New plots regarding the new experiments are listed below. The first 7 plots show the results of leave-one-out experiments, and the remaining 6 plots (From Figure 8 on) show the results of 10-by-3-way experiments.

Data set	Variant	Win	Tie	Loss	Win - Loss
Cocomo81	TEAK Bost(K)	87	73	0	87
	k=16	42	107	11	31
	k=8	41	100	19	22
	k=4 NNot	28	96 76	36	-8 10
	k=1	28	88	47	-16
	k=2	26	82	52	-26
Casama ⁹¹ a	SLReg	7	18	135	-128
Cocomosie	NNet	43	105	0	43
	k=8	32	126	2	30
	k=16	32	126	2	30
	k=4	18	1120	29	-11
	k=1	8	97	55	-47
	k=2	4	101	55	-51
Cocomo81o	TEAK	11	136	90	-79
	k=16	9	151	Õ	9
	k=8	8	152	0	8
	NNet	9	152	1	8
	k=4	7	151	2	5
	SLReg	7	145	8	-1
	k=2 k=1	1	128	30 34	-20
Nasa93c5	TEAK	40	120	0	40
	SLReg	25	135	0	25
	K=16 Best(K)	17	141	4	15
	k=8	16	134	10	6
	NNet	10	144	6	4
	k=4 k=2	10	127	23 43	-13 -36
	k=1	3	100	57	-54
SDR	TEAK	67	93	20	67
	NNet	43 25	123	20 12	23 13
	k=4	26	118	16	10
	k=8	18	132	10	8
	K=2 Best(K)	20 16	126	14 18	-2
	k=16	13	120	27	-14
TOPOG P. 1:	SLReg	0	49	111	-111
ISBSG-Banking	I EAK NNet	30 24	130	0	30 24
	SLReg	23	137	ŏ	23
	k=16	22	138	0	22
	K=8 Best(K)	21	141	2	19 19
	k=4	14	112	34	-20
	k=1	8	106	46	-38
Nasa93	SLReg	72	88	0	-79
	TEAK	26	134	Õ	26
	NNet	16	143	1	15
	k=10 k=8	15	128	14	-1
	Best(K)	14	128	18	-4
	k=4	6	122	32	-26
	k=1	6	107	47	-41
Nasa93c2	SLReg	158	2	0	158
	LEAK	36 25	106 115	18 20	18 5
	NNet	17	123	20	-3
	k=8	15	116	29	-14
	k=4	15 11	116	29 48	-14 -37
	k=2	5	95	60	-55
	k=1	6	90	64	-58
Desharnais	SLReg	63 51	97 109	0	63 51
	TEAK	37	121	2	35
	k=16	25	129	6	19
	K=8 Best(K)	22 16	124 120	14 24	8
	k=4	14	116	30	-16
	k=2	6	80	74	-68
	k=1	1	74	85	-84

Fig. 1: MdMRE based win-loss-tie results from the *ran-domized assessment* procedure. For each data set results are sorted by wins minus loss values. Gray cells indicate variants with zero losses.

Fig. 2: For each dataset, the top performing variant according to MdMRE based (win - loss) value is indicated with a \blacktriangle . The last row, shows the sum of times a method appeared as the top performing variant. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

Fig. 5: This figure is similar to Figure 4., except the fact that this time the top performing 2 variants according to Pred(25) based (win - loss) value are indicated with a \blacktriangle . The last row shows the sum of times a method appeared as one of the top performing 2 variants. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

Fig. 3: This figure is similar to Figure 2., except the fact that this time the top performing 2 variants according to MdMRE based (win - loss) value are indicated with a \blacktriangle . The last row shows the sum of times a method appeared as one of the top performing 2 variants. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

Fig. 6: For each dataset, the top performing variant according to MdAR based (win-loss) value is indicated with a \blacktriangle . The last row, shows the sum of times a method appeared as the top performing variant. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

Fig. 4: For each dataset, the top performing variant according to Pred(25) based (win - loss) value is indicated with a \blacktriangle . The last row, shows the sum of times a method appeared as the top performing variant. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

Fig. 7: This figure is similar to Figure 6., except the fact that this time the top performing 2 variants according to MdAR based (win - loss) value are indicated with a \blacktriangle . The last row shows the sum of times a method appeared as one of the top performing 2 variants. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

3

Fig. 8: For each dataset, the top performing variant according to MdMRE based (win-loss) value is indicated with a \blacktriangle . The testing strategy for these experiments are ten-by-3-way. The last row, shows the sum of times a method appeared as the top performing variant. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

Fig. 11: This figure is similar to Figure 10., except the fact that this time the top performing 2 variants according to Pred(25) based (win - loss) value are indicated with a \blacktriangle . The last row shows the sum of times a method appeared as one of the top performing 2 variants. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

Fig. 9: This figure is similar to Figure 8., except the fact that this time the top performing 2 variants according to MdMRE based (win-loss) value are indicated with a \blacktriangle . The last row shows the sum of times a method appeared as one of the top performing 2 variants. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

Fig. 12: For each dataset, the top performing variant according to MdAR based (win-loss) value is indicated with a \blacktriangle . The last row, shows the sum of times a method appeared as the top performing variant. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

Fig. 10: For each dataset, the top performing variant according to Pred(25) based (win - loss) value is indicated with a \blacktriangle . The last row, shows the sum of times a method appeared as the top performing variant. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.

Fig. 13: This figure is similar to Figure 12., except the fact that this time the top performing 2 variants according to MdAR based (win - loss) value are indicated with a \blacktriangle . The last row shows the sum of times a method appeared as one of the top performing 2 variants. Rows are sorted according to alphabetical order of the datasets, whereas columns are sorted according to sum of top performance.