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Abstract

Prototype Learning Schemes (PLS) started appearing in order to alleviate the drawbacks of
nearest neighbour classifiers (NNC). Namely computation time, storage requirements, the effects
of outliers on the classification results and also the negative effect of data sets with non-separable
and/or overlapping classes. To that end all PLS have endeavored to create or select a good repre-
sentation of training data which is a mere fraction of the size of the original training data. In most
of the literature this fraction is about 10%. In this work, the design, implementation and evalua-
tion of MARS, a new prototype learning scheme is described. MARS works by first generating
initial-prototypes with a clustering algorithm. These prototypes are then examined for conflicts,
i.e. prototypes in a local neighbourhood with conflicting classes. When or if these prototypes are

found they are removed.



1 Introduction

Since the creation of the Nearest Neighbour algorithm in 1967 [CH67], various prototype learn-
ing schemes (PLS) have appeared to remedy the four (4) major drawbacks associated with the
algorithm and it’s variations. First, the high computation costs caused by the need for each test
sample to find the distance between it and each training sample. Second, the storage requirement
is large since the entire dataset needs to be stored in memory, third, outliers can negatively affect
the accuracy of the classifer and fourth the negative effect of data sets with non-separable and/or
overlapping classes. To solve these issues, PLS are used. Their main purpose is to reduce a training
set via various selection and/or creation methods to produce good prototypes. Good here meaning
that the prototypes are a good representation of the original training dataset such that they maintain
comparable or increased classification accuracy of a nearest neighbour classifier.

Earlier successes with prototype generation include Chang’s work in 1974 [Cha74], LVQ
(learning vector quantization) [Koh90, KS98] and the condensed nearest neighbour (CNN) rule
[Har68]. These early works form the basis of today’s PLS, for instance, minimal consistent set
(MCS) [Das94] by Darsarathy based on CNN. In Chang’s algorithm, every point in the training set
(T) starts out as a prototype. Then, in turn, any two(2) nearest prototypes (pl and p2) of the same
class are merged to form p* which replaces p1 and p2 and adopts their class label. This merging
takes place if and only if there is no downgrade in the classification (Nearest Neighbour Classifica-
tion -NNC) of instances in T. Also, merging is done with euclidean distance or weighted euclidean
distance. Chang’s merging process continues ...until the number of incorrect classifications of pat-
terns in T starts to increase” [Cha74]. More than a decade after Chang’s work, Kohonen [Koh90]
in 1990, introduced the learning vector quantization (LVQ). LVQ is a set of learning algorithms
for nearest prototype classification and its basic algorithm, LVQ1, works by first selecting a certain
number of prototypes from each class randomly as initial prototypes. This ensures that each class

is represented be at least one prototype. These initial prototypes are then updated using the training



set with the basic idea that the prototypes will be attracted to training points with the same class
label and repelled by those with different class labels. CNN is one of the oldest PLS. Introduced

by Hart [Har68] in 1968, the algorithm works as follows:

...first a single pattern is put in the condensed set.Then each pattern is considered
and its nearest neighbour in the condensed set is found. If its label is the same as that of
the pattern in the condensed set, it is left out; otherwise the new pattern is included in
the condensed set. After one pass through all the training patterns, another iteration is
carried out where each training pattern is classified using the patterns in the condensed
set. These iterations are carried out till every training pattern is correctly classified

using the NNC on the patterns in the condensed set. [DMO02]

Finally, looking at MCS [Das94], a more recent PLS, Darsarathy improves on CNN by aban-
doning the exhaustive search and ensuring that the final set of prototypes is a minimal and consis-
tent set. Basically, Darsarthy’s method selects a protoype for the set if it has the greater number
of instances of similar class closer to it than the closest instance of a different class, i.e it nearest
unlike neighbour (NUN).

Drawing from these previous efforts, particularly Darsarathy’s MCS, this paper presents MARS
(MESO! and Reduction Solution). MARS is a procedure which uses MESO [KMO07], a perceptual
memory system to generate inital prototypes. Briefly, in MESO prototypes generated are cluster
based and are called spheres. Each sphere contains a collection of similar instances. Sphere mem-
bership is dictated by a grow function which manages the size of the sphere. So, any new instance
finds its closest sphere, if the distance is less than the distance of the growth function then it gets
added to the sphere otherwise a new sphere is created with the instance [KMO7]. Once the initial
prototypes are generated, a novel technique for reducing its number is applied. The goal of this
novel reduction approach is to remove conflicting overlapping prototypes which can lead to the

misclassification of test instances.

'Multi-Element Self-Organizing Tree



The remainder of this paper is organized as follows: Section 2 describes the MARS procedure;
MESQ’s algorithm and how it is used to suit our purpose of creating prototypes, followed by a
detailed description of reduction solution. Section 3 presents experimental results which evaluates
the performance (pds and pfs with nearest neighbour classifier -NNC) of MARS and compares it
directly to applying NNC to all prototypes (i.e. the training set). Finally, the conclusions for this

work are presented.

2 MARS Design and Operation

MARS which stands for MESO and Reduction Solution, is a two (2) step procedure for first gen-
erating initial-prototypes, then removing those conflicting prototypes present in a local neighbour-
hood. MESO uses a ”...data clustering approach which creates small clusters of patterns called
sensitivity spheres” [KMO7], while our reduction strategy adopts the nearest unlike neighbour
(NUN) concept used by Dasarathy [Das94] to remove conflicting prototypes. The following sec-
tions show how MESO is used to create the initial prototypes for each class in the training set and

also how NUN is used to reduce these initial prototypes.

2.1 Creating Initial Prototypes with MESO

Figure 1, displays the algorithm for creating sensitivity spheres (clusters) in MESO. As described
in [KMO7], the algorithm takes each instance and its closest sphere mean vector is located. If the
distance between them is less than or equal to d then the instance is added to the sphere and the
sphere mean is recalculated. If however the distance between the instance and the sphere is greater
than O then O is grown using the growth function [KMO7] and the instance forms a new sphere
with itself as the initial sphere mean vector. Indept details of this algorithm is not presented in
this work, however the reader can further investigate the Kasten’s algorithm in his paper, “MESO:

Supporting Online Decision Making in Autonomic Computing Systems” [KMO7].



Initialize the d = 0, u = x1, 5]
For each x; sample do
Find the nearest u for x;
if distance from y tox; < 8
(1) add xjtos;
(ii) recompute y using samples in s;
else
(i) let & = grows
(i1) create new s; + 1
(iii) add x; to s; + 1
(iv) let u = x;

Figure 1: Sphere Creation Algorithm in MESO (adapted from [KMO7])

The main advantages of using MESO [KMO7] to generate our initial prototypes are (1. the user
does not need to decided on the number of initial prototypes to generate, the algorithm does this
automatically and (2. the distance value which determines the size of a sphere is realized from the
training set. With the task of choosing values for these variables taken care of by MESO, we focus
on generating prototype for each class in our training set. First, the instances in the data set are
grouped by their class label. Sensitivity spheres are then created for each of these groups. Once
this step is completed, three instances from each sphere are selected as initial prototypes. The

criteria for selecting the prototypes is as follows:
* For each sphere the instance closest to the centroid is chosen.

* The other two (2) instances are chosen as the furthest points away from the centroid of a
sphere. This is done by first finding the instance, ‘ia’, furthest away from the centroid, then

finding the instance furthest from ‘ia’.

Recall that one disadvantage of using a NNC is that if the classes in a data set are non-separable

or overlapping, training samples in a local neighbourhood may come from different classes. As
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a result, test data may be misclassified using a NNC. Further, since the spheres created here by
MESO is done on a class by class basis, the other classes do not have a say in the positioning of

the resulting spheres. It is for these reasons that the reduction step of MARS is performed.

2.2 Reduction by Removing Confusing Prototypes

The purpose of removing confusing prototypes is to reduce the misclassification rate by an NNC.
Figure 2 clearly features the basic algorithm used to accomplish this. Figure 3 shows the general
prototype reduction at each level of a data set. A few data sets such as Lymph and Audio show a
very small reduction from the original number of prototypes while others such as Breast Cancer,
Vote and Tic-Tac-Toe show a radical reduction to less than 10% of the original data set. Please

note that since MESO is order dependent, the reduction rate differs once the data set is shuffled.

1. Choose initial prototypes for each class using SSC from MESO
2. Take each prototype and find the distance (d1) of its NUN,
3. Then find the distance (d2) of its nearest like neighbour (NLN).
If d1 < d2, remove the prototypes
If d1 > d2, the prototype is approved and kept
4. Repeat 2 and 3 until no more prototypes can be removed

Figure 2: Reduction with NUN Algorithm

3 MARS Assessment

In all the literature reviewed for this work, researchers measure the performance of their PLS using

classification accuracy as follows:



Data Set All prototypes | Initial-Prototypes | Final Prototypes
Lymph 147 33 14
Iris 150 63 57
Breast Cancer | 286 24 11
Heart 297 84 66
Cars 1728 69 58
Vote 430 18 8
Diabetes 768 129 92
Tic-Tac-Toe 958 21 4
Sonar 208 102 75
Balance Scale | 226 21 8

Figure 3: Reduction Level of Data Sets with MARS

Sumo fCorrectClassifications

TotalNumbero fInstancesTested

However, the results of this method can only be trusted when the class distribution of a data
set occur with similar frequencies. In light of this, the performance of both the nearest neighbour
classifier (NNC) and MARS was assessed by calculating the probability of detection (pd) and prob-
ability of false alarm (pf) [MGF07] measures for each data set used in this work. By allowing A, B,
C and D to represent true negatives, false negatives, false positives and true positives respectfully,
it then follows that pd also known as recall, is the result of true positives divided by the sum of
false negative and true positives D /(B + D). While pf is the result of: C/(A + C).

In this section the pd and pf values of MARS and NNC are generated for ten (10) standard
discrete data sets (See Figure 4) from the UC Irvine machine learning repository [ANO7]. This
is done by following the procedure for cross-validation experiments is described in the following
section. Next our results are visualized with quartile charts Figure 6. These charts offer a non-
parametric view of the result with no assumptions on the underlying distribution. To further ensure
the soundness of our experiments, the Mann-Whitney U test [MW47] (a non-parametric test) was

applied to our results to see if there was any statistical difference between them.



Data Set Attributes \ Instances \ Labels ‘

Lymph 18 147 4
Iris 4 150 3
Breast Cancer | 9 286 2
Heart 13 297 5
Cars 6 1728 6
Vote 16 430 2
Diabetes 8 768 2
Tic-Tac-Toe 9 958 2
Sonar 60 208 2
Balance Scale | 70 226 8

Figure 4: Data Set Characteristics

3.1 Experimental Method

This study used 10 x 10 way cross-validation experiments to evaluate the performance of MARS.

The procedure was executed as follows:

* Shuffle the training data then divide it into N buckets.

* For each bucket, MARS is trained on nine (9) of the buckets and tested on the remaining

bucket.

* The A, B, C, D values for each class are generated from the testing phase and the pds and

pfs are calculated.

* The above is repeated ten (10) times collecting all pd and pf values each time.

In the end MARS is trained and tested 100 times.

3.2 Results

Figure 6 presents the quartile charts of pd and pf for KNN vs MARS over ten (10) discrete data

sets. The pd and pf values are found for each class in the data sets. Although some of the have
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more than two(2) classes, Figure 6 presents the results of two(2) classes for each data set in column
1 and 2. For the data sets where the number of classes is greater than 2, the majority classes are
chosen to be displayed. Figure 5 indicates the classes represented in each column for each data
set. The results of performing the Mann-Whitney U test is indicated as (w - win, 1 -loss and t - tie)
in parentheses next to the treatment name. A w or [ signals whether or not the use of MARS is

statistically different while ¢# shows no difference.

’ Data Set \ Column 1 \ Column 2
Lymph fibrosis metastases
Iris versicolor virginica
Breast Cancer | recurrence-events | no-recurrence-events
Heart >50—-1 >50—-4
Cars unacc acc
Vote republican democrat
Diabetes tested-positive tested-negative
Tic-Tac-Toe positive negative
Sonar Rock Mine
Balance Scale | R L

Figure 5: Data Set Classes Used

In previous work done on PLS, the goal has been that the accuracy with the use of a prototype
learner is either comparable or greater than that using the entire training data. However, in this
work we seek comparable or higher pd values in conjunction with lower pf values for MARS. Most
of our results demonstrates that although the goal of higher pds are achieved for some data sets
(Iymph, diabetes, vote, breast cancer, iris, sonar), it comes at the cost of higher pfs. For instance,
the median pfs for Diabetes is 50 for KNN while MARS is 100. In the cases where the median pfs
for MARS are comparable or lower than those of KNN, MARS pds are lower. With these results,
the use of MARS as a prototype learner must be determined by the data set and whether or not the

user, in their domain, will accept a lower pd in favor of a reduced pf.



4 Conclusions and Future Work

MARS has been presented in this work. It is a prototype learner which first creates initial proto-
types that are then reduced in numbers by a novel reduction method. When compared against a
NNC, the results over ten (10) standard discrete data sets indicate that the use of MARS is depen-

dent on the data set used and the parameters of acceptable results of a user and their domain.



Lymph| Treatment | 25% 50% 75%| QI median Q3 Lymph | Treatment| 25% 50% 75% | QI median Q3
pd MARS (w)| 50 71 100 | —e—i pd MARS ()| 38 63 89 e
KNN (1) 50 60 75 | re— I KNN (w) 89 100 100 | I e
pf MARS (w) 11 36 57 | —et | pf MARS (1) 0 25 44 —e—1 |
KNN (1) 0o 9 17 e | KNN (w) 25 38 50 [ |

0 50 100 0 50 100
Vote | Treatment | 25% 50% 75%| QI median Q3 Vote | Treatment| 25% 50% 75% | QI median Q3
pd | MARS (t) 33 80 100 e pd | MARS (1) 0 53 92 ——
KNN (t) 75 81 86 | e KNN (w) 72 80 86 | e
pf MARS (w) 8 38 100 | —e+— pf | MARS (t) 0 18 63 e—+— |
KNN () 14 20 27 e | KNN (t) 14 19 25 e |

0 50 100 0 50 100
Heart| Treatment| 25% 50% 75%| Q1 median Q3 Heart| Treatment| 25% 50% 75%| Q1 median Q3
pd MARS (1) 13 80 100 e pd MARS (1) 0 67 100 —
KNN (w) | 100 100 100 | | . KNN (w) 0 100 100 ——e
pf MARS (t) 0 0 0 . | | pf MARS (t) 0 0 0 . | |
KNN (t) 0 0 0 . | | KNN (t) 0 0 0 . | |

0 50 100 0 50 100
Breast Cancer| Treatment| 25% 50% 75%| Q1 median Q3 Breast Cancer| Treatment | 25% 50% 75%| QI median Q3
pd MARS (1) 36 91 100 I e pd MARS (t) 0 14 83 ——— |
KNN (w) 91 95 100 | | . KNN (t) 18 25 33 | e |
pf MARS (t) 17 86 100 | e pf MARS (w) 0 6 ol -~
KNN (t) 67 73 80 | | e KNN (1) 0 5 10 . | |

0 50 100 0 50 100
Cars | Treatment | 25% 50% 75%| Q1 median Q3 Cars | Treatment | 25% 50% 75%| Q1 median Q3
pd | MARS (t) 15 67 94 |t pd | MARS (w) 0 20 57 e+ |
KNN (t) 49 55 63 | - KNN () 0 o0 0 . | |
pf | MARS (w) 17 37 62 | —e— pf MARS (w) 4 25 67 —e—
KNN (D) 5 7 9 . | | KNN (1) 0 o0 0 . | |

0 50 100 0 50 100
Tic-Tac-Toe | Treatment | 25% 50% 75%| Q1 median Q3 Tic-Tac-Toe | Treatment| 25% 50% 75%| QI median Q3
pd MARS (w) 0 72 100 ———i pd MARS () 0 21 100 e
KNN (1) 0 14 19 e | KNN (w) 0 92 100 | | .
pf MARS (w) 0 77 100 —t—e—i pf MARS (1) 0 28 100 et
KNN (1) 0 5 9 . | | KNN (w) 80 86 100 | [

0 50 100 0 50 100
Iris | Treatment | 25% 50% 75%| QI median Q3 Iris | Treatment| 25% 50% 75%| QI median Q3
pd | MARS (t) | 100 100 100 | | . pd | MARS (1)| 50 80 100 | —e—i
KNN (1) 86 100 100 | [ KNN (w) | 100 100 100 | | .
pf | MARS (w) 0 11 25 | —e—— | pf | MARS (t) 0 0 8 . | |
KNN (1) 0 0 0 . | | KNN (t) 0 0 0 . | |

0 50 100 0 50 100
Sonar| Treatment | 25% 50% 75% | QI median Q3 Sonar | Treatment| 25% 50% 75%| Q1 median Q3
pd MARS (t) 36 73 100 I e pd MARS (1) 0 40 78 —e— |
KNN (t) 67 75 85 | | . KNN (w) 44 54 67 | -
pf MARS (w)| 20 58 100 |t pf MARS (t) 0 25 o4 —e—— |
KNN (1) 30 46 55 [— | KNN (1) 15 25 33 [ |

0 50 100 0 50 100
Diabetes| Treatment | 25% 50% 75%| Q1 median Q3 Diabetes | Treatment| 25% 50% 75% | QI median Q3
pd MARS (w) 2 100 100 —t—e pd MARS (1) 0 0 100 -~
KNN (1) 8 89 91 | I el KNN (w) 41 50 55 | - |
pf MARS (w) 0 100 100 ——e pf MARS (1) 0 0982 -~ +
KNN (1) 45 50 58 | s | KNN (w) 9 12 14 e |

0 50 100 0 50 100
Balance Scale| Treatment| 25% 50% 75%| Q1 median Q3 Balance Scale| Treatment| 25% 50% 75% | Q1 median Q3
pd MARS (1) 0 19 36 —e— | | pd MARS (1) 10 33 58 | —e—t |
KNN (w) 53 59 69 | - KNN (w) 70 77 85 | | e
pf MARS (1) 0 8 24 — | pf MARS (t) 13 44 67 I
KNN (w) 18 24 34 e | KNN t) 32 43 49 - |

0 50 100 0 50 100

Figure 6: Probability of Detection (PD) and Probability of False Alarm (PF)results
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