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Abstract—Background: Software effort estimation has been one of the major challenges in software engineering. Previous models are
evaluated using measures such as MRE and pred(r), which assess performance on the basis of prediction accuracy.
Objective: Instead of focusing on algorithmic complexity, there is a need for 1)understanding the data and 2) providing accurate
estimations.
Method: We adapt greedy agglomerative clustering (GAC) algorithm to software effort estimation and use it as an analogy based
estimator to build our model: Tree Estimation and Assessment Knowledge(TEAK).
Result: TEAK provides an analogy number for each test project and get lower MRE values than any other k -based method.
Limitation: There are multiple problems with case based reasoning (CBR) methods such as feature subset selection, and number
analogies to use (k value)[1]. As our intention is to focus on finding the suitable k value, we do not address other CBR related
problems.
Conclusion: With TEAK it is possible to better understand the data, get rid of irrelevant analogies and use different number of analogies
for each test instance. This approach has outperformed all other k -based CBR methods upto 69% in terms of pred(25) values.

Index Terms—Software Cost Estimation, Greedy Agglomerative Clustering, k -NN

!

1 INTRODUCTION

One of the key challenges in software industry is the
accurate estimation of the development effort, which
is particularly important for risk evaluation, resource
scheduling as well as progress monitoring[1]. Inaccura-
cies in estimations leads to problematic results, for in-
stance overestimation causes waste of resources, whereas
underestimation results in approval of projects that will
exceed their planned budgets[2].

Although a significant number of methodologies have
been proposed for effort estimation over the years, they
have suffered from common problems such as very
large performance deviations [3] as well as being highly
dataset dependent. Comparative studies regarding best
practices have therefore shown contradictory results[4].

In the recent years a significant research effort was
put into utilizing various machine learning (ML) algo-
rithms as a complementary or as a replacement to pre-
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vious methods[1][5][6][7]. However, ML methods have
an extremely large space of configuration possibilities[1].
When we consider configuration possibilities of ML
methods induced on different datasets each having a
characteristic of its own, it is not a surprise to see
contradictory results[4][1].

The predictive performance of any method is dataset
dependent. Previous research has reported case based
reasoning(CBR) or estimation by analogy[1] being able
to produce more successful results in comparison to
traditional regression based methods[7][8]. Furthermore
CBR has been favoured over other methods when the
dataset contains discontinuities[1]. However, it was also
remarked that CBR techniques are subject to a variety
of decisions that have a strong impact on its predictive
performance. Such decisions include selection of features
and/or instances, deciding on the number of analogies to
be used and the adaptation strategy[1]. In this paper, we
focus on deciding the number of analogies to be used (i.e.
k nearest neighbours or projects[1]). Our claim is that we
can avoid sticking to a fixed best performing number of
analogies that changes from dataset to dataset. We use an
alternative method to tune CBR techniques by proposing
greedy agglomerative clustering algorithm (GAC).

GAC starts with the single project instances within the
train dataset and treats them as the leaves of a GAC tree.
Then it iteratively combines closest two projects to form
a parent node, the same procedure applies for the parent
nodes to build their parents and so on. At the end we end
up with a binary tree build by GAC, whose leaves are
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the actual project instances and whose nodes are clusters
of those single projects.

In our study, we form two GAC trees from the project
data within our train set to build our model tree es-
timation and assessment knowledge (TEAK). The first
GAC tree (GAC1) is built on all the available train
data and is used to decide on the node that has the
lowest performance-variance, thereby pruning irrelevant
train instances that would otherwise introduce higher
variance and lower prediction accuracies on the results.
The train instances which were clustered in the lowest
performance-variance node are then used for building
up the second GAC tree (GAC2). At the end our estima-
tion becomes the median of the projects that are clustered
in the lowest performance-node of GAC2.

Our aim by utilizing two GAC trees is to introduce a
CBR calibrating method that makes its estimations via
1) building itself by discovering the characteristics of
a particular dataset on its own and 2) pruning irrel-
evant instances on the basis of performance-variance.
Our rigorous experiments that were conducted on 10
highly dissimilar software effort datasets have shown
that GAC2 estimations are about 69% less error prone
than any fixed-k analogy approach (k is the number of
analogies) on the basis of magnitude of relative error
(MRE) subject to 95% Wilcoxon signed rank test.

The rest of the article is organized as follows: Section
2 provides related work. Section 3 defines the main
problem discussed in this paper and the methodology
we propose to address this problem. Section 4 presents
the results we obtained. Lastly Section 5 summarizes our
conclusions and future work.

2 BACKGROUND

Software effort estimation has been extensively stud-
ied in literature since 70’s. We can group effort esti-
mation methods under two main categories: 1) Expert
based methods and 2) model based methods, where
the former proposes making use of the experiences
of human experts and the latter favouring algorithmic
approaches. The first model based methods were para-
metric models[9][10][11]. Although they generate suc-
cessful results in certain datasets, parametric approaches
suffered from local tuning problems when they were
to be applied in another setting, i.e. they needed to be
tuned to local data for high accuracy values[12]. On the
other hand, local tuning requires collection of local data
and the whole measurement and collection process is a
challenge on its own[12][3].

To address the local tuning problems of regres-
sion based methods, machine learning (ML) algorithms
have been proposed as they do not require local tun-
ing. Basically ML based models learn from the past
projects’ effort data to make predictions for the future
projects[13][7][14][15].

However, industry’s practices diverge from promis-
ing highly complicated formal methods and a software

project manager’s mental process of effort estimation is
closer to CBR methods[16]. Indeed from our hands on
experiences in software effort estimation model building
in industry settings, we end up with similar conclusions
as well. Furthermore, software effort datasets are char-
acteristically noisy datasets and CBR methods are more
capable of handling noisy datasets than regression based
models[16].

CBR can be defined as predicting the effort of a project
by making use of similar past projects (analogies). To
find the analogies, a number of methods can be em-
ployed: Nearest neighbour algorithms like k-NN, expert
guidance or goal based preference[7]. To predict the
number of analogies (k) while making an estimation is a
challenge with CBR methods, since the number k plays
a very critical role in the success of these methods[1].
In literature there are a number of studies proposing
different k values in different contexts. Babu et. al.
addresses the issue of selecting prototypes, which they
define as a process of finding representative patterns
from data[17]. In their study Babu et. al. uses static
selection rules to determine the best neighbourhood
around a test instance and such rules show uniformity
for all test set. On the contrary, we propose a selection
scheme that uses dynamic rules, which are tuned per
each single test instance. A further approach proposed
by Huang et. al. for prototype optimization for k-NN
uses a neural-net-based method.[18]. Method of Huang
et. al. is capable of updating more than one prototype
in case of a misclassification and constructs not only the
prototypes but also feature weights during the selection
and optimization process. Therefore, from a theoretical
point of view there is much space for adding in more
machinery into standard estimation methods. However,
there is hardly any strong evidence that this is useful
in software effort estimation. What is more, studies that
involve much machinery induced on limited and not
publicly accessible datasets may reduce the reproducibil-
ity of experiments as well as their external validity. In
our study we are offering a prototype selection tool that
uses single data structure called GAC tree twice (for
GAC1 and GAC2).

Some studies favour using a pre-determined
number of analogies in software effort estimation
studies[19][20][21]. Lipowezky et. al. proposes a policy
that looks for only one prototype, which can be regarded
as extreme when dealing with datasets as small as those
in software effort estimation[19]. Furthermore, we would
like to base our estimations on some sample set of past
data, not only on one record, since only one record may
be misleading in small and heterogeneous datasets.
Kirsopp et. al. on the other hand proposes making
predictions from the 2 nearest cases as it was found as
the optimum value for the datasets of their study[20].
In a further study Kirsopp et. al. have increased their
accuracy values with case and feature subset selection
strategies[21]. Leaving the feature selection to future
work, with dynamic selection of instances we have
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attained higher accuracy values than those reported
for static rules or methods. Another study focusing
on instance selection as well as feature weighting in
context of CBR is conducted by Li et. al. [22]. In their
study Li et. al. perform rigorous trials on actual and
artificial datasets and they observe effect of various k
values. However, we believe that reflection on dataset
before applying to different algorithms under multiple
settings is of more significance. In this study we propose
making use of greedy agglomerative clustering (GAC)
to address this challenge.

GAC was previously utilized in various areas: Data
mining[23], database systems[24] and bioinformatics[25].
The agglomerative (bottom-up) clustering method we
use in this research groups similar individual projects
into bigger clusters until a root is formed[26]. To find the
similarity between projects, we use Euclidean distance.
In our proposed model, GAC is used in software effort
estimation domain to remove noisy data points and to
automatically come up with the number of analogies to
be used.

3 METHODOLOGY

In this paper we are proposing a new approach to CBR
calibration methods: Greedy Agglomerative Clustering.
To the best of our knowledge, it has not been used
previously in software effort estimation domain. While
proposing our method for CBR calibration, we would
like to address the problem of number analogies to use
(k value) among the previously reported issues related to
CBR methods. In a study conducted by Kadoda et. al[1],
the impact of the number of analogies selected while
making predictions were investigated on software effort
data and it was reported that the underlying distribution
of dataset had a decisive role on that number. Fur-
thermore, they also suggested that datasets come with
their inherent complex properties and it requires a lot of
time and effort to adapt a CBR system to a particular
dataset[1]. In our study we would like to answer the
following research questions.

1. How can we better understand the dataset and the
underlying characteristics of the dataset?

2. How can we ease the procedure of selecting the
number of analogies to be used and improve the
performance of current CBR methods?

We propose a model called TEAK on the basis of
performance-variance. We compare our model with
other methods in terms of magnitude of relative error
(MRE), prediction at level r (pred(r)) and ”win-tie-loss”
values. Each of these performance measures will be
defined in detail in Section 3.4.

3.1 Data
Dataset characteristics are very important to evaluate
the performance of a model. Since many previous mod-
els are criticized for having been tried on single or a

very limited number of datasets[4][1], we conducted
our experiments on 10 different datasets coming from
3 different sources.

The first source we have used is PROMISE data
repository[27]. PROMISE data repository is an on-line
publicly available data repository and it consists of
datasets donated by various researchers around the
world. The datasets we have elicited via PROMISE data
repository are: Cocomo81[9], Nasa93[28], Desharnais[29]
and Albrecht[30].

Another source of data we have made use of is
the Bogazici University Software Engineering Research
Laboratory repository (SoftLab)[6]. The dataset we have
taken from SoftLab is SDR and it contains projects of
various software companies from Turkey.

The last source we have used is the International
Software Benchmarking Standards Group (ISBSG). IS-
BSG is a non-profit organization and it maintains IS-
BSG dataset, which is a project management dataset
consisting of contributions from various companies and
organizations[31].

In our study we also wanted to see the performance
of our model TEAK on homogeneous datasets in terms
of a particular property. Therefore we only selected
homogeneous datasets that are as big as the smallest
heterogeneous dataset in terms of instance number.

Cocomo81 dataset enables the researchers to classify
projects in terms of three different development modes:
Organic, semi detached and embedded [9]. Therefore
we used development mode as our breakdown crite-
ria in Cocomo81 and took two homogeneous subsets
of Cocomo81: Cocomo81o and Cocomo81e. Cocomo81o
includes organic projects and Cocomo81e includes em-
bedded projects.

For Nasa93 dataset our breakdown criteria was the
development center of projects. Projects in Nasa93 are
developed in one of the six different development cen-
ters. We took two subsets of Nasa93 dataset on the basis
of their development centres: Nasa93c2 and Nasa93c5.
Nasa93c2 is composed of projects that were developed
in center 2 whereas Nasa93c5 contains projects that were
developed in center 5.

Projects in ISBSG dataset can be grouped according to
their business domains. In previous studies, breakdown
of ISBSG according to business domain has also been
used[32]. Among different business domains we selected
banking due to:

1. Banking domain includes many projects whose
data quality is reported to be high (ISBSG contains
projects with missing attribute values).

2. ISBG Banking domain is the dataset we have ana-
lyzed and worked for a long time due to our hands
on experience in building effort estimation models
in banking industry.

We will represent the banking domain subset of ISBSG
as ISBSG-Banking.

We provide further details regarding 10 datasets that
we used in our research in two categories: 1) General
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properties and 2) statistical properties. General proper-
ties include name of the dataset which we use through-
out the paper, number of features and the number of
instances within the dataset, whereas statistical proper-
ties include statistical facts concerning the independent
variable (effort) such as mean, median, minimum, max-
imum and skewness. General properties of datasets can
be found in Table 1 and statistical properties are reported
in Table 2.

TABLE 1: General Properties of Utilized Datasets

Dataset Features Projects Content
Cocomo81 17 63 NASA projects

Cocomo81e 17 28 Cocomo81 embed-
ded projects

Cocomo81o 17 24 Cocomo81 organic
projects

Nasa93 17 93 NASA projects
Nasa93c2 17 37 Nasa93 projects

from center 2
Nasa93c5 17 40 Nasa93 projects

from center 5
Desharnais 12 81 Canadian software

projects
SDR 22 24 Turkish software

projects
Albrecht 7 24 Projects from IBM
ISBSG-Banking 14 29 Banking projects of

ISBSG

TABLE 2: Statistical Properties of Utilized Datasets

Dataset Mean Median Min Max Skewness
Cocomo81 683.52 98.00 5.90 11400 4.36

Cocomo81e 1152.80 354.00 9.00 11400 3.37
Cocomo81o 59.87 46.00 6.00 240.00 1.68

Nasa93 624.41 252.00 8.40 8211.00 4.18
Nasa93c2 222.91 82.00 8.40 1350.00 2.37
Nasa93c5 1011.10 571.40 72.00 8211.00 3.46

Desharnais 5046.30 3647 546 23940 1.96
SDR 32.04 12.00 2 342 3.93
Albrecht 21.87 11.45 0.5 105.20 2.15
ISBSG-Banking 5357.00 2355.00 662 36046 2.62

As we can see from Table 2, all the datasets have pos-
itive skewness and the skewness values range from 1.96
to 4.36, which indicates that the datasets are extremely
heterogeneous with as much as 40-fold variation. We can
conclude that the datasets diverge both in terms of their
statistical characteristics as well as their domains and
sizes. Therefore we make sure that we test the proposed
model adequately.

3.2 TEAK Model

Agglomerative clustering is a commonly used cluster-
ing method in various fields including data mining[23],
database systems[24] and bioinformatics[25]. The pop-
ularity of making use of agglomerative clustering is
its ability to use arbitrary dissimilarity or distances
functions[26], which also makes it an appealing choice
of clustering method for software effort data as software
effort datasets also exhibit very dissimilar characteristics.

Fig. 1: A Simple GAC Tree Example

Greedy agglomerative clustering (GAC) is a greedy
algorithm that starts with a set of instances and builds
up a binary clustering tree with those instances ac-
cording to a distance function[26]. In our research we
use Euclidean distance function while building up our
GAC tree. The formula of Euclidean distance function is
given in Equation 1, where x and y correspond to two
different projects, whereas xi and yi correspond to their
ith features.

Distance =

√√√√
n∑

i=1

(xi − yi)2 (1)

At the beginning of GAC, we can think of each in-
dividual project as a cluster of 1 instance. GAC then
calculates the Euclidean distance between every two
instance and greedily clusters closest two projects to
form a cluster in one higher level of the tree. Then GAC
continues to follow the same procedure at a higher level
and so on until all the instances are clustered at a central
cluster. Since the final structure is a binary tree as can
be seen from Figure 1, we will use the terms cluster
and node/root interchangibly from now on. Figure 1 is
a very simple GAC tree that can be formed on a simple
dataset of 4 projects. Let us assume that p1, p2, p3 and
p4 are four initial projects of a hypothetical software
effort dataset and they form Level 1 of the GAC tree.
In that dataset p1-p4 and p2-p3 form the closes pairs of
projects. Therefore, they are clustered to form the nodes
at a higher level, Level 2. Finally node 1 and node 2 are
clustered to form the node at Level 3 and since there are
no more nodes to cluster, we are done building up the
GAC tree.

In this research we are building up two GAC trees that
are very similar to GAC tree of Figure 1. The first GAC
(GAC1) tree we build uses n-1 instances of a software
effort dataset of size n and uses 1 instance for test.
Then all the subtrees of GAC1 are traversed and their
variances are stored. So as to remove the bias coming
from numeric differences, stored subtree variances are
normalized. Then TEAK probabilistically selects nodes
according to their normalized variance values. The actual
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currentLevelNodes = Training Instances
levelIndex = 1
tree.level(levelIndex).nodes = currentLevelNodes
{As long as we did not get to root, continue forming GAC}
while size(currentLevelNodes) > 1 do

nextLevelNodes = null
levelIndex = levelIndex + 1
repeat

[closest1,closest2] = findClosest(currentLevelNodes)
nodeToAdd = combineAsNewNode(closest1,closest2)
tree.level(levelIndex).nodes.add(nodeToAdd)
deleteFromCurrentLevelNodes(closest1,closest2)

until size(currentLevelNodes) == 0
currentLevelNodes = tree.level(levelIndex).nodes

end while

Fig. 2: GAC Pseudocode

if normalizedV arianceNodei ≤ rand()bias then
GAC2 ← GAC2 + Nodei

end if

Fig. 3: Probabilistic Selection Pseudocode

project instances that were used to create the selected
subtrees are used to form the second GAC tree (GAC2).
Furthermore, TEAK enables its user to fine-tune GAC2
tree with the help of a variables called bias that represents
the user’s expert bias. The probabilistic selection of
nodes from GAC1 as well as how bias works can be seen
from pseudocode given in Figure 3.

We call our model, which is a special form of two
cascaded GAC trees as Tree Estimation and Assessment
Knowledge(TEAK).

Finally once GAC1 and GAC2 are built, the estimation
process starts. For estimation the test instance moves
along the tree starting from the root until it finds the
so called lowest-performance-variance node. The decision
whether a test instance will move from one node to
another node in the tree depends on comparison of
variances of the current node and the weighted vari-
ance of its subtrees. Given three subtrees containing
N = N1 + N2 + N3 leaf nodes with variance values
V 1, V 2, V 3 then weighted variance beneath a node is
calculated using Equation 2.

WeightedV ariance =
V 1 ∗N1

N
+

V 2 ∗N2
N

+
V 3 ∗N3

N
(2)

If weighted variance of subtrees beneath a node is
smaller than that of the node, then the test instance
chooses to move to either left or right child that has the
the lowest variance. On the other hand, if the weighted
varince of subtrees is larger than that of their root node,
test instance stays at that node. Finally the median of
the train instances that form the node at which test
instance stops becomes the estimated effort value for
that test instance, i.e. we choose to use k-many analogies
for estimation where k is the number of train instances
that are in the selected node. The node at which the test
instance stops is called the lowest-performance-variance

Dataset = Cocomo81, Cocomo81e, Cocomo81o, Nasa93,
Nasa93c2, Nasa93c5, Desharnais, Albrecht, SDR, ISBSG-
Banking
for i = 1 to 20 do

Dataset = randomize(Dataset)
for all T in Dataset do

testSet = T
trainSet = Dataset minus T
GAC1 = build GAC tree on trainSet
selectedNode = start from root and select lowest
variance node from GAC1
GAC2 = build GAC tree on unique instances of
selectedNode
finalNode = start from root and select lowest
variance node from GAC2
predicted effort for T = median(finalNode)

end for
end for

Fig. 4: TEAK Pseudocode

Fig. 5: Execution of TEAK

node.
The aforementioned estimation procedure is per-

formed for each individual instance in an effort dataset
separately. In other words, each instance within the
dataset becomes a test instance for once and the remain-
ing instances are used as its train instances to build the
two GAC trees in TEAK. To better understand the TEAK
algorithm, we provide the pseudocode in Figure 4 and
we also provide a schema of the algorithm in Figure 5.

Our proposed model, TEAK, may use more than two
GAC trees, since the dataset itself usually defines the
number of GAC trees to be used. As long as we have
enough instances to build a third or fourth GAC tree,
there is no number limit for the GAC trees. However,
since the size of our ten datasets in this study range
from 24 instances to 93 instances, the instances left for
building up GAC2 can be as low as 2. Therefore, due
to characteristics of our effort datasets, TEAK uses 2
GAC trees. Tricky point here is that unlike k-based CBR

timm
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sub-tree
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you dont say why GAC2 was generated
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methods, TEAK does not need any expert interference
to discover dataset characteristics so as to decide on the
number of trees to be built or the number of analogies
to be used in estimation.

Regular k-based CBR methods start with single analo-
gies and increase this number depending on the overall
performance of the whole dataset. Finally it uses the k
value that yields the overall best performance. How-
ever, a fixed k value yielding overall best performance,
does not necessarily provide the best performance for
individual projects. We provide further details about the
difference between individual and overall best perform-
ing k values in Section 4. Unlike regular k-based CBR
methods, TEAK starts with all the instances in the train
set and gradually prunes irrelevant instances on the basis
of performance-variance. Furthermore, the pruning of
irrelevancies is not performed for overall dataset but
for each individual test instance, thereby considering the
individual performances of each instance.

In that respect TEAK may resemble Ada Boost
algorithm[33]. Ada Boost is basically composed of cas-
caded learners. At each round of Ada Boost, training set
for a learner is selected probabilistically from the exam-
ples on which the previous learner performed poorly.
Therefore, the selection criteria becomes the score of
performances. The decision making then is performed by
combination of learners via voting. The first difference
of TEAK from standard Ada Boost is that it defines the
number of learners (GAC trees) it will use by discovering
the properties of the dataset. This feature makes it a
better choice for software effort domain as datasets have
varying characteristics. Secondly, while still probabilis-
tically selecting train instances for GAC2, TEAK uses
performance-variance. Finally, TEAK does not use voting
of all learners. It uses the prediction of the the last learner
(GAC2) as the prediction of the model.

3.3 Experimental Design
We used ten different datasets from three different
sources in our experiments to ensure that we address
the criticism regarding previous studies in terms of
trying models only on a limited number of datasets
from limited sources and/domains[34][1][4]. For each
dataset we follow the same testing strategy, we use
leave-one-out method[33] to select our test instance and
use the remaining instances as our training instances.
We perform twenty runs on every dataset. In each run
we select a random instance from the dataset, run TEAK
on training instances and store our estimation, then we
select another random instance and re-run TEAK. This
estimation procedure is performed until all the instances
within the dataset are used as a test instance.

For comparing TEAK with other k-based methods, we
made use of various k values, since different researchers
propose making use of different k values[1][35]. Further-
more, number of analogies to be used for estimation,
i.e. k-value is dataset dependent and plays a decisive

role in estimation accuracy. Therefore, we included a
wide range of k-values in our experiments so as to
thoroughly compare the performance of TEAK to other
k-based methods. In our experiments we used 5 static
k values: 1, 2, 4, 8, 16. Also we exploited one dynamic
k value, which is the best performing k value for each
particular dataset. To find the best performing k value of
a dataset, we randomly selected ten instances from the
dataset as our test set. Then we chose the k value that
yielded the best performance as the best performing k
value for that dataset.

3.4 Performance Measures

Our main performance measure that we use in our study
is magnitude of relative error (MRE), which is basically
the difference between the predicted and the actual value
of a project effort value. Since we want to compare the
estimation accuracy of our model to other models on
a per instance basis, we used MRE as our comparison
method rather than using other common comparison
criteria such as mean maginitude relative Error (MMRE)
or median magnitude relative error (MdMRE)[32]. Cal-
culation of MRE for the ith project in a dataset is given
in Equation 3.

MRE =
|actuali − predictedi|

actuali
(3)

Another error based performance measure we use is
pred(r). Pred(r) is the prediction at level r, i.e. the per-
centage of predictions whose error percentage is within
± r percentage of the actual value. The formula for
calculating pred(r) is given in Equation 4.

Pred(r) =
100
N

×
N∑

i=1

{
1 if MREi <= r
0 otherwise (4)

As we have described in Section 3.3, we make 20
rounds for each dataset and in each round we use each
individual project as a test instance. For 20 runs, we store
the MRE values for both TEAK and other k values. After
that we can compare performance of TEAK to any other
k-based CBR method (k = i, i ∈ 1, 2, 4, 8, 16, bestk) on the
basis of mean MRE values and mean pred(25) values.

In addition to MRE and pred(25), we also made use of
win-tie-loss values to compare the performance of TEAK
to other k-based CBR methods. While calculating win-tie-
loss values, we first check if methodi and methodj are
statistically different according to 95% Wilcoxon signed
rank test in roundk. If they are not statistically different,
then we increase tiei and tiej . On the other hand, if they
turn out to be different, we check their mean MRE values
for all test instances in roundk. Then the win value of
method with lower mean MRE as well as the loss value
of the method with higher mean MRE value is increased
by one. The pseudocode for win-tie-loss calculation is
given in Figure 6

timm
timm - Dec 13, 2009 10:02 PM
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wini = 0, tiei = 0, lossi = 0
winj = 0, tiej = 0, lossj = 0
if WILCOXON(MRE′si, MRE′si) says they are different
then

tiei = tiei + 1;
else

if mean(MRE′si) < mean(MRE′sj) then
wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end if
end if

Fig. 6: Pseudocode for Win-Tie-Loss Calculation Between
Method i and j

3.5 Threats to Validity
We will address the threats to the validity of our under
four categories: 1) Internal validity, 2) external validity,
3) construct validity and 4) statistical validity.

Internal validity fundamentally questions to what ex-
tent the cause-effect relationship between dependent and
independent variables hold. For addressing the threats
to internal validity of our results, we used 10 datasets
and applied leave-one-out[33] in our experiments so that
for each iteration we used a different test instance and
a different train set.

External validity, i.e. generalizability of results ad-
dresses the extent to which the findings in a particular
study are applicable outside the specifications of that
study[36]. To ensure the generalizability of our results,
we paid extra attention to include as many datasets
as possible coming from various resources and used
10 datasets from 3 different sources in our study. Our
datasets contain a wide diversity of projects in terms of
their sources, their domains and the time period they
were developed in. Datasets composed of software de-
velopment projects from different organizations around
the world are used to generalize our results[6]. We
also think that reproducibility of results is an important
factor for external validity. Therefore, we have purposely
selected publicly available datasets.

Construct validity (i.e. face validity) assures that
we are measuring what we actually intended to
measure[37]. In our research we are using MRE, pred(25)
and win-tie-loss values for measuring and comparing
performance of different models. Comparison of dif-
ferent models in software effort estimation domain by
using error based methodologies are criticized for be-
ing unreliable[38][39]. However, a big majority of effort
estimation studies use estimation-error based measures
for measuring and comparing performances of different
methods. We also used error based measures in our
study for three reasons: 1) They are practical options
for majority of researchers[40][41][3][42], 2) using error
based methods enables our study to be benchmarked
with previous effort estimation research and 3) MRE
measures the performance of a model on individual

instances, which is aligned with our datasets and ex-
perimental settings as we use leave-one-out method.

To validate our results statistically we employed statis-
tical significance tests. To mutually compare two classi-
fiers induced on multiple datasets, Wilcoxon signed rank
test is suggested[43]. The Wilcoxon signed rank test can
be viewed as the non-parametric counterpart of the t-
test[44]. Therefore, we used Wilcoxon signed rank test in
our study at a confidence level of 95%.

4 RESULTS

4.1 Results for Research Question 1

(a) Cocomo81 (b) Nasa93

(c) Desharnais

Fig. 7: Distribution of Optimum k Values

Our first research question was how we could better
understand the underlying characteristics of dataset.
Actually a majority of research studies in software effort
estimation tries to address this question. However, as
it was reported[34][45] most of the methods in litera-
ture were tested on a single or a very limited number
datasets, thereby reducing the credibility of the pro-
posed method. To avoid this pitfall, we included many
datasets from different domains and different sources.
Although k-based CBR methods have been reported to
produce better results than traditional regression based
methods[46][7][8] and handle datasets with discontinu-
ities better[34], they still have limited predictive power
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due to the fixed number of analogies that they use. In
other words, a single best performing k value that is
yielding the lowest MRE values for the whole dataset
does not necessarily produce lowest MRE values for
individual projects. We can better see this fact from
Figure 7. To produce histograms given in Figure 7, we
calculated the optimum number of analogies, i.e. best-k
value that yielded lowest MRE value for each project
of a dataset. For a dataset of size n, optimum best-k
value can range from 1 to n− 1. What we can see from
Figure 7 is that for a considerable amount of projects
a fixed-k approach will be far from optimum. Since 3
datasets were enough to illustrate our viewpoint, we did
not include all ten projects into Figure 7.

In this research we propose a model called TEAK
that makes use of GAC trees. Unlike previous CBR
calibration methods, TEAK does not use the overall per-
formance of the whole dataset to decide on the number
of analogies, i.e. TEAK does not use a fixed number
of analogies for all test instances. Instead TEAK prunes
all unnecessary analogies on the basis of performance-
variance for single test instance, thereby choosing the
analogies to be used for each test instance dynamically.
In Figure 8, we can see the box plot for the number of
instances that were send to GAC2 tree. It is seen from
Figure 8 that TEAK is indeed capable of selecting various
k values dynamically to be used during building up
GAC2 and as our results indicate dynamic instance se-
lection that takes into account the characteristics of each
dataset on the basis of performance-variance improves
the prediction accuracies.

Furthermore, as we can see from Figure 9, selecting
small training sets on a per-instance basis making use
of variance improves CBR effort estimation performance
and outperforms fixed-k approaches.

4.2 Results for Research Question 2
The second research question was whether we could ease
the procedure of selecting the best performing number of
analogies and whether we could increase the predictive
performance while doing that. As a matter of fact, with
the utilization of GAC trees in TEAK, we have saved
the researcher from the task of choosing the best k value.
Since TEAK itself builds up GAC1 and prunes irrelevan-
cies while sending the project instances to GAC2 as well
as while building up GAC2, we have left the entire best
k selection process to TEAK. Furthermore, apart from
being able to choose the number of analogies for each
test instance on its own, TEAK outperforms all the other
k-based CBR methods.

When we look at the win, tie, loss values in Table 4, we
see that in all ten data sets, TEAK has the highest win−
loss values. This suggests that TEAK has attained lower
MRE values than all other methods. Indeed, TEAK has a
loss value of 0 for all datasets and this shows that TEAK
has never been outperformed by any other method in all
datasets for statistically significant cases. Also the plots

of MRE lines given in Figure 9 supports the statistics
in Table 4. In other words, MRE values of TEAK are
lower than all other methods and therefore the MRE line
for TEAK lies below all the others. Among ten datasets
Albrecht seems to be the most challenging one. From
the MRE lines given in Figure 9, it is difficult to claim
a best performing method for Albrecht dataset. Also for
pred(25) values we see a similar pattern. TEAK has the
highest pred(25) value for all datasets except Albrecht.
Furthermore, when compared to pred(25) values of other
methods, TEAK can improve pred(25) values up to 69%.

Furthermore, three datasets look like they challenge
all methods: Albrecht, Cocomo81o, Nasa93c2. Regarding
the remaining seven cases:

• For three cases (Cocomo81, Nasa93 and SDR) we
see that TEAK is the best method by an amount
of more than 90% improvement in accuracy; e.g.
in SDR TEAK comes best over a hundred times
compared to the next best number of (wins−losses)
which is 8.

• In Cocomo81, Cocomo81o, Cocomo81e, Nasa93, De-
sharnis TEAK comes best at least twice as much as
the next contender.

• Only in one case out of seven does another method
come close to TEAK: In ISBSG-Banking, TEAK
comes best 54 times compared to the 44 times of
k = 16.

5 CONCLUSION AND FUTURE WORK

In this paper, to configure CBR systems, we have pro-
posed a novel method called TEAK that makes use of
GAC. In our study we defined two research questions to
address the problems with traditional methods of config-
uring CBR methods: 1)Understanding the characteristics
of data and 2) determining the number of analogies to be
used for better performance. We have shown in Section
4 that previous methods that make use of fixed number
of analogies (fixed-k) on the basis of performance score
(MRE or any other error based performance measure)
of the overall dataset will eventually sacrifice from the
per-instance based optimum k value for a large number
projects. Therefore, we proposed utilizing GAC trees that
will select small training sets of different sizes, i.e. differ-
ent number of analogies for each individual test instance.
Furthermore, unlike traditional CBR configuration meth-
ods, we made use of performance-variance rather than
performance score. Therefore, rather than proposing a
best-k value a priori as the traditional CBR methods do,
what TEAK does is starting with all the training samples
in the dataset, learning the dataset to form GAC trees
and chopping-off the irrelevant analogies on the basis
of variance. As it is reported in Section 4, TEAK has
outperformed previously proposed CBR configuration
methods.

Apart from trying to address the reported issues
regarding previous CBR studies in terms of dataset
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Fig. 8: Boxplot for the Number of Instances Send to GAC2 Tree

TABLE 3: All Datasets: Mean Pred(25) Values for TEAK and multiple k values

Dataset TEAK k=1 k=2 k=4 k=8 k=16 k=best K
Cocomo81 0.13 0.09 0.09 0.09 0.1 0.11 0.1
Cocomo81e 0.24 0.16 0.15 0.19 0.18 0.24 0.2
Cocomo81o 0.14 0.07 0.08 0.1 0.1 0.1 0.1
Nasa93 0.15 0.1 0.12 0.11 0.11 0.11 0.11
Nasa93c2 0.17 0.1 0.11 0.12 0.11 0.14 0.1
Nasa93c5 0.21 0.11 0.11 0.15 0.17 0.18 0.19
Desharnais 0.3 0.17 0.2 0.24 0.26 0.27 0.26
SDR 0.22 0.13 0.06 0.1 0.08 0.09 0.12
Albrecht 0.15 0.15 0.23 0.21 0.23 0.26 0.22
ISBSG-Banking 0.33 0.19 0.18 0.23 0.26 0.3 0.23

and model, we also tried to meet the methodologi-
cal problems such as testing only on a limited num-
ber of datasets[1] and lacking statistical checks on the
results[34]. Therefore, we utilized various datasets from
multiple resources and evaluated our results on the basis
of Wilcoxon signed rank test at a 95% confidence level.

Going forward, we would like to see how the removal
of irrelevant instances in TEAK via utilization of GAC
trees relate to the analogies that produce the lowest MRE
for each individual instance. That is, we would like to see
the relationship between train instances that produced
the histograms of Figure 7 and the train instances that
are selected by TEAK. We believe that the MRE values
achieved by using the optimum number of analogies for
each test instance forms a baseline for k-based CBR meth-
ods and in our study we have observed that we obtained
closer results to this baseline than any other method.
However, there is still space to discover between the
MRE values of TEAK and the baseline. As our future
work we will try to discover that space and lower the
MRE values closer to the baseline.
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Fig. 9: Log-Mre Values of Datasets for GAC2 and multiple k Values
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