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Abstract. Conventional approaches to software cost estimation have focused on algorithmic cost models, where
an estimate of effort is calculated from one or more numerical inputs via a mathematical model. Analogy-based
estimation has recently emerged as a promising approach, with comparable accuracy to algorithmic methods in
some studies, and it is potentially easier to understand and apply. The current study compares several methods
of analogy-based software effort estimation with each other and also with a simple linear regression model. The
results show that people are better than tools at selecting analogues for the data set used in this study. Estimates
based on their selections, with a linear size adjustment to the analogue’s effort value, proved more accurate
than estimates based on analogues selected by tools, and also more accurate than estimates based on the simple
regression model.
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1. Introduction

Conventional approaches to software cost estimation have focused on algorithmic cost mod-
els, where an estimate is calculated from one or more numerical inputs via a mathematical
model. Where there is limited or incomplete data and limited expertise in numerical tech-
niques, these models can be daunting to calibrate and use. Analogy-based estimation has
recently emerged as a promising approach, with comparable accuracy to algorithmic meth-
ods in some studies, and it is potentially easier to understand and apply. Ease of use may
be an important factor in the successful adoption of estimation methods within industry, so
analogy-based estimation deserves further scrutiny.
The current study compares several methods of analogy-based software effort estimation

with each other and also with a simple linear regression model. In particular, this study has
investigated the performance of a group of people estimating by analogy, unaided by any
tool. The results show that people are as good as or better than tools at selecting analogues
for a target project in this study, where they needed to compare only a small number of
projects (15) as potential analogues. Estimates based on their selected analogues, with a
linear size adjustment to the analogue’s effort values, proved more accurate than estimates
based on analogues selected by tools, and also more accurate than estimates based on the
simple regression model.
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The process of estimation by analogy, and previous research in this area is reviewed in
the following section. The actual comparisons performed in this study, and the results of
these comparisons are described in subsequent sections.

2. Background

2.1. Estimating by Analogy

Estimating software project effort by analogy is an example of a case-based reasoning strat-
egy. Case-based reasoning is a form of analogical reasoning where the potential analogues
and target are examples of the same thing, for example software projects. An estimate of the
effort to complete a new software project is made by analogy with one or more previously
completed projects.1
Estimating software project effort by analogy usually involves a number of steps:

1. Measuring or estimating the values of project metrics for the target project;

2. Searching a repository of completed projects for projects similar to the target and
selecting one or more projects as source analogues;

3. Using the effort value of the source analogue(s) as an initial estimate for the target
project;

4. Comparing the known metric values for the target and source projects; and

5. Adjusting the effort estimate in light of the differences between the target and source
projects.

2.1.1. ESTOR

Mukhopadhyay et al. (1992) developed ESTOR, a case-based reasoning tool to estimate
project effort. The metrics used by ESTOR are function point components and inputs to the
intermediate COCOMO model (Boehm, 1981). ESTOR selects an analogue for the target
project by calculating the Euclidean distance between completed projects and the target
and selecting the nearest neighbour. The effort value for the analogue is adjusted to take
account of the differences between the source and the target by applying a set of rules.
ESTOR uses two projects as its source of potential analogues. The projects were re-

constructed from the verbal protocols of an expert in analogical estimation. This expert
(Vicinanza et al., 1991) estimated effort accurately for a set of 10 projects. The adjustment
rules used by ESTOR were derived from the same protocols. The absolute relative error
(ARE)2 for the expert’s 10 estimates was 31%. When tested on the same 10 projects the
mean absolute relative error (MARE) of ESTOR’s estimates was 51%.
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2.1.2. ANGEL

Shepperd et al. (1996) describe the tool ANGEL, which also estimates project effort by
analogy. ANGEL does not assume that estimators will use a particular set of project
metrics. The estimator can set up ANGEL to use whatever project data set is available.
ANGEL, like ESTOR, calculates the Euclidean distance between the target project and
potential analogues. ANGEL ranks the potential analogues according to their distances
from the target.
The estimator specifies which metrics to use when ANGEL searches for analogues. AN-

GEL can also determine the best subset of metrics to use when searching a particular data
set. ANGEL considers all possible subsets of metrics and selects the subset that minimises
the MARE for the data set, calculated by jack-knifing.
ANGEL derives an estimate from the ranked analogues by averaging the effort value of

a number of the closest analogues, rather than adjusting for differences between the target
project and the selected analogue(s). The simplest approach is to use only one analogue, in
which case ANGEL uses the effort value of the nearest neighbour project as the estimate
for the target project. Shepperd and Schofield (1997) use the average effort value of up to
three analogues to derive estimates. They select the number of analogues that minimises
the MARE for a particular data set.
WhenANGEL is applied to the same data set as used in the ESTOR experiment, Shepperd

and Schofield (1997) find that the MARE of the ANGEL’s estimates is 62%. ANGEL is
somewhat less accurate for this data set than the estimates made by ESTOR (53%).
Shepperd and Schofield (1997) also compare the accuracy of ANGEL’s estimates with

those from an algorithmic estimation model derived by stepwise regression on the same
data set. The regression model proved less accurate than either of the analogical approaches
for this data set, with a MARE of 107%.

2.2. Advantages of Estimating by Analogy

Researchers have explored a wide variety of approaches to software effort estimation (see
Walkerden and Jeffery, 1997). The most common approach is an algorithmic model with
an explicit functional form, for example the well-known COCOMO model (Boehm, 1981)
and more recently COCOMOII (see, for example, Clark et al., 1998). The model relates
the dependent variable, effort, to one or more independent variables, typically a size metric
and one or more cost drivers. The simplest method for developing an algorithmic model
is step-wise linear regression. The regression calculation calibrates a model relating effort
to one or more metrics associated with effort (for example Shepperd et al., 1996; Briand et
al., 1998).
Techniques from artificial intelligence research have also been applied to develop software

effort estimation models. Srinivasan and Fisher (1995) use artificial neural networks and
decision trees to estimate effort. These methods do not require the researcher to propose
an explicit functional form for the model, only the input and output metrics.
The accuracy of estimates from experiments with ESTOR (Mukhopadhyay et al., 1992)

andANGEL (Shepperd et al., 1996) demonstrates that software effort estimation by analogy
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is a viable alternative to other estimation methods. Analogy-based estimation also offers
estimators some advantages over other methods. Potential advantages of software effort
estimation by analogy are that:

1. It is easy to understand the basis for an estimate
Analogy-based estimation stands in contrast to input-outputmodels, by basing estimates
on concrete past examples. It is an example of reasoning by analogy, a familiar mode
of human problem solving (Burbridge, 1990; Kolodner, 1993). The familiarity of this
approach may explain why people are comfortable estimating in this manner. Heemstra
(1992) in a survey of nearly 600 organisations, reports that 61% used estimation by
analogy whereas only 14% used algorithmic models. Lederer and Prasad (1993) also
report that analogy-based estimation is the most common approach.

2. It is useful where the domain is difficult to model
We know that many factors influence the effort needed to complete a software project.
We know less about how these factors interact with each other, or how best to model the
wealth of factors via software metrics. Estimation by analogy can be used successfully
without having a clear model of how effort is related to other project factors. It relies
primarily on selecting a past project that is similar to the target project, rather than
postulating a general relationship between effort and other project characteristics that
applies to all projects.
Small historical data sets may be sufficient to develop simple algorithmic models,
provided the data does not prove too noisy. However noise, unaccounted for variations
in dependent variables, is at the crux of domains which are difficult to model. Shepperd
et al. (1996) give an example of a data set of 8 projects for which no statistically
significant relationships can be found. An algorithmic model based on this data set
would be suspect. Nevertheless, the accuracy of analogical estimates for this data set
was comparable to that of other much larger data sets.

3. It can be used with partial knowledge of the target project
Analogy-based estimation addresses this problem by allowing people to use whatever
information they have available to search for and select analogues, rather than prescrib-
ing particular inputs.

4. It has the potential to mitigate problems with calibration
Analogy-based estimation has the potential to provide accurate estimates even using
another organisation’s data, provided an appropriate analogue for the target project is
found within the data set used for estimation and the variables measured are both ap-
propriate and measured in a consistent manner. An analogue is appropriate if effort
and associated factors are related in a similar way for both the target project and ana-
logue. This is possible even where the relationships differ for typical projects of the
each organisation.

5. It has the potential to mitigate problems with outliers
Most project data sets have outliers: projects that differ substantially from the typical
project in the values of their metrics and relationships between them. Estimating by
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analogy does not rely on calibrating a single model to suit all projects. If the target
project is typical of a data set, it is likely that one or more appropriate analogues will be
found to base the estimate on. Outliers in the data set have no influence on the estimate
at all. If the target project is itself an outlier, at least the lack of a similar project analogue
may make this apparent to the estimator. From one perspective it simplifies the issue
of outliers which always involves tradeoffs when model building.

6. It offers the chance to learn from past experience
When estimating by analogy, it is convenient to select potential analogues via scrutiny of
availablemetric values because this information is concise and easily compared. Ideally
analogy-based estimation would be applied within an organisation with access to other
information associated with past projects, in addition to project metrics. Information
such as project debriefing reports could helpmanagers identify risks that the new project
faces and avoid mistakes that have been made in the past.

Naturally, there are some difficulties with analogy-based estimation that temper its ad-
vantages. Its accuracy relies on four factors: the availability of an appropriate analogue,
the soundness of the strategy for selecting it, the manner whereby differences between the
analogue and target are allowed for when deriving an estimate, and the accuracy of the data
used for both the analogue and the target.
What if there is no truly appropriate analogue within a data set for the target project.

Analogy-based estimation faces the same problem here as any estimation method: the col-
lection andmaintenance of data on completed projects relevant to new estimation problems.
Unfortunately an analogue may be selected and used regardless of its appropriateness. An
old project could be selected as an analogue because it appears similar to the target project,
although factors affecting effort have changed over time. For example, the unadjusted
function point count of the old project and the target project may be similar, but the target
project has a graphical user interface whereas the older project had a character-based user
interface. The effort to develop a graphical user interface is likely to be greater than that
for a character based user interface, but the estimator may overlook this difference if the
nature of the user interface is not recorded in the available data.
Ideally an estimator can use his or her judgement to exclude inappropriate analogues.

However, there is a possibility that estimatorswill use an analogue blindly, without justifying
its selection. One bias observed in human reasoning is the tendency to seek evidence that
confirms our opinions, and to neglect contrary evidence.
It is not clear how best to judge the appropriateness of a potential analogue for a target

project. Analogical tools can assist in the selection process by ranking past projects ac-
cording to how well they match the target. ESTOR (Vicinanza et al., 1991) and ANGEL
(Shepperd et al., 1996) have successfully used the Euclidean distance between past projects
and the target to rank potential analogues, with each metric weighted equally.
Ranking via Euclidean distance offers the benefits of clarity and consistency over human

judgement alone. One drawback is that it does not allow for the different contributions
that project metrics make to variation in project effort. Weighting project metrics could
overcome this, but introduces another complexity to the selection process: how to assign
weights. Expert opinion, correlation coefficients or learning algorithms are some alterna-
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tives (Stensrud and Myrtveit, 1998; Shepperd and Schofield, 1997). However, applying the
same weights to all projects is a compromise. While the factors influencing effort may be
shared by all projects, the relative influence of these factors can vary from project to project.
Human judgement may be better at managing the complexity of assessing the importance
of productivity factors in both the target project and its analogues.
Once an analogue has been selected, the estimator is faced with the question of how best

to use it to derive an estimate for the target project. It is probable that the analogue differs
from the target project in some respects that influence effort. What adjustments should
be made to the effort value of the analogue to reflect these differences? Shepperd et al.
(1996) estimate by using the unadjusted effort of the analogue or the average effort of two
or more analogues, thereby avoiding the problem of adjustment rules. Vicinanza et al.
(1991) use adjustment rules derived from the verbal protocols of an expert. Both of these
approaches proved successful, but as noted above, the factors influencing productivity will
vary from project to project. Derivations of estimates from analogues would ideally take
these differences into account.
The difficulties associated with analogy-based estimation, lack of appropriate analogues

and issues with selecting and using them, should not deter our interest. All estimation
methodswill use imperfect data. Any estimationmethod needs experience and judgement to
apply it successfully. The goal of this research is not to substitute analogy-based estimation
for other methods. As Stensrud and Myrtveit (1998) observe, estimates produced by tools
are never the final answer, rather tools are aids to improve the accuracy of estimates. The
goal of this research is to explore how best to apply analogy-based estimation and to learn
about its strengths and weaknesses compared with other methods.

2.3. ACE

A prototype tool, ACE (Analogical and Algorithmic Cost Estimator), has been developed
as a means to explore the benefits of analogy-based estimation. ACE estimates effort for
a target project by searching through a database of metrics for completed projects and
selecting the completed project it judges most similar to the target project. ACE adjusts the
effort value of the completed project to take account of the difference in size between the
target and completed projects.
ACE ranks all projects in the database across the set of search metrics supplied by the user

for the target project. For each metric in the set, ACE calculates the difference between the
target project and each completed project. The completed project with the lowest difference
is ranked 1 on that metric; the project with the next lowest difference is ranked 2, and so
on. ACE calculates the mean rank of each completed project over the set of search metrics.
The project with the lowest mean rank is selected as the analogue for the target project.
Calculating the mean rank standardizes the contribution of each search metric to the final
ranking.
If two completed projects differ from the target project by the same amount for a particular

metric, then they are allocated the same rank, and the rank of the project with the next lowest
rank is adjusted accordingly. For example, if the target project has a maximum team size
(MTS) of 4 people, and two completed projects also have a MTS of 4, then they are
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assigned ranks 1. The next most similar project has a MTS of 5 people, and is assigned
rank 3. Categorical metrics, such as programming language used, are handled equivalently:
all projects with the same categorical value as the target project are assigned ranks 1; all
other projects are assigned the next rank, for example rank 4, if 3 completed projects used
the same language as the target project.
Once ACE determines the highest ranking completed project, its effort value is adjusted

to estimate effort for the target project. ACE performs a linear extrapolation along the
dimension of a single metric, a size metric strongly correlated with effort such as function
points.

EffortTARGET = EffortANALOGUE
FPANALOGUE

× FPTARGET

For example, if the effort to complete the source analogue was 1000 person-hours, its size
200 function points and the size of the target project is estimated as 250 function points, then
the effort estimate for the target project is 1250 person-hours. This linear size adjustment
attempts to account for the influence on effort of the difference in size between the target
and completed projects. The linear size adjustment, based on unadjusted function points, is
equivalent to using the productivity value of the analogue to predict the effort of the target
project.

3. Comparison of Analogical Estimates

3.1. Overview

The performance of ACE has been compared with ANGEL and also with the performance
of people instructed to estimate by analogy. We can think of analogy-based estimation in
two stages: selecting an analogue for the target project; and deriving an estimate based
on the analogue. For example, ACE selects as analogue the project with the highest rank
over all search metrics nominated for the target project. Next ACE applies a linear size
adjustment to the effort value of the analogue.
In contrast, ANGELcalculates theEuclideandistancebetween the target and all completed

projects, and selects the closest as analogues. ANGEL uses all nominated search metrics
or determines the metrics subset that best estimates the completed projects. ANGEL then
uses either the effort value of the closest analogue without adjustment or the average effort
value of the closest two or three analogues as its effort estimate for the target. In the
current experiment, only the closest analogue is used to derive an estimate, to confine the
comparisons to a manageable number. A linear size adjustment is also applied to ANGEL’s
analogue selection, to facilitate comparison with ACE.
In addition, a number of human subjects were instructed to estimate project effort by

analogy. Twenty-fiveMasters students in theUNSWSchool of Information Systems subject
“Software Engineering Management’ participated in the experiment. They were free to
choose their ownmethods for selecting analogues, and deriving estimates based on them. A
linear size adjustment was also applied to the students’ analogues, to facilitate comparisons
between the alternative methods of analogue selection.
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Table 1. Analogy-based estimation methods compared.

Analogue Selection Method Adjustment Method

ACE Linear Size Adjustment

ANGEL “All Metrics” None

Linear Size Adjustment

ANGEL “Best Metrics” None

Linear Size Adjustment

Human Subject Subject’s Adjustment

Linear Size Adjustment

Figure 1. Comparison of estimation methods.

Overall, seven methods for estimation project effort by analogy have been compared
experimentally (Table 1). These methods have also been compared with effort estimates
derived by a linear regressionmodel, as an example of a conventional algorithmic estimation
model.
Figure 1 shows effort estimates for a target project with a size of 200 unadjusted function

points. The ANGEL and ACE estimates are based on an analogue of size 400 UFP. The
ANGEL estimate, without adjustment for size, is the same as the analogue effort value
(2000 hours). The ACE effort estimate, with linear size adjustment, is half the analogue
effort value. Thus in Figure 1 it can be seen that the techniques can result in very different
estimate values.
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Experimental Data Set

The data set used in this experiment consists of 19 projects with function point counts, total
effort and a collection of other project relatedmetrics. The source of this project data was an
Australian software development company with approximately 50 employees, developing
and distributing a range of projects locally and internationally. This data set has been used
previously in a study on the use of function points as a sizemetric (Jeffery and Stathis, 1996).
The project metrics that have been used in the experiment are:

Table 2. Project metrics in experimental data set.

Metric Unit/Range/Values Scale

Total Effort Person Hours ratio
Unadjusted Function Points UP ratio
Maximum Team Size People ratio
Distributed System Yes, No nominal
Programming Language COBOL, C, 4GL nominal
Design Experience 1–5 ordinal
Language Experience 1–5 ordinal
Application Experience 1–5 ordinal

The total effort is the total time in hours spent by all project members on the project. The
maximum team size is the maximum number of people who worked concurrently on the
project. The experience metrics represent the relevant team members’ average experience
with software design, the programming language, and the project’s application type. The
project managers rated each project member involved in a particular activity on a scale of
1 to 5, with 1 being the least and 5 being most experienced.
Table 3 shows the wide range of project sizes represented in this project data set. Jeffery

and Stathis (1996) show that for this project data set theMARE of a regression model based
on unadjusted function points was as accurate as one based on adjusted function points.
Unadjusted function points were used in this experiment as they offer a simpler description
of the projects than function points, without loss of accuracy in effort estimation.
25 subsets of 15 projects were created from the 19 projects in the data set, by excising

a hold-out sample in each case of 4 projects. Each project was numbered, from 1 to 19.

Table 3. Descripting statistics for experimental data set.

Metric Mean Standard Minimum Maximum
Deviation

Total Effort 1947 3115 194 13905
UFP 527 876 38 3656
Maximum Team Size 3.7 2.3 1 10
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The hold-out samples were chosen at random, by selecting two non-overlapping pairs of
projects from the collection of all possible pairs of projects without replacement. Two pairs
overlap if they have any project in common. Twenty five subsets were created, as this is
was the number of subjects available for the experiment.

3.2. Procedure

3.2.1. Estimation Exercise

The exercise in estimating project effort by analogy was done on paper in a classroom
setting and completed by 25 students. Prior to the exercise, students attended a one-hour
lecture on software cost estimation as a part of a 14-week course on project management.
This introduced them briefly to algorithmic and analogical estimationmethods and software
metrics used in estimation. In a previous week they had studied software size measures,
including function points.
The subjects were motivated to participate in this exercise because it was to be marked

with the mark contributing to their final grade in the subject. They were advised that the
marker was looking for evidence that they had looked carefully at the project data presented
to them, and that they had explained how they arrived at their estimates. The subjects were
required to work alone on their estimates, but were free to ask the supervisor questions.
Each subject was allocated at random one of the 25 project data subsets, labelled “Set 1”

to “Set 25”. This consisted of a sheet of paper with a table of project metrics for 15 projects.
Below the table was a brief explanation of each project metric.
Accompanying each project set was an estimation exercise. The subjects were asked to

estimate total project effort by analogy for three projects. Each project was described by
the same metrics as the projects in the data subset, with total effort excluded. Only 3 of the
possible 4 projects in the hold-out sample were used. The hour available for the exercise
did not permit subjects to attempt more than three estimates.
In Part I of the exercise, the subjects were asked to estimate project effort by analogy

for two projects manually. The estimation process was broken into two steps. In step (i)
subjects were asked to select the two projects most similar to the target project and also to
explain how they selected them. They were asked to select two projects rather than one
in a bid to encourage them to study the candidate projects thoroughly. In step (ii) they
were asked to estimate the total effort in hours to complete the target project, based on their
previous selection, again explaining how they arrived at their estimate.

3.2.2. Tool Estimates

TheACEestimates, for each of the 25 project data subsets, were calculated using aMicrosoft
Excel spreadsheet. Three estimates were made, one for each of the two target projects used
in Part I of the estimation exercise, and one for the target project used in Part II. This paper
reports only on Part I. The linear size adjustment to the analogue’s effort was based on the
unadjusted function point counts for the analogue and target projects.
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The ANGEL estimates were calculated by creating an ANGEL data model for each of
the 25 data subsets. Estimates for each of the three target projects were generated initially
using all available project metrics. The estimate was simply the effort value of the closest
analogue. Then ANGEL selected the best metrics subset for each of the 25 data subsets.
The best subset was the one that minimised the mean absolute relative error of estimates
for the 15 completed projects, holding out each of the 15 in turn. The analogue selected by
ANGEL for each of the three target projects was noted. This allowed a linear size-adjusted
estimate to be calculated in each case via a spreadsheet.
A “least squares” linear regression model with effort as the dependent and unadjusted

function points as the independent variable was derived for each subset of 15 projects.
The model was then used to predict effort for the three target projects. No examination of
outliers was carried out. The inclusion of outliers may result in the accuracy of this method
being somewhat under-estimated. However, this approach demonstrates how regression
analysis performs without the aid of human judgement to examine and exclude outliers.
The regression model used is of the form:

Effort = a + b Function points

In a previous paper we explored the performance of linear and log-linear regression on this
data set (Jeffery and Stathis, 1996). In this we find that the model:

Effort = a. Function pointsb

revealed a value for b of 0.816 with an r2 of 0.77. For a linear regression the model showed
an r2 of 0.95 for the model Effort = 192.31+ 3.45 ∗ FunctionPoints. The data plots reveal
that the regression is driven by three projects that are significantly larger than all others.
This is a common issue though for software engineering data sets.

3.3. Data Analysis

The MARE of each estimation method has been calculated for the target projects used.
Fifty estimates were made, two for each of the 25 data subsets.
As well as using MARE as a measure of accuracy for each method, groups of estimates

have been compared by counting the number of times a method provided the least accurate
estimate (maximum ARE) and the number of times a method provided the most accurate
estimate (minimum ARE). These counts are reported as a percentage of the total number of
estimates compared. Looking at the proportion of estimates that were both best and worst
for a method gives an indication of how consistent the accuracy of its estimates are.
Another measure of accuracy often used in the software cost estimation literature (for

example, Shepperd et al. 1996) is the proportion of predictions of a given level of accuracy,
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Table 4. Mean absolute relative errors of tool estimates.

Estimation Mean N Standard Standard Pred(.25) % Cases % Cases
Method ARE% Deviation Error % Min ARE Max ARE

ACE 55 50 62 9 24 34 14
Linear 68 50 65 9 16 18 32
Regression
ANGEL 112 50 178 25 28 30 30
Best Metrics
ANGEL 125 50 181 25 28 30 40
All Metrics

defined as:

PRED(l) = k
N

where N is the total number of observations and k is the number of observationswithMARE
less than or equal to l. The value of PRED(.25) has been calculated for each estimation
method as well.
Estimation methods have been compared, two at a time, via paired sample t-Tests. These

test whether the mean difference in ARE between pairs of estimates for the same target
project and same data subset differs significantly from zero. The mean difference and p
value is reported for each comparison.

4. Results

4.1. Tool Comparisons

ACE performed best on average of the four tools, with the lowest mean absolute relative
error (MARE). It also had the highest proportion of cases with the minimum ARE of the
four tools, and the lowest proportion of cases with the maximum ARE (Table 4).
The proportions of cases with minimum and maximum ARE do not add to 100% because

the same estimate may be calculated by more than one method, especially where the same
analogue is selected by two or more analogical methods.
The linear regression model of effort against unadjusted function points has the second

lowest MARE. Paired sample t-Tests comparing the estimates for each case show that the
means for ACE and the linear regression model do not differ significantly, although both
are significantly lower than the means for the two ANGEL methods (Table 5).
Despite the high ARE, both ANGEL methods have a greater proportion of cases with the

minimum ARE than the linear regression model and higher Pred(.25). The ANGEL “Best
Metrics” method has as a similar proportion of cases with the maximum ARE as the linear
regression model.ANGEL’s MARE has been adversely affected by a number of estimates
with very high absolute relative errors.
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Table 5. Paired sample t-Tests for absolute relative errors of tool estimates.

Comparison Mean Difference p Value
in ARE% (2 tailed)

ACE V ANGEL Best Metrice −57 0.023∗

ACE V ANGEL All Metrics −70 0.007 ∗∗

ACE V Linear Regression −13 0.186
ANGEL Best Metrics V ANGEL All Metrics −13 0.547
ANGEL Best Metrics V Linear Regression +44 0.032∗

ANGEL All Metrics V Linear Regression +57 0.009∗∗

One characteristic that most of ANGEL’s high ARE estimates share is that the project
selected by ANGEL as an analogue differs widely in size (unadjusted function points) from
the target project. The ANGEL estimate for each target project used in this experiment is
simply the effort value for the analogue. No adjustment is made for their relative sizes.
Shepperd et al. (1996) use the average effort value for two or three analogues. Averaging
is likely to improve the estimate where the sizes of the analogue projects straddle the size
of the target.
Shepperd et al. (1996) found that ANGEL equalled or outperformed linear regression

on six separate project data sets. This is not the case with the data set used in the current
experiment. The linear regression model and ACE both estimate by taking the size of the
target project in unadjusted function points into account. This appears to be the source
of their advantage when compared with ANGEL in this study. The effect of a linear size
adjustment on the ANGEL estimates is explored below in section 4.3.

4.2. Subject versus Tools

In Part I of the estimation exercise students estimated project effort unaided by any tool.
One of the 25 subjects failed to make the two estimates required as part of the exercise,
hence 48 rather than 50 estimates are compared below.
The subjects’ estimates are similar in accuracy to ACE’s. They have twice as many of the

least accurate estimates (max ARE) as ACE, although this has not lead to an appreciably
higher MARE (Table 6). The subjects’ had a greater proportion of accurate estimates than
ACE. Pred(.25) for the subjects’ estimates is 36%, whereas Pred(.25) for ACE is 24%.
Paired sample t-Tests comparing the estimates for each case show that the MARE for

the subjects estimates, unaided by tools, is significantly lower than the means for the
two ANGEL methods (Table 7). The MARE of the subjects’ estimates does not differ
significantly from ACE or the linear regression model.
Based on their selected analogues, 52% (13/25) subjectsmadewell-reasoned adjustments

to the analogue effort value to take into account differences between the analogue and target.
Eleven of these thirteen subjects made an adjustment to the analogue’s effort value to take
into account the difference in size in UFP between the analogue and target projects.
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Table 6. Mean absolute relative errors for subjects unaided and tools.

Estimation Mean N Standard Standard Pred(.25) % Cases % Cases
Method ARE% Deviation Error % Min ARE Max ARE

Subject 56 48 62 9 38 24 20
Unaided
ACE 54 48 63 9 25 24 10
Linear 67 48 66 10 17 16 22
Regression
ANGEL 100 48 155 22 29 16 22
Best Metrics
ANGEL 114 48 160 23 29 30 34
All Metrics

Table 7. Paired sample t-Tests for ARE of subjects unaided and tools.

Comparison Mean Difference p Value
in ARE% (2 tailed)

Subject Unaided V ACE +1 0.893
Subject Unaided V Linear Regression −11 0.290
Subject Unaided V ANGEL Best Metrics −44 0.033∗

Subject Unaided V ANGEL All Metrics −58 0.015∗

Significant results: ∗ p < .05 ∗∗ p < .01

Despite the overall accuracy of the subjects’ estimates, 44% (11/25) subjectsmade adjust-
ments that were based on incorrect reasoning. Eight of these eleven adjustments involved
a misunderstanding about the relationship between the total project effort in person-hours
and maximum team size. Subjects reasoned, for example, that a project with a total effort of
250 person-hours and a maximum team size of 2, would take one person 500 person-hours
to complete.
Although adjustments based on maximum team size were based on a misunderstanding,

estimates made in this way were not inevitably inaccurate. The maximum team size is an
indirect measure of overall project size, as projects with higher function point counts tend
also to have larger teams.
Different wording on the experimental material describing the project metrics may have

avoided this misunderstanding of the maximum team size metric. However, the misunder-
standing does suggest that the group of student subjects in this experiment were inexperi-
enced. A group of subjects drawn from industry may be more likely to apply well-reasoned
adjustments to the analogue effort value.
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Table 8. Mean ARE with linear size adjustments applied to analogue effort.

Estimation Mean N Standard Standard Pred(.25) % Cases % Cases
Method ARE% Deviation Error % Min ARE Max ARE

Subject 39 50 38 5 36 60 14
+ Size Adj.
ANGEL All 46 50 46 7 24 48 20
+ Size Adj.
ACE 55 50 62 9 24 38 20
ANGEL Best 60 50 61 9 20 36 38
+ Size Adj.
Linear 68 50 65 9 16 12 48
Regression

4.3. Comparison of Analogue Selections plus Linear Size Adjustment

The project data set used in this experiment shows a strong correlation between total
project effort and size in function points. The Pearson correlation between total effort
in hours and unadjusted function points is 0.97 (p < .001) for the 19 projects. This high
value is influenced by the three largest projects in the data set. A more conservative es-
timate of the correlation, which excludes these three outliers, is 0.68 (p < .01). Project
size in unadjusted function points explains more than two thirds of the variation in total
effort.
When the selected analogue differs appreciably in size from the project to be estimated,

adjusting the analogue’s effort value to take account of the difference in size should im-
prove the accuracy of the estimate. This is the advantage that ACE and the subjects’ unaided
estimates have over the ANGEL methods that use the analogue effort value without adjust-
ment. The linear regression model also takes size into account, as the independent variable
is unadjusted function points.
A linear size adjustment was applied to the effort values for the analogues selected by the

two ANGEL methods. A linear size adjustment was also applied to the effort values for
the subjects’ selected analogues, since 44% of subjects unaided estimates were based on
poorly reasoned adjustments. This allows us to compare the accuracy of estimates based on
the analogue selection strategies of ACE, the subjects and ANGEL. The MARE for these
methods with size adjustment are shown in Table 8.
The subject who failed to make effort estimates did however manage to select analogues

for the two projects in their exercise, so the number of comparisons shown below is 50,
rather than 48 (Table 8).
Table 9 shows that the MARE of the ANGEL estimates improves dramatically when a

linear size adjustment is applied. Estimates based on the subjects’ analogue selection plus
a linear size adjustment also prove significantly more accurate than the subjects’ unaided
estimates.
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Table 9. Paired sample t-Tests showing improvement due to size adjustment.

Comparison Mean Difference p Value
in ARE % (2 tailed)

Subject Unaided V Subject Analogue +16 .042∗

+ Size Adjustment
ANGEL All Metrics V Angel All Metrics +78 .001∗∗

+ Size Adjustment
ANGEL Best Metrics V ANGEL Best Metrics +52 .013∗

+ Size Adjustment

Table 10. Paired sample t-Tests comparing ARE for size-adjusted estimates.

Comparison Mean Difference p Value
in ARE % (2 tailed)

Subject Analogue V ANGEL All Metrics −7 .119
+ Size Adjustment + Size Adjustment
Subject Analogue V ACE −15 .041∗

+ Size Adjustment
Subject Analogue V ANGEL Best Metrics −21 .001∗∗

+ Size Adjustment + Size Adjustment
Subject Adjustment V Linear Regression −29 <.001∗∗
+ Size Adjustment
ANGEL All Metrics V ACE −9 .312
+ Size Adjustment
ANGEL All Metrics V ANGEL Best Metrics −14 .017∗

+ Size Adjustment + Size Adjustment
ANGEL All Metrics V Linear Regression −19 <.001∗∗

+ Size Adjustment
ANGEL Best Metrics V ACE +5 .521
+ Size Adjustment
ANGEL Best Metrics V Linear Regression −8 .280
+ Size Adjustment

Significant results: ∗ p < .05 ∗∗ p < .01

When the analogical methods with linear size adjustment are compared with each other
and with the linear regression model (Table 10) the subjects’ analogue selection plus linear
size adjustment stands out as the most accurate method. Its MARE is significantly lower
than all methods except one, ANGEL “All Metrics” with linear size adjustment. The
subjects’ analogue selection plus size adjustment also has the high proportion of cases with
minimum ARE (60%) and the lowest proportion of cases with the worst ARE (14%).
The impact of a linear size adjustment on the accuracy of ANGEL’s estimates can be

seen in the results for the data in “Set 15” used in the estimation exercise. Figure 2 shows
the ANGEL “All Metrics” estimates for projects 1 and 11 for “Set 15”, with and without
linear size adjustment. ANGEL has selected project 2 as the analogue for both project 1
and 11. The unadjusted function point count for project 2 is 1834. Project 11 has a much
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Figure 2. ANGEL “All Metrics” estimates for set 15.

lower adjusted function count of 526. Before the size adjustment is applied, the effort for
project 11 is over-estimated by 260%. After the size adjustment is applied the estimate is
only 3% over the actual effort value. This example shows the dramatic improvement in
accuracy that the linear size adjustment provides in this data set.
Project 1 has an unadjusted function point count of 1164, considerably closer to that of

the analogue project 2. When the linear size adjustment is applied in this example the
accuracy of the estimate worsens from 16% to 26%. No single method will provide the
most accurate estimates in all cases.
When no size adjustment is applied to the analogue effort value ANGEL “Best Metrics”

has a lowerMARE thanANGEL “AllMetrics”. This is not surprising since the best metrics,
for each subset of projects, are selected byminimisingMARE.However, when the linear size
adjustment is applied ANGEL “All Metrics” has a significantly lower MARE than ANGEL
“Best Metrics”. If the best metrics for the project samples had been selected by minimising
the ARE of estimates with linear size adjustment, then this result may have been reversed.
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Figure 3. Productivity of distributed and non-distributed projects.

Nevertheless, ANGEL “All Metrics” has selected an appropriate set of analogues to base
effort estimates on. Its analogue selections are explored in more detail in section 4.4 below.
The linear regression model has a significantly higher MARE than both the subjects’

analogue selection plus linear size adjustment and ANGEL “All Metrics” with linear size
adjustment. It now has nearly half the cases with the maximum ARE. In comparison to the
size adjusted analogical methods, the linear regression model is a poor performer overall
for this project data set. However, there are cases where the linear regression model gives
a satisfactory estimate. Figure 2 shows the regression line for “Set 15”. The regression
estimate for project 1 over-estimates the effort by only 13%, which is more accurate than
either the adjusted or unadjusted ANGEL estimates.

4.4. Sources of Advantage in Analogue Selection

When the same linear size adjustment is applied to the analogue selections of the subjects,
ACE and ANGEL, the subjects appear to have selected the most appropriate analogues.
The estimates based on their selections are the most accurate of all the methods. Is there
anything characterising the subjects’ selections to explain their relative success?
The productivity of projects within the data set, measured in unadjusted function points

per hour, is lower for the projects that developed distributed (client-server) than projects
which developed non-distributed systems. Figure 3 shows a scatter plot of project pro-
ductivity. There is no overlap between the productivity values of projects in the two sub-
sets.
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Table 11. Comparison of project productivity.

Distributed? N Mean Standard Standard
Deviation Error

UFP per Hour Yes 6 .129 .044 .018

No 13 .361 .152 .042

Figure 4. Productivity of projects by language.

A t-Test shows a significant difference inmean productivity for projects in the two subsets
(p < .001), although the sample sizes are small (Table 11). The distributed systems built
by projects in this data set had a greater proportion of non-functional requirements than
the non-distributed systems, which are not reflected in the function point counts, and thus
affect the apparent productivity of the projects.
Common selection criteria used by subjects to select analogues were a match on program-

ming language and a match on the “Distributed” metric of the target project. 56% (14/25)
of the subjects mentioned a match on the “Distributed” metric. The actual proportion of
the subjects’ analogues that matched on the “Distributed” metric was 98% (49/50 cases).
The proportion of subjects mentioning a match on programming language was 72%

(18/25). The actual proportion of analogues that matched was 74% (37/50). There is
no clear relationship between project productivity and language (Figure 4). However,
the match on the language may have helped boost the proportion of analogues matching
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on the “Distributed” metric. All the 4GL projects and all but one of the COBOL-only
projects were not distributed. Suchmulti-colinearity between softwaremetrics is a common
occurrence.
It is probable that the match on the “Distributed” metric contributes to the superior

accuracy of the subjects’ estimates, because of the relationship between project productivity
and whether or not a project is distributed.
In contrast to the subjects’ analogue selections, 22% (11/50) of the ACE analogue se-

lections fail to match the target project’s “Distributed” metric. In particular, there are 10
cases where ACE selected an analogue that did not match the target project’s “Distributed”
metric but the subjects did. For these 10 cases the MARE of the subjects’ size-adjusted
estimates is 29% whereas the mean for ACE’s estimates is 87%. These cases include one
where ACE is very inaccurate, with anARE of 402%. Even excluding this case, the subjects
size-adjusted estimates are clearly more accurate than ACE’s, with a MARE of 27% com-
pared with ACE, 52%.
A match on the target project’s “Distributed” metric does not explain all of the subjects’

advantage in analogue selection, however. In 34% (17/50) of estimates ACE selects a
different analogue to the subjects’, but both select analogues that match the target project’s
“Distributed” metric. The subjects’ size-adjusted estimates are still more accurate than
ACE’s with a MARE of 27% compared with ACE, 39%.
ANGEL “All Metrics” is the method whose analogue selections were next most suc-

cessful, compared with the subjects’. The ANGEL “All Metrics” analogues matched
the target project’s “Distributed” metric in 98% (49/50) cases, the same proportion as
the subjects. ANGEL “All Metrics” also selected the same analogues as the subjects in
62% (31/50) of cases. In the cases where ANGEL “All Metrics” selected a different
analogue to the subjects, whilst both matched the target on the “Distributed” metric, the
subjects were again more accurate with MARE of 39% versus ANGEL “All Metrics”,
60%.

4.5. Discussion of Findings

The results above show that people in this study are better than tools at selecting project
analogues from the small data sets provided. The subjects in this experiment needed to
consider only 15 projects as potential analogues and only seven metric values. Tool support
in searching a project repository is likely to be more valuable when there is a much larger
number of potential analogues and a richer variety of project information.
The subjects in this experiment were not expert. Close to half of themmade inappropriate

adjustments to the analogue effort value when deriving an estimate for the target project.
Nevertheless, their estimates compare favourably with those made by the tools. The ana-
logical approach which the subjects were instructed to employ may have contributed to
their success. Vicinanza et al. (1991) conducted an exploratory study of five software effort
estimators. They found that only one of the five employed an analogical approach, and that
this estimator made the most accurate estimates.
The subjects’ analogue selections were successful because in most cases they excluded

projects that did not match the target project on key attributes. Most of the subjects believed
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that matches on the “Distributed”metric or the language usedwere important. These beliefs
were appropriate for the data set used in this experiment.
Whenwe employ analogical reasoningweweigh up the relative importance of similarities

and differences between the source analogue and the target. In the estimation exercise, some
subjects reasoned that even when a potential analogue and the target project were similar
in all respects other than whether the projects were distributed, this dissimilarity was more
important than the other similarities. They rejected the potential analogue.
If the subjects’ beliefs about the importance of key project attributes had beenmisleading,

their analogue selectionsmay have been nomore successful than those ofANGEL andACE.
In contrast to the subjects’ analogue selection strategy, ACE and ANGEL “All Metrics”
treated all project metrics equally. The vector space distance calculation of ANGEL and
the rank calculation based on deviation from the target project used by ACE both performed
relatively well.
Subjects were not given any information on how to select analogues prior to the estimation

exercise. However two of the subjects used the same ranking algorithm as ACE. This
suggests that where estimators have no prior beliefs about the relative importance of project
metrics, they may be satisfied with the ranking methods of tools such as ACE.
Applying a linear size adjustment to the analogue project effort results in estimates that are

significantlymore accurate than estimates derivedwith adjustment on the data set used in this
experiment. We expect this improvement where the analogue selected differs appreciably in
size from target, because there is a strong relationship between size in unadjusted function
points and effort in the experimental data set. It is common for project data sets to have some
size metric strongly correlated with effort, so linear size adjustment is a good candidate for
a simple adjustment rule.
Although it proved inaccurate in this study, the strategy of using the analogue effort value

without adjustment may be appropriate in situations where a potential analogue and target
are similar in size and other attributes. There may be little basis for believing that either
increasing or decreasing the analogue effort value will improve the accuracy of the estimate
in such situations. Even without adjustment ANGEL’s estimates proved the most accurate
of all methods in some cases.
A strategy of averaging the effort values of several analogues is likely to improve the

accuracy of ANGEL’s estimates where the average size of the analogues is closer to the
target than any of the analogues individually. The use of averages in Shepperd et al. (1996)
may explain the similarity in inaccuracy of their analogy-based estimates and those based
on regression models.
In this experiment analogy-based estimates without adjustment were less accurate on

average than estimates derived fromaunivariate linear regressionmodel basedonunadjusted
function points. This is consistent with results reported by Briand et al. (1998) and Stensrud
andMyrtveit (1998). However, when a linear size adjustment was applied to the analogue’s
effort value, the analogy-based estimates were more accurate on average than the regression
estimates.
Although analogy-based estimation is successful on the experimental data set, it relies

on a variety of information being available about both the target project and potential
analogues. If an estimate were required for a target project and little was known about
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it or past projects except size and effort, a regression estimate would be an appropriate
choice.
When assessing estimationmethods, it is appropriate to compare the average error of each

as an overall measure of a method’s accuracy. Nevertheless, each method compared in this
study provided the most accurate estimate for some projects. The variation in accuracy of
different methods underscores the value of using more than one method and comparing the
results when putting effort estimation into practice.

5. Conclusion

In this study, people prove better than tools at selecting project analogues, when provided
with a small data set. It appears people perform well when they exclude projects that do
not match the target project on key attributes associated with effort.
Applying a linear size adjustment to the effort value of the project selected as the analogue

resulted in estimates that are more accurate on average than estimates derived without
adjustment or estimates derived by people unaided. The inexperience of the estimators in
this study may have contributed to the inaccuracy of their adjustments.
These conclusions indicate that it can be fruitful to combine the talents of people and

tools in the task of software effort estimation. This is a welcome conclusion, since as other
authors observe (Hughes, 1996; Stensrud and Myrtveit, 1998), the role of tools should be
to support estimators rather than supplant them.
Estimation by analogy, with adjustment to the analogue’s effort value, has proved more

accurate in this study than estimates derived from a univariate linear regressionmodel based
on unadjusted function points. However, when no adjustment is applied to the effort value
of the analogue, the regression model proves more accurate. The current study suggests it is
prudent to adjust the analogue’s effort value, if the selected analogue differs widely from the
target project along a dimension highly correlatedwith effort, such as size in function points.
The satisfactory performance of analogy-based estimation in this study is encouraging,

as it is a method that is both easy to understand and simple to apply. This augurs well for a
more formal application of this method in industrial settings.
Optimism aboutmethods for software effort estimation based on comparative studies such

as this must be tempered by the observation that the average error in estimates reported for
even the best methods is often 50% or higher. Also, these studies are conducted when
projects are complete, and therefore their final sizes are known. In practice, estimates of
effort must be made based on estimates of a project’s final size, which is likely to increase
the error in effort estimates.
Nevertheless, methods such as software effort estimation by analogy offer practitioners

the opportunity to estimate in a manner that is consistent and clearly understood, as an
alternative to inspired guess-work based on foggy memories. The goal of an estimation
method is to provide software developers with a range of feasible effort estimates, based on
the current knowledge of a project. The task of project managers remains the difficult one
of using estimates to set a target for the project, and then working to achieve that target in
the face of inevitable challenges that the project will encounter.
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Notes

1. In previous research the size range of projects used was from around 100 to 2300 function points.
2. The accuracy of each estimation method has been assessed primarily by calculation of the absolute relative

error, (ARE), of each estimate. ARE, as a percentage of the actual effort for a project, is defined by: ARE =
100|(Actual Effort−Estimated Effort)|/Actual Effort. The mean ARE (MARE) can be calculated for a set of
estimates. This accuracy measure has been used widely in the software cost estimation literature (for example
Kemerer, 1987; Jeffery and Low, 1990; Mukhopadhyay et al., 1992; Schofield et al., 1996).
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