:
Classroom Experiences from Finland,” Proc. European Conf. Softwre
Quality, pp. 175-185, 2002.

[9] L. Prechelt and B. Unger, “An Experiment Measuring the Effects
of Personal Software Process (PSP) Training,” IEEE Trans. Software
Eng., vol. 27, no. 5, pp. 465-472, May 2000.

[10] V. Basili, H. Caldierea, and D. Rombach, “The Experience
Factory,” Encyclopedia of Software Engineering, J.J. Marciniak, ed.,
pp. 469-476, Wiley, 1994.

[11] S. Engelkamp, S. Hartkopf, and P. Brössler, “Project Experience
Database: A Report Based on First Practical Experience,” Proc. Int’l
Conf. Product Focused Software Development and Process Improve-
ment, pp. 204-215, 2000.

[12] F. Houdek, K. Schneider, and E. Wieser, “Establishing Experience
Factories at Daimler-Benz: an Experience Report,” Proc. Int’l Conf.
Software Eng., pp. 443-447, 1998.

[13] M. Jørgensen, D.I.K. Sjøberg, and R. Conradi, “Reuse of Software
Development Experience at Telenor Telecom Software,” Proc.
European Software Process Improvement Conf., pp. 10.19-10.31, 1998.

382 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. 3, MAY/JUNE 2009

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

[14] A. Birk, T. Dingsøyr, and T. Stålhane, “Postmortem: Never Leave
a Project without It,” IEEE Software, vol. 19, no. 3, pp. 43-45, May/
June 2002.

[15] T. Dingsøyr, “Postmortem Reviews: Purpose and Approaches in
Software Engineering,” Information and Software Technology,
vol. 47, pp. 293-303, 2005.

[16] M.C. Ohlsson, C. Wohlin, and B. Regnell, “A Project Effort
Estimation Study,” Information and Software Technology, vol. 40,
no. 14, pp. 831-839, 1998.

[17] W.K. Balzer, M.E. Doherty, and R. O’Connor, “Effects of Cognitive
Feedback on Performance,” Psychological Bull., vol. 106, no. 3,
pp. 410-433, 1989.

[18] P.G. Benson, “The Effects of Feedback and Training on the
Performance of Probability Forecasters,” Int’l J. Forecasting, vol. 8,
no. 4, pp. 559-573, 1992.

[19] R.E. Stone and R.B. Opel, “Training to Improve Calibration and
Discrimination: The Effects of Performance and Environmental
Feedback,” Organizational Behavior and Human Decision Processes,
vol. 83, no. 2, pp. 282-309, 2000.

[20] N. Schmitt, B.W. Coyle, and L. King, “Feedback and Task
Predictability as Determinants of Performance in Multiple Cue
Probability Learning Tasks,” Organizational Behavior and Human
Decision Processes, vol. 16, no. 2, pp. 388-402, 1976.

[21] M. Schindler and M.J. Eppler, “Harvesting Project Knowledge: A
Review of Project Learning Methods and Success Factors,” Int’l J.
Project Management, vol. 21, pp. 219-228, 2003.

[22] M. Cusomano and R. Selby, Microsoft Secrets—How the World’s
Most Powerful Software Company Creates Technology, Shapes Markets,
and Manages People. The Free Press, 1995.

[23] M. Jørgensen, “A Critique of How We Measure and Interpret the
Accuracy of Software Development Effort Estimation,” Proc. First
Int’l Workshop Software Productivity Analysis and Cost Estimation,
pp. 15-22, 2007.

[24] G. Pan, S.L. Pan, and M. Newman, “Information Systems Project
Post-Mortem: Insights from an Attribution Perspective,” J. Am.
Soc. for Information Science and Technology, vol. 58, no. 14, pp. 2255-
2268, 2007.

[25] K. Lyytinen and D. Robey, “Learning Failure in Information
Systems Development,” Information Systems J., vol. 9, no. 2, pp. 85-
101, 1999.

[26] D. Wastell, “Learning Dysfunctions in Information Systems
Development: Overcoming the Social Defenses with Transitional
Objects,” MIS Quarterly, vol. 23, no. 4, pp. 581-600, 1999.

[27] M. Urban and A. Witt, “Self-Serving Biases in Group Member
Attributions of Success and Failures,” J. Social Psychology, vol. 130,
no. 3, pp. 417-419, 1990.

[28] M. Jørgensen and K. Moløkken-Østvold, “Reasons for Software
Effort Estimation Error: Impact of Respondent Role, Information
Collection Approach, and Data Analysis Method,” IEEE Trans.
Software Eng., vol. 30, no. 12, pp. 993-1007, Dec. 2004.

[29] M. Jørgensen and K. Moløkken-Østvold, “Eliminating Over-
Confidence in Software Development Effort Estimates,” Proc.
Conf. Product Focused Software Process Improvement, pp. 174-184,
2004.

[30] M. Jorgensen, K.H. Teigen, and K. Molokken, “Better Sure than
Safe? Over-Confidence in Judgement Based Software Develop-
ment Effort Prediction Intervals,” J. Systems and Software, vol. 70,
nos. 1/2, pp. 79-93, 2004.

[31] M. Jørgensen and D. Sjøberg, “The Importance of Not Learning
from Experience,” Proc. European Software Process Improvement
Conf., pp. 2.2-2.8, 2000.

[32] K.R. Hammond, Human Judgement and Social Policy: Irreducible
Uncertainty, Inevitable Error, Unavoidable Injustice. Oxford Univ.
Press, 1996.

[33] B. Fischhof, “Hindsight <> Foresight: The Effect of Outcome
Knowledge on Judgement under Uncertainty,” J. Experimental
Psychology: Human Perception and Performance, vol. 1, pp. 288-299,
1975.

[34] D. Stahlberg et al. “We Knew It All Along: Hindsight Bias in
Groups,” Organizational Behavior and Human Decision Processes,
vol. 63, no. 1, pp. 46-58, 1995.

[35] C.F. Camerer and E.J. Johnson, “The Process-Performance Para-
dox in Expert Judgment: How Can Experts Know So Much and
Predict So Badly?” Towards a General Theory of Expertise,
K.A. Ericsson and J. Smith, eds., pp. 195-217, Cambridge Univ.
Press, 1991.

[36] D.M. Sanbonmatsu, A.A. Sharon, and E. Biggs, “Overestimating
Causality: Attributional Effects of Confirmatory Processing,”
J. Personality and Social Psychology, vol. 65, no. 5, pp. 892-903, 1993.

[37] B. Brehmer, “In One Word: Not from Experience,” Acta
Psychologica, vol. 45, pp. 223-241, 1980.

[38] F. Bolger and G. Wright, “Assessing the Quality of Expert
Judgment: Issues and Analysis,” Decision Support Systems,
vol. 11, no. 1, pp. 1-24, 1994.

[39] J. Shanteau, “Competence in Experts: The Role of Task Character-
istics,” Organizational Behavior and Human Decision Processes,
vol. 53, no. 2, pp. 252-266, 1992.

[40] M. Jørgensen, “Realism in Assessment of Effort Estimation
Uncertainty: It Matters How You Ask,” IEEE Trans. Software
Eng., vol. 30, no. 4, pp. 209-217, Apr. 2004.

[41] M. Cannon and A. Edmundson, “Failing to Learn and Learning to
Fail (Intelligently): How Great Organizations Put Failure to Work
to Innovate and Improve,” Long Range Planning, vol. 38, pp. 299-
319, 2005.

[42] B. Collier, T. Demarco, and P. Fearey, “A Defined Process for
Project Post-Mortem Review,” IEEE Software, vol. 13, no. 4, pp. 65-
71, July 1996.

Magne Jørgensen is a professor at Simula
Research Laboratory and the University of Oslo.
He has previously worked as a software devel-
oper and a project manager and trained software
professionals in the use of estimation models
and expert judgment-based estimation pro-
cesses. His research focus is on improving
effort estimation and learning processes.

Tanja M. Gruschke is currently working toward
the PhD degree at Simula Research Laboratory
and University of Oslo with an interest in learning
processes in software effort estimation. She is
now working as a software developer at KnowIT
Objectnet.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

JØRGENSEN AND GRUSCHKE: THE IMPACT OF LESSONS-LEARNED SESSIONS ON EFFORT ESTIMATION AND UNCERTAINTY... 383

Authorized licensed use limited to: West Virginia University. Downloaded on December 30, 2009 at 16:55 from IEEE Xplore. Restrictions apply.

